HOMEWORK 6 FOR 18.725, FALL 2015 DUE TUESDAY, OCTOBER 27 BY 1PM.

(1) Let Y be the cone over the twisted cubic blown-up at 0 . Let X be the blowup of \mathbb{A}^{2} at zero. Define an action of $G=\mathbb{Z} / 3 \mathbb{Z}$ on X, so that $X / / G \cong Y$. (Here we assume that $\operatorname{char}(k) \neq 3$, where k is the ground field).
(2) Let $X \subset \mathbb{P}^{1} \times \mathbb{A}^{2}$ be the blow-up of \mathbb{A}^{2} at 0 , let $\pi_{2}: X \rightarrow \mathbb{A}^{2}$ and π_{1} : $X \rightarrow \mathbb{P}^{1}$ be the projections. For each $n \in \mathbb{Z}$ describe the fiber of the sheaf $\pi_{2 *} \pi_{1}^{*} \mathcal{O}_{\mathbb{P}^{1}}(n)$ at zero (in particular, compute its dimension).
(3) Let G be a finite group acting on a quasiprojective variety X (you may assume X is affine). An equivariant sheaf on X is a sheaf \mathcal{F} together with isomorphisms $I_{g}: \mathcal{F} \cong g^{*}(\mathcal{F})$ fixed for each $g \in G$, so that for each $g, h \in G$ we have $I_{g h}=h^{*}\left(I_{g}\right) \circ I_{h}$.

Let $Q \operatorname{Coh}^{G}(X)$ denote the category of G-equivariant quasicoherent sheaves on X. Let $Y=X / / G$ be the (categorical) quotient and $p: X \rightarrow Y$ be the canonical map.

The functor $p^{*}: Q \operatorname{Coh}(Y) \rightarrow Q \operatorname{Coh}(X)$ lifts to a functor $p_{G}^{*}: Q \operatorname{Coh}(Y) \rightarrow$ $Q C o h^{G}(X)$. Show that p_{G}^{*} is fully faithful, describe its right adjoint and give an example showing that p_{G}^{*} is not essentially surjective. (Here we assume that $|G|$ is invertible in $k)$.
(4) Let X be an irreducible variety.
(a) Show that the sheaf $\mathcal{K}=\underset{U}{\lim } j_{*}\left(\mathcal{O}_{U}\right)$, where the limit is taken over the poset of nonempty open subsets, is a constant sheaf, describe its stalks.
(b) We have a natural map $\mathcal{O}_{X} \rightarrow \mathcal{K}$. If X is a curve show that $\mathcal{K} / \mathcal{O}$ is an (infinite) direct sum of sheaves supported at points of X.
(c) If $X=\mathbb{P}^{1}$, show that the sequence

$$
0 \rightarrow \Gamma(\mathcal{O}) \rightarrow \Gamma(\mathcal{K}) \rightarrow \Gamma(\mathcal{K} / \mathcal{O}) \rightarrow 0
$$

is exact.
(d) (Optional bonus problem) Let $X \subset \mathbb{P}^{2}$ be given by the equation $x^{3}+z^{2} x=y^{2} z$. Check that the map $\Gamma(\mathcal{K}) \rightarrow \Gamma(\mathcal{K} / \mathcal{O})$ has a one dimensional cockernel.

MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

