HOMEWORK 3 FOR 18.725, FALL 2015 DUE TUESDAY, SEPTEMBER 29 BY 1PM.

- (1) Let Z be an irreducible closed subset in an algebraic variety X. Show that if $\dim(Z) = \dim(X)$ then Z is a component of X.
- (2) Let Y be a closed subvariety of dimension r in \mathbb{P}^n .
 - (a) Suppose that Y can be presented as the set of common zeroes of q homogeneous polynomials. Show that r ≥ n q.
 If Y can be presented as the set of common zeroes of q homogeneous polynomials with q = n r we say that Y is a set-theoretic complete intersection.
 If moreover the ideal I_Y can be generated by n r homogeneous polynomials, then Y is called a (strict) complete intersection.
 - (b) Show that every irreducible closed subvariety in \mathbb{P}^n is a component in a set theoretic complete intersection of the same dimension. [Hint: use induction to construct homogeneous polynomials $P_1, P_2, \ldots, P_{n-r}$, such that the set of common zeroes of P_1, \ldots, P_i has dimension n-i and contains our subvariety].
 - (c) Show that the twisted cubic curve in \mathbb{P}^3 (see problem 2 of problem set 2) is a set theoretic complete intersection.
 - (d) (Optional bonus problem) Show that the twisted cubic curve in \mathbb{P}^3 is not a strict complete intersection.
- (3) Let C be a curve in \mathbb{P}^2 , x be a point in C and L a line passing through x. Let m be the multiplicity of C at x and M the multiplicity of intersection of C and L at x. Show that $m \leq M$ and that for given C, x the equality m = M holds for all but finitely many lines L as above.
- (4) Prove Bezout Theorem for two curves of degrees d_1 , d_2 in \mathbb{P}^2 with no common components
 - (a) Assuming $d_1 = 1$.
 - (b) Assuming $d_1 = 2$ and the first curve is irreducible; you can also assume that characteristic of the base field is different from two.

[Hint: first show that in a special case the multiplicity of intersection of two curves can be interpreted as follows. Assume that the first curve X is isomorphic to \mathbb{A}^1 and let $f : \mathbb{A}^1 \to X$ be the isomorphism. Let P be the equation of the second curve Y. Then the multiplicity of intersection of X and Y at x = f(a) is the multiplicity of a as a root of the polynomial in one variable Q(t) = P(f(t)). Now use the isomorphism of the first curve with \mathbb{P}^1 , choose coordinates so that the infinite line does not contain intersection points and recall a familiar fact about polynomials in one variable].

(5) (Optional bonus problem) Recall from the lecture that Grassmannian Gr(2, 4) is isomorphic to a quadric in \mathbb{P}^5 . Use this to show that given four lines in \mathbb{P}^3_k , the number of lines intersecting each of the four lines is either infinite or equal to one or two.

2 HOMEWORK 3 FOR 18.725, FALL 2015 DUE TUESDAY, SEPTEMBER 29 BY 1PM.

[Hint: Check that the for a line $L \subset \mathbb{P}^3$ the set of lines intersecting L is parametrized by $Gr(2,4) \cap H$ for a hyperplane $H \subset \mathbb{P}^5$, thus the answer is the number of points in the intersection $L \cap Gr(2,4)$ where $L \subset \mathbb{P}^5$ is a linear subspace of dimension one or higher. Check that the intersection is infinite unless L is a line and refer to problem 3(a) from problem set 2].

18.725 Algebraic Geometry Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.