HOMEWORK 5 FOR 18.706, SPRING 2023

(1) Let F be a field of characteristic different from 2. For $a, b \in F^{\times}$let $A_{a, b}$ be the four dimensional algebra over k with basis $1, i, j, k$, such that $i j=k=-j i, i^{2}=a, j^{2}=b$.
(a) Check that $A_{a, b}$ is a c.s.a. over F. Let $\left(\frac{a, b}{F}\right)$ denote its class in the Brauer group.
(b) Show that $\left(\frac{a, b}{F}\right)=1$ iff $b=N m_{E / F}(z)$ for some $z \in E=F(\sqrt{a})$. (The operation in the Brauer group is written multiplicatively).
(c) Check ${ }^{1}$ that $\left(\frac{a, b}{F}\right)^{2}=1=\left(\frac{a, 1-a}{F}\right)$ and $\left(\frac{a, b c}{F}\right)=\left(\frac{a, b}{F}\right)\left(\frac{a, c}{F}\right)$
(2) Show that the the ring of integer quaternions $\mathbb{H}_{\mathbb{Z}}=\{a+b i+c j+d k \mid a, b, c, d \in$ $\mathbb{Z}\} \subset \mathbb{H}$ is not an Azumaya algebra over \mathbb{Z}, while $\mathbb{H}_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{2}\right]$ is an Azumaya algebra over $\mathbb{Z}\left[\frac{1}{2}\right]$.
(3) An element x in a ring R is said to be ad locally nilpotent if $a d(x): a \mapsto$ $x a-a x$ is locally nilpotent, i.e. for any $a \in R$ there exists n such that $a d(x)^{n}(a)=0$. Show that a multiplicative set consisting of ad locally nilpotent elements satisfies Ore's condition.
(4) Let K be a skew field and $\phi: K \rightarrow K$ a homomorphism. Set $A=$ $K\langle x\rangle /(x a=\phi(a) x)$.

Show that the set of powers of x is a left Ore set, and it is a right Ore set iff ϕ is surjective. In the latter case prove that A is a right Ore domain, i.e. the set of all nonzero elements is right localizing.
(5) Let us say that an ideal $I \subset R$ is right localizable if the set of elements regular modulo I is a right Ore set. (Recall that an element is called regular if it's neither a left nor a right zero divisor).

Let k be a field and $R \subset \operatorname{Mat}_{2}(k[x])$ be given by $R=\left\{\left(a_{i j}\right) \mid a_{21}=\right.$ $\left.0, a_{11} \in k, a_{22}-a_{11} \in x k[x]\right\}$. Show that R is right Noetherian, the ideal of strictly upper triangular matrices is prime, has square zero and is not localizable.
(6) Recall that a module is called uniform if it is nonzero and any two nonzero submodules have a nonzero intersection.

Let R be the ring of continuous \mathbb{C}-valued functions on $[0,1]$ with pointwise operations. Show that R has no uniform ideals.
(7) (Optional, repeated from pset 4) Let R be the ring of real valued continuous functions on the 2 -sphere S^{2}. Let R^{+}and R^{-}be the ring of continuous functions on the upper and lower closed hemispheres respectively. Let $A \subset$ $\operatorname{Mat}_{2}\left(R^{+}\right) \times \operatorname{Mat}_{2}\left(R^{-}\right)$be the subring given by: $m=\left(m_{+}, m_{-}\right) \in A$ if

[^0]$m_{+}(\theta)=S(\theta) m_{-}(\theta) S(\theta)^{-1}$. Here $\theta \in[0,2 \pi)$ is the standard coordinate on the equator circle bounding the upper and the lower hemisphere, and
\[

S(\theta)=\left($$
\begin{array}{ll}
\cos \left(\frac{\theta}{2}\right) & \sin \left(\frac{\theta}{2}\right) \\
-\sin \left(\frac{\theta}{2}\right) & \cos \left(\frac{\theta}{2}\right)
\end{array}
$$\right) .
\]

Prove that A is a non-split Azumaya algebra over R.
[Hint: Reduce to the fact that the map $\pi_{1}\left(S^{1}\right) \rightarrow \pi_{1}\left(S^{1}\right)$ induced by the double cover map $S^{1} \rightarrow S^{1}$ is not surjective.]

MIT OpenCourseWare
https://ocw.mit.edu

18.706 Noncommutative Algebra

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ The Milnor K_{2} group of F is the abelian group generated by symbols $\{a, b\}, a, b \in F^{\times}$ subject to the relations $\{a, b c\}=\{a, b\}\{a, c\},\{a, b\}=\{b, a\}^{-1},\{a, 1-a\}=1$. The identities of this problem yield a homomorphism from $K_{2}(F) / K_{2}(F)^{2} \rightarrow B r(F)[2]$, where G [2] denotes the 2-torsion in an abelian group G. A theorem by Merkuriev (1981) asserts that this homomorphism is an isomorphism.

