HOMEWORK 2 FOR 18.725, FALL 2015 DUE TUESDAY, SEPTEMBER 22 BY 1PM.

(1) A Noetherian topological space X is a union of open irreducible subsets. Prove that it is irreducible if and only if it is connected.
(2) (The twisted cubic curve)

Let $X \subset \mathbb{A}^{3}$ be given by equations $x_{2}=x_{1}^{2}, x_{3}=x_{1}^{3}$, let C be the closure of X in \mathbb{P}^{3}.
(a) Show that $X \cong \mathbb{A}^{1}, C \cong \mathbb{P}^{1}$.
(b) Show that the intersection of C with a line can not contain more than two points.
[Hint: use the Vandermnonde determinant.]
(c) Let I be the ideal of polynomials vanishing on X and let J be the ideal of homogeneous polynomials vanishing on C. For a degree d polynomial P in n variables we let \tilde{P} be the homogeneous degree d polynomial in $d+1$ variables given by $\tilde{P}\left(x_{0}, \ldots, x_{n}\right)=x_{0}^{d} P\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right)$.
Show that I is generated by $P_{1}=x_{2}-x_{1}^{2}, P_{2}=x_{3}-x_{1}^{3}$, and that J is not generated by $\tilde{P}_{1}, \tilde{P}_{2}$, although J is generated by $\{\tilde{P} \mid P \in I\}$.
(3) In this problem we assume that characteristic of the base field k is different from two. For $x, y \in \mathbb{P}^{n+1}, x \neq y$ we let $L_{x, y}$ denote the line passing through x, y.

Let Q be an quadric in \mathbb{P}^{n+1}, i.e. Q is the zero set of a homogeneous square free polynomial of degree two.
(a) Show that a line L intersects Q at either one or two points, or else $L \subset Q$.
(b) Assume that Q is the zero set of a polynomial $P=\sum a_{i j} x_{i} x_{j}$, where the matrix $A=\left(a_{i j}\right)$ is symmetric and nondegenerate. Pick $x \in Q$. Let U consists of points $y \in Q$ such that $y \neq x, L_{x y} \not \subset Q$. Show that there exists a hyperplane $H \subset \mathbb{P}^{n+1}$, such that $U=Q \backslash(Q \cap H)$.
[Hint: you can use the linear algebra fact that any nondegenerate quadratic form over an algebraically closed field $k(\operatorname{char}(k) \neq 2)$ can be sent to any other one by a linear change of variables; this allows you to reduce to the case where Q is the zero set of $x_{0} x_{1}+\sum_{i=2}^{n+1} x_{i}^{2}$, $x=(1: 0: \cdots: 0)$.
(c) Construct an isomorphism $U \cong \mathbb{A}^{n}$.
[Hint: One can do this by identifying the set of lines passing through x and not contained in H with \mathbb{A}^{n}.]
(d) Define a map $(Q \cap H) \backslash x \rightarrow Q_{n-2}$ where Q_{n-2} is a quadric in \mathbb{P}^{n-1} so that each fiber of the map is isomorphic to \mathbb{A}^{1}.
(e) (Optional bonus problem) Let q_{n} be the number of points on the zero set of the polynomial $\sum_{i=0}^{n} x_{2 i} x_{2 i+1}$ in $\mathbb{P}_{\mathbb{F}_{q}}^{2 n+1}$ whose coordinates lie
in \mathbb{F}_{q}. Use the previous parts of the problem to show the relation $q_{n}=q^{2 n}+q q_{n-1}+1$ and deduce a closed formula for q_{n}.

MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

