HOMEWORK 3 FOR 18.725, FALL 2015 DUE TUESDAY, SEPTEMBER 29 BY 1PM.

(1) Let Z be an irreducible closed subset in an algebraic variety X. Show that if $\operatorname{dim}(Z)=\operatorname{dim}(X)$ then Z is a component of X.
(2) Let Y be a closed subvariety of dimension r in \mathbb{P}^{n}.
(a) Suppose that Y can be presented as the set of common zeroes of q homogeneous polynomials. Show that $r \geq n-q$.
If Y can be presented as the set of common zeroes of q homogeneous polynomials with $q=n-r$ we say that Y is a set-theoretic complete intersection.
If moreover the ideal I_{Y} can be generated by $n-r$ homogeneous polynomials, then Y is called a (strict) complete intersection.
(b) Show that every irreducible closed subvariety in \mathbb{P}^{n} is a component in a set theoretic complete intersection of the same dimension.
[Hint: use induction to construct homogeneous polynomials $P_{1}, P_{2}, \ldots, P_{n-r}$, such that the set of common zeroes of $P_{1}, \ldots P_{i}$ has dimension $n-i$ and contains our subvariety].
(c) Show that the twisted cubic curve in \mathbb{P}^{3} (see problem 2 of problem set 2) is a set theoretic complete intersection.
(d) (Optional bonus problem) Show that the twisted cubic curve in \mathbb{P}^{3} is not a strict complete intersection.
(3) Let C be a curve in \mathbb{P}^{2}, x be a point in C and L a line passing through x. Let m be the multiplicity of C at x and M the multiplicity of intersection of C and L at x. Show that $m \leq M$ and that for given C, x the equality $m=M$ holds for all but finitely many lines L as above.
(4) Prove Bezout Theorem for two curves of degrees d_{1}, d_{2} in \mathbb{P}^{2} with no common components
(a) Assuming $d_{1}=1$.
(b) Assuming $d_{1}=2$ and the first curve is irreducible; you can also assume that characteristic of the base field is different from two.
[Hint: first show that in a special case the multiplicity of intersection of two curves can be interpreted as follows. Assume that the first curve X is isomorphic to \mathbb{A}^{1} and let $f: \mathbb{A}^{1} \rightarrow X$ be the isomorphism. Let P be the equation of the second curve Y. Then the multiplicity of intersection of X and Y at $x=f(a)$ is the multiplicity of a as a root of the polynomial in one variable $Q(t)=P(f(t))$. Now use the isomorphism of the first curve with \mathbb{P}^{1}, choose coordinates so that the infinite line does not contain intersection points and recall a familiar fact about polynomials in one variable].
(5) (Optional bonus problem) Recall from the lecture that Grassmannian $\operatorname{Gr}(2,4)$ is isomorphic to a quadric in \mathbb{P}^{5}. Use this to show that given four lines in \mathbb{P}_{k}^{3}, the number of lines intersecting each of the four lines is either infinite or equal to one or two.
[Hint: Check that the for a line $L \subset \mathbb{P}^{3}$ the set of lines intersecting L is parametrized by $\operatorname{Gr}(2,4) \cap H$ for a hyperplane $H \subset \mathbb{P}^{5}$, thus the answer is the number of points in the intersection $L \cap G r(2,4)$ where $L \subset \mathbb{P}^{5}$ is a linear subspace of dimension one or higher. Check that the intersection is infinite unless L is a line and refer to problem 3(a) from problem set 2].

MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

