HOMEWORK 4 FOR 18.706, FALL 2018

(1) Let $R \subset \operatorname{Mat}_{2}(\mathbb{Q})$ consist of matrices $A=\left(a_{i j}\right)$ such that $a_{11} \in \mathbb{Z}$ and $a_{21}=0$. Show that the homological dimension of R equals two but the homological dimension of $R^{o p}$ (i.e. the homological dimension of the category of right R-modules) equals one.
(2) Let $D \supset K$ be skew fields. Let d_{l} be the dimension of D as a left K module and d_{r} be the dimension of D as a right K-module. Show ${ }^{1}$ that if D is finite over its center then $d_{l}=d_{r}$.
(3) Let D be a skew field which is not algebraic over its center k. Show that $R=D \otimes_{k} k(t)$ is a simple Noetherian ring which is not isomorphic to a matrix ring over a skew field.
[Hint. Define an action of R on D. Show that the sum of finitely many copies of that module can not contain a free submodule, deduce R is not a matrix ring over a skew field].
(4) Let $k=\mathbb{F}_{p}\left(t_{1}, t_{2}\right)$ be the field of rational functions in two variables over \mathbb{F}_{p}. Set $D=k\langle x, y\rangle /\left(x y-y x=1, x^{p}=t_{1}, y^{p}=t_{2}\right)$.
(a) Show that D is a skew field of dimension p^{2} over its center k. Give an example of a splitting field of D.
(Hint: Check that $\mathbb{F}_{p}\langle x, y\rangle /(x y-y x=1)$ and hence D has no zero divisors.)
(b) (Optional) Let us generalize the definition of D as follows. For $P \in$ $\mathbb{F}_{p}[t]$ let $D(P)$ be given by $x^{p}=P\left(t_{1}\right), y^{p}=t_{2}, x y-y x=1$.
Check that $P \rightarrow[D(P)]$ is a homomorphism from the additive group of polynomials to $\operatorname{Br}(k)$.
(c) (Optional) Show that the kernel of this homomorphism is $\mathbb{F}_{p}\left[t^{p}\right]$. Conclude that p-torsion in the Brauer group of k is infinite.
(5) Let A be an algebra over a field k. Recall that an n-th order deformation of A is an associative algebra \tilde{A} over $k[t] /\left(t^{n+1}\right)$, free as a module over $k[t] /\left(t^{n+1}\right)$, together with an isomorphism of k-algebras $f: \tilde{A} / t \tilde{A} \rightarrow A$. Two such deformations (\tilde{A}, f) and $\left(\tilde{A}^{\prime}, f^{\prime}\right)$ are said to be equivalent if there exists an algebra isomorphism $g: \tilde{A} \rightarrow \tilde{A}^{\prime}$ such that $f^{\prime} g=f$. As has been explained in class, first order deformations are parametrized by $H H^{2}(A)$.

Suppose that $A=\operatorname{Sym}(V)$ is a polynomial algebra over a field k of characteristic zero. Recall that Hochschild cohomology of the polynomial algebra is identified with the space of polynomial poly-vector fields on the V^{*}.

Thus a first order deformation of $A=\operatorname{Sym}(V)$ is determined by a bivector field $\alpha \in \operatorname{Sym}(V) \otimes \wedge^{2} V^{*}$. This bivector field defines a skew-symmetric bilinear operation on A, given by $\{f, g\}=\langle\alpha, d f \otimes d g\rangle$. Show that the first

[^0]order deformation defined by α lifts to a second order deformation if and only if this operation is a Lie bracket (satisfies the Jacobi identity). In this case α is said to be a Poisson bivector field.
(6) Let A be a k-algebra for a field k, let $H=H H^{*}(A)$ be its Hochschild cohomology and $H^{e v}=\oplus_{n} H H^{2 n}(A)$ be the even part of H. Let $D(A)$ be the category whose objects are A-modules and $\operatorname{Hom}_{D(A)}(M, N)=\operatorname{Ext}^{*}(M, N)$ with the usual composition maps.
(a) Define a natural homomorphism $H^{e v} \rightarrow \operatorname{End}\left(I d_{D(A)}\right)$.
(b) Suppose we are given a first order deformation \tilde{A} of A with class $h \in$ $H H^{2}(A)$ and an A-module M. Show that the element in $E x t_{A}^{2}(M, M)$ assigned to h by part (a) is the obstruction to deforming M to an \tilde{A} module.
(A deformation of a module M is an \tilde{A}-module \tilde{M} free over $k[t] /\left(t^{2}\right)$ and isomorphism $\tilde{M} / t \tilde{M} \cong M)$.
(c) (Optional) Extend the homomorphism in (a) to a homomorphism from H to a modification of $\operatorname{End}\left(\operatorname{Id}_{D(A)}\right)$ involving the appropriate sign rule.
(7) (Optional) Let R be the ring of real valued continuous functions on the 2sphere S^{2}. Let R^{+}and R^{-}be the ring of continuous functions on the upper and lower closed hemispheres respectively. Let $A \subset \operatorname{Mat}_{2}\left(R^{+}\right) \times \operatorname{Mat}_{2}\left(R^{-}\right)$ be the subring given by: $m=\left(m_{+}, m_{-}\right) \in A$ if $m_{+}(\theta)=S(\theta) m_{-}(\theta) S(\theta)^{-1}$. Here $\theta \in[0,2 \pi)$ is the standard coordinate on the equator circle bounding the upper and the lower hemisphere, and
\[

S(\theta)=\left($$
\begin{array}{ll}
\cos \left(\frac{\theta}{2}\right) & \sin \left(\frac{\theta}{2}\right) \\
-\sin \left(\frac{\theta}{2}\right) & \cos \left(\frac{\theta}{2}\right)
\end{array}
$$\right)
\]

Prove that A is a non-split Azumaya algebra over R.
[Hint: Basic topology can be used in this problem. Reduce the statement to the fact that the map $\pi_{1}\left(S^{1}\right) \rightarrow \pi_{1}\left(S^{1}\right)$ induced by the double cover map $S^{1} \rightarrow S^{1}$ is not surjective.]

MIT OpenCourseWare
https://ocw.mit.edu

18.706 Noncommutative Algebra

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ According to T.Y. Lam, the question whether $d_{l}=d_{r}$ was raised by E. Artin. The answer is negative in general: there exist skew fields $D \supset K$ for which d_{l}, d_{r} is an arbitrary prescribed pair of integers greater than 1 [Schofield, 1985].

