Lecture 9: Chow's Lemma, Blowups

Last time we showed that projective varieties are complete. The following result from Wei-Liang Chow gives a partial converse. Recall that a birational morphism between two varieties is an isomorphism on some pair of open subsets.

Lemma 1 (Chow's Lemma). If X is a complete, irreducible variety, then there exists a projective variety \tilde{X} that is birational to X.

Proof. This proof is a standard one. Here we follow the proof presented by [SH77]. Choose an affine covering $X=U_{1} \cup \ldots \cup U_{n}$, and let $Y_{i} \supseteq U_{i}$ be projective varieties containing U_{i} as open subsets. Now consider $\Delta: U \rightarrow U^{n} \rightarrow \prod_{i} U_{i} \rightarrow Y$ where $U=\bigcap_{i} U_{i}, Y=\prod_{i} Y_{i}$, and $\phi: U \rightarrow X \times Y$ be induced by the standard inclusion $U \rightarrow X$ and Δ. Let \tilde{X} be the closure of $\phi(U)$, and π_{1} gives a map $f: \tilde{X} \rightarrow X$. This map is birational because $f^{-1}(U)=\phi(U)$, and on U the map $\pi_{1} \circ \phi$ is just identity. (To see the first claim, note that it means $(U \times Y) \cap \tilde{X}=\phi(U)$, i.e. $\phi(U)$ is closed in $U \times Y$, which is true because $\phi(U)$ in $U \times Y$ is just the graph of Δ, which is closed as Y is separated.)

So it remains to check that $\tilde{\tilde{X}}$ is projective. We show this by showing that the restriction of $\pi_{2}: X \times Y \rightarrow Y$ to \tilde{X}, which we write as $g: \tilde{X} \rightarrow Y$, is a closed embedding. Let $V_{i}=p_{i}^{-1}\left(U_{i}\right)$, where p_{i} is the projection map from Y to Y_{i}. First we claim that $\pi_{2}^{-1}\left(V_{i}\right)$ cover \tilde{X}, which easily follow from the statement that $\pi_{2}^{-1}\left(V_{i}\right)=f^{-1}\left(U_{i}\right)$, since U_{i} cover X. Consider $W=f^{-1}(U)=\phi(U)$ as an open subset in $f^{-1}\left(U_{i}\right)$: on W we have $f=p_{i} g$, so the same holds on $f^{-1}\left(U_{i}\right)$ and the covering property follows.

It remains to show that $\tilde{X} \cap V_{i} \rightarrow U_{i}$ are closed embeddings. Noting that $V_{i}=Y_{1} \times \ldots \times Y_{i-1} \times U_{i} \times$ $Y_{i+1} \times \ldots \times Y_{n}$, we write Z_{i} to denote the graph of $V_{i} \xrightarrow{p_{i}} U_{i} \hookrightarrow X$, and note that it is closed and isomorphic to V_{i} via projection. Noting that $\phi(U) \subseteq Z_{i}$ and that Z_{i} is closed, taking closure we see that $\tilde{X} \cap V_{i} \rightarrow U_{i}$ is closed in Z_{i}.

Blowing up of a point in \mathbb{A}^{n} The blow-up of the affine n-space at the origin is defined as $\widehat{\mathbb{A}^{n}}=B l_{0}\left(\mathbb{A}^{n}\right) \subseteq$ $\mathbb{A}^{n} \times \mathbb{P}^{n-1}=\left\{(x, L): x \in \mathbb{A}^{n}, L \in \mathbb{P}^{n-1}, x \in L\right\}$. It is a variety defined by equations $x_{i} t_{j}=x_{j} t_{i}$. We have a projection $\pi: \widehat{\mathbb{A}^{n}} \rightarrow \mathbb{A}^{n}$. Atop 0 there is an entire \mathbb{P}^{n-1}, and on the remaining open set the projection is an isomorphism.

Now consider X an closed subset of \mathbb{A}^{n}, such that $\{0\}$ is not a component. The proper transform of X (a.k.a. the blowup of X at 0), denoted \tilde{X}, is the closure of the preimage of $X \backslash 0$ under π. Suppose X contains 0 , then $\pi^{-1}(X)=\tilde{X} \cup \mathbb{P}^{n-1}$. If $X \subsetneq \mathbb{A}^{n}$, then $\mathbb{P}^{n-1} \nsubseteq \tilde{X}$ because $\operatorname{dim}\left(\mathbb{P}^{n-1}\right) \geq \operatorname{dim}(\tilde{X})$. If X is irreducible, then \tilde{X} is the irreducible component of $\pi^{-1}(X)$ other than \mathbb{P}^{n-1}. The preimage of 0 within \tilde{X} is called the exceptional locus.

Next, observe that $\widehat{\mathbb{A}^{n}}$ is covered by n affine charts. More explicitly, $\widehat{\mathbb{A}}^{n}{ }_{i} \subseteq \mathbb{A}_{i}^{n-1} \times \mathbb{A}^{n}$ has coordinates $\left(t_{1}^{i}, \ldots, t_{i-1}^{i}, t_{i+1}^{i}, \ldots, t_{n}^{i}\right)$. On there, the defining equation becomes $x_{j}=t_{j}^{i} x_{i}$ for $j \neq i$, so $\widehat{\mathbb{A}}_{i} \cong \mathbb{A}^{n}$ with coordinates $\left(t_{1}^{i}, \ldots, t_{i-1}^{i}, x_{i}, t_{i+1}^{i}, \ldots, t_{n}^{i}\right)$. In other words, if $P\left(x_{1}, \ldots, x_{n}\right) \subseteq I_{X}$, then $P\left(t_{1}^{i} x_{i}, \ldots, t_{i-1}^{i} x_{i}, x_{i}, \ldots\right) \subseteq I_{\tilde{X} \cap \widehat{\mathbb{A}}_{i}}$.

Example 1. Let $X=\left(y^{2}=x^{3}+x^{2}\right) \subseteq \mathbb{A}^{n}$. Suppose $y=t x$, then $t^{2} x^{2}=x^{3}+x^{2} \Longrightarrow t^{2}=x+1$, so the preimage of $(0,0)$ is $\{(t= \pm 1, x=0)\}$. Thus X is not normal because the map $\tilde{X} \rightarrow X$ is not 1 -to- 1 , though $\operatorname{deg}(\tilde{X} \rightarrow X)=1$ (recall that a finite birational morphism to a normal variety is isomorphism).

Definition 1. Let X an affine variety, $x \in X$, we write $B l_{x}(X)=\tilde{X}_{x}$ to denote \tilde{X} for an embedding $X \subseteq \mathbb{A}^{n}$ where $x \mapsto 0$.

Remark 1. $B l_{x}(X)$ contains $X \backslash x$ as an open set, so this generalizes to any variety X.
Proposition 1. Suppose X embeds via two embeddings i_{1}, i_{2} to \mathbb{A}^{n} and \mathbb{A}^{m} respectively, such that there exists some x such that $i_{1}(x)=i_{2}(x)=0$, then $\tilde{X}_{1}=\tilde{X}_{2}$ for two blowups at x.

In particular, this tells us that blowup is an intrinsic operation that does not depend on the embedding.

Proof. First consider the special case $X=\mathbb{A}^{n}, i_{1}=i d$, and i_{2} given by $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n}, f\right)$ for some polynomial f. Write $\widehat{\mathbb{A}^{n+1}}=\bigcup_{i=1}^{n+1} \mathbb{A}_{i}^{n+1}$, and observe that $\bigcup_{i=1}^{n} \mathbb{A}_{i}^{n+1}=\widehat{\mathbb{A}^{n+1}} \backslash\left\{(0: 0: \ldots: 0: 1) \in \mathbb{P}^{n}\right\}$. Call that point ∞, then one can check that $\infty \notin \widetilde{\mathbb{A}^{n}}$. Now note that $\tilde{\mathbb{A}^{n}} \cap \mathbb{A}_{i}^{n+1} \cong \mathbb{A}_{i}^{n} \subseteq \widehat{\mathbb{A}^{n}}$ (Locally write it as $t_{n+1} x_{i}=f\left(t_{1} x_{i}, \ldots, x_{i}, \ldots, t_{n} x_{i}\right)$, and observe we have a x_{i} on both sides so the closure would be of shape $t_{n+1}=f^{\prime}\left(t_{1}, \ldots, x_{i}, \ldots, t_{n}\right)$, which gives an entire $\left.\mathbb{A}^{n}\right)$, so together we see that the blowup is nothing but $\widehat{\mathbb{A}^{n}}$. Second, consider $X=\mathbb{A}^{n}, i_{1}=i d, i_{2}: \mathbb{A}^{n} \hookrightarrow \mathbb{A}^{n+m}$ being a graph of a morphism $\mathbb{A}^{n} \rightarrow \mathbb{A}^{m}$. This can be reduced to the first case by induction on m (or really, just the exactly same argument applied several times). Now consider the general case of arbitrary i_{1}, i_{2}. First extend the embedding $i_{2}: X \rightarrow \mathbb{A}^{m}$ to a map $\mathbb{A}^{n} \rightarrow \mathbb{A}^{m}$ by lifting each generator (one can switch to the algebraic side, suppose $X=$ Spec A, then we get two surjective maps $\psi_{1}: k\left[x_{1}, \ldots, x_{m}\right] \rightarrow A$ and $\psi_{2}: k\left[y_{2}, \ldots, y_{n}\right] \rightarrow A$, lift ψ_{1} to $\psi_{2} \circ \phi$ for $\phi: k\left[x_{1}, \ldots, x_{m}\right] \rightarrow k\left[y_{1}, \ldots, y_{n}\right]$ where we map each x_{i} into A then lift), then one can use part 2. $\left(x \mapsto i_{1}(x) \mapsto i_{1}(x)\right.$ has the same blowup as $x \mapsto i_{1}(x) \mapsto\left(i_{1}(x), i_{2}(x)\right)$, which has the same blowup as $x \mapsto i_{2}(x) \mapsto i_{2}(x)$ by the same argument applied on the other direction.)

As an application, consider an example of a complete non-projective surface: start with $\mathbb{P}^{1} \times \mathbb{P}^{1}$, blow it up at $(0,0)$, consider the projection to the second factor. For any $x \neq 0$, the preimage of x is a projective line; for $x=0$, the preimage is the union of two projective lines (one can see this by passing to affine chart then consider closure). Consider two copies of this blow up, call them X, Y, and call the two exceptional lines L_{1}, L_{2} for both of them, Now consider the disjoint union of X and Y where we identify L_{1} of X with the fiber of ∞ of Y, and vise versa.

References

[SH77] Igor Rostislavovich Shafarevich and Kurt Augustus Hirsch. Basic algebraic geometry. Vol. 1. Springer, 1977.

MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

