HOMEWORK 6 FOR 18.725, FALL 2015 DUE TUESDAY, OCTOBER 27 BY 1PM.

- (1) Let Y be the cone over the twisted cubic blown-up at 0. Let X be the blowup of \mathbb{A}^2 at zero. Define an action of $G = \mathbb{Z}/3\mathbb{Z}$ on X, so that $X//G \cong Y$. (Here we assume that $char(k) \neq 3$, where k is the ground field).
- (2) Let $X \subset \mathbb{P}^1 \times \mathbb{A}^2$ be the blow-up of \mathbb{A}^2 at 0, let $\pi_2 : X \to \mathbb{A}^2$ and $\pi_1 : X \to \mathbb{P}^1$ be the projections. For each $n \in \mathbb{Z}$ describe the fiber of the sheaf $\pi_{2*}\pi_1^*\mathcal{O}_{\mathbb{P}^1}(n)$ at zero (in particular, compute its dimension).
- (3) Let G be a finite group acting on a quasiprojective variety X (you may assume X is affine). An equivariant sheaf on X is a sheaf \mathcal{F} together with isomorphisms $I_g : \mathcal{F} \cong g^*(\mathcal{F})$ fixed for each $g \in G$, so that for each $g, h \in G$ we have $I_{gh} = h^*(I_g) \circ I_h$.

Let $QCoh^G(X)$ denote the category of *G*-equivariant quasicoherent sheaves on *X*. Let Y = X//G be the (categorical) quotient and $p: X \to Y$ be the canonical map.

The functor $p^* : QCoh(Y) \to QCoh(X)$ lifts to a functor $p^*_G : QCoh(Y) \to QCoh^G(X)$. Show that p^*_G is fully faithful, describe its right adjoint and give an example showing that p^*_G is not essentially surjective. (Here we assume that |G| is invertible in k).

(4) Let X be an irreducible variety.

- (a) Show that the sheaf $\mathcal{K} = \lim_{U \to U} j_*(\mathcal{O}_U)$, where the limit is taken over the poset of nonempty open subsets, is a constant sheaf, describe its stalks.
- (b) We have a natural map $\mathcal{O}_X \to \mathcal{K}$. If X is a curve show that \mathcal{K}/\mathcal{O} is an (infinite) direct sum of sheaves supported at points of X.
- (c) If $X = \mathbb{P}^1$, show that the sequence

$$0 \to \Gamma(\mathcal{O}) \to \Gamma(\mathcal{K}) \to \Gamma(\mathcal{K}/\mathcal{O}) \to 0$$

is exact.

(d) (Optional bonus problem) Let $X \subset \mathbb{P}^2$ be given by the equation $x^3 + z^2 x = y^2 z$. Check that the map $\Gamma(\mathcal{K}) \to \Gamma(\mathcal{K}/\mathcal{O})$ has a one dimensional cockernel.

18.725 Algebraic Geometry Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.