HOMEWORK 7 FOR 18.725, FALL 2015 DUE THURSDAY, NOVEMBER 5 BY 1PM.

- (1) The Cremona (or quadratic) transformation¹ is a rational morphism $\mathbb{P}^2 \to \mathbb{P}^2$ given by $\phi : (t_0 : t_1 : t_2) \mapsto (t_0 t_1 : t_0 t_2 : t_1 t_2).$
 - (a) Show that ϕ is birational and find its inverse.
 - (b) Find maximal open subsets $U, V \subset \mathbb{P}^2$, such that ϕ induces an isomorphism $U \to V$.
- (2) (Optional problem) The *Fermat cubic* surface $X \subset \mathbb{P}^3$ is given by the equation $x^3 + y^3 + z^3 + w^3 = 0$.
 - (a) Check that the rational map² sending (x : y : z : w) with $w + y \neq 0$ or $x + z \neq 0$ to

$$(yz - wx : wy - wx + xz + w^{2} - wz + z^{2} : y^{2} - xy + wy + x^{2} - wx + xz),$$

is a birational isomorphism between X and \mathbb{P}^2 .

- (b) Deduce that the Cremona group (defined in footnote 1) contains a subgroup $S_4 \ltimes (\mathbb{Z}/3\mathbb{Z})^3$.
- (3) Let $\mathcal{F}_n \in Coh(\mathbb{A}^1)$ be the cokernel of the map $\mathcal{O} \xrightarrow{t^n} \mathcal{O}$ (where t is the coordinate on \mathbb{A}^1). We have a surjective map $\mathcal{F}_{n+1} \to \mathcal{F}_n$. Show that the inverse limit $\varprojlim_{Sh} \mathcal{F}_n$ in the category of sheaves of \mathcal{O} -modules is not isomorphic to the inverse limit $\varprojlim_{QCoh} \mathcal{F}_n$ in the category of quasicoherent sheaves (though both limits exist). Moreover, check that $\varprojlim_{Sh} \mathcal{F}_n$ is a non-quasicoherent sheaf supported at zero, while $\varprojlim_{QCoh} (\mathcal{F}_n)$ has full support.
- (4) (a) Show that QCoh(P¹) contains no projective object P with a nonzero map P → O_{x0}, x₀ ∈ P¹, where O_{x0} is the sky-scraper at a point x₀, i.e. the direct image of O under the embedding x₀ → P¹. [Hint: You can use a result to be proved in class that a quasicoherent sheaf is a union of its coherent subsheaves. If P is a projective object apply Hom(P,) to the surjection O(-n) → O_{x0}. Get a map P → O(-n), which must be nonzero on a coherent subsheaf F ⊂ P surjecting to O_{x0}. Now take n ≫ 0 and get a contradiction].
 - (b) (Optional problem) Show that $j_*(\mathcal{O})/\mathcal{O}$ is an injective object in $QCoh(\mathbb{P}^1)$, where $j: \mathbb{A}^1 \to \mathbb{P}^1$ is the embedding.
- (5) For a subvariety $X \subset \mathbb{P}^n$ not contained in a linear subspace, the k-th secant variety $S_k(X)$ is the closure of the union of all k-planes in \mathbb{P}^n spanned by k+1 points of X.
 - For n = 2k let $C \subset \mathbb{P}^n$ be the image of the *n*-th Veronese embedding of \mathbb{P}^1 . Show that $S_{k-1}(C)$ is a hypersurface of degree k + 1 in \mathbb{P}^n .

¹A theorem by Noether and Castelnuovo asserts that the *Cremona group* of birational automorphisms of \mathbb{P}^2 is generated by ϕ and the subgroup $PGL_3(k)$ of linear automorphisms of \mathbb{P}^2 . ²Formula beam provided from Near Filing' beampage

 $^{^2 {\}rm Formula}$ borrowed from Noam Elkies' homepage.

2 HOMEWORK 7 FOR 18.725, FALL 2015 DUE THURSDAY, NOVEMBER 5 BY 1PM.

[Hint: For a two-dimensional vector space V one needs to find an equation singling out elements in $Sym^n(V)$ which are sums of at most k monomials $\sum_{i=1}^k v_i^n$. An element $\sigma \in Sym^n(V)$ determines a map $Sym^k(V^*) \rightarrow Sym^k(V)$. Check that if σ is of the form $\sum_{i=1}^k v_i^n$ then the map has zero determinant, while for some element in $Sym^n(V)$ the determinant is nonzero. This shows $S_{k-1}(C)$ is contained in the zero set of a degree k+1 polynomial. One can also check directly that $S_{k-1}(C)$ is an irreducible hypersurface, the above shows its degree is at most k + 1. To show it can't be smaller than k + 1 one can write down a line intersecting it in k + 1 points.]

18.725 Algebraic Geometry Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.