HOMEWORK 3 FOR 18.706, SPRING 2023

(1) Let $R=\Gamma \# \mathbb{C}[x]$ where $\Gamma=\mathbb{Z} / 2 \mathbb{Z}$, with nontrivial element of Γ acting by $x \mapsto-x$ (see problem 6 of pset 2 for notation).
(a) Identify R with the subring in $M a t_{2}(\mathbb{C}[x])$ consisting of matrices $\left(P_{i j}\right)$ such that $P_{i j}(-x)=(-1)^{i+j} P_{i j}(x)$.
(b) Compute the center and the cocenter of R and check that the latter is not a free module over the former. Conclude that R is not Morita equivalent to a commutative ring.
(2) Let R be a ring and F be the forgetful functor from the category of R modules to abelian groups. Describe $\operatorname{End}(F)$.

More generally, let $A \rightarrow R$ be a ring homomorphism. Describe the endomorphism ring of the pull-back functor $R-\bmod \rightarrow A-\bmod$.
(3) For each of the following functors determine existence of a left adjoint, of a right adjoint and describe the existing adjoint functors.
(a) Let $Q=(\bullet \longrightarrow \bullet)$ be the quiver with two vertices and one arrow between them. Let \mathcal{B} be the category of representations of Q over a fixed field, \mathcal{A} be the full subcategory consisting of such representations that the map between the two vector spaces is injective, and $F: \mathcal{A} \rightarrow \mathcal{B}$ be the embedding.
(b) A graded commutative (or super-commutative) ring is a $\mathbb{Z} / 2 \mathbb{Z}$ graded ring $R=R_{0} \oplus R_{1}$ such that $x y=-y x$ for $x, y \in R_{1}$ and $x y=y x$ for $x \in R_{0}, y \in R$.
Let \mathcal{A} be the category of vector spaces over a field k not of characteristic two, \mathcal{B} be the category of graded commutative k-algebras and let F send a vector space to its exterior algebra.
(4) In the proof of an explicit characterization of Morita equivalent rings we checked that a projective module P is finitely generated iff the functor $C_{T}: T \mapsto \operatorname{Hom}(P, T)$ preserves arbitrary coproducts. This exercise shows this is not necessarily true when P is not projective.
(a) Show that a module is finitely generated iff the union of any totally ordered (under inclusion) family of proper submodules is a proper submodule.
(b) Show that for a module M the functor C_{T} preserves coproducts iff the union of any ordered sequence of proper submodules $M_{1} \subseteq M_{2} \subseteq \ldots$ is a proper submodule.
[Hint: if a homomorphism $f: M \rightarrow \oplus N_{\alpha}$ does not land in the sum of a finite subset of N_{α}, one can choose $\alpha_{1}, \alpha_{2}, \ldots$ so that the composition $M \rightarrow \oplus N_{\alpha} \rightarrow N_{\alpha_{i}}$ is nonzero for all i. Then consider $\bar{f}: M \rightarrow \bigoplus N_{\alpha_{i}}$ and let M_{i} be the preimage of $\bigoplus_{i=1}^{n} M_{\alpha_{i}}$.]
(c) Let S be an uncountable set, k be a field and R be the ring k^{S} of k valued functions on S. Let $I \subset R$ be the ideal consisting of functions
f such that $\{s \in S \mid f(s) \neq 0\}$ is at most countable. Show that the R-module I satisfies the second but not the first condition.
(5) In this problem we consider a finite dimensional algebra A over a field k and the Cartan matrix $C, C_{i j}=\operatorname{dim}_{k}\left(\operatorname{Hom}\left(P_{i}, P_{j}\right)\right)$ where P_{i}, P_{j} run over the set of isomorphism classes of indecomposable projective modules.
(a) Let $k=\mathbb{R}$ and assume that A has finite homological dimension. Show that $\operatorname{det}(C)= \pm 2^{n}$ for some n.
(b) (Optional) Let k be an algebraically closed field of characteristic $p>$ 0 and $A=k[G]$ for a finite group G which has a normal Sylow p subgroup. Check ${ }^{1}$ that $\operatorname{det}(C)=p^{n}$ for some n.
[Hint. Let $H=G / S$ where S is the Sylow p-subgroup, so that $G=H \ltimes S$ while $k[H]$ is semisimple and irreducible representations of G are in bijection with irreducible representations of H over k and also with irreducible representations of H over a characteristic zero field F. Relate C to the matrix of multiplication by $F[S]$ acting on $K\left(\operatorname{Rep}_{F}(G)\right)$ and compute this matrix in the basis given by conjugacy classes.]
(6) Let Q be the quiver with two vertices and two edges of opposite orientation connecting them. Set $A=A(Q) /(a b)$ where a, b are the elements corresponding to the two edges.

Show that A is finite dimensional over \mathbb{C} and has finite homological dimension.
[Hint: Recall that an Artinian ring has finite homological dimension provided that each irreducible module has a finite projective resolution.]

[^0]MIT OpenCourseWare
https://ocw.mit.edu

18.706 Noncommutative Algebra

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ In fact, this is true for any finite group G but this general result is harder to prove.

