Lecture 3: Projective Varieties, Noether Normalization

Review of last lecture Recall that Spec $A = \text{Hom}_{k-\text{alg}}(A, k)$. Let *I* and *J* be ideals of *A*. The following question was asked while we were discussing the topology on Spec *A*.

Question 1. When do we have that $IJ = I \cap J$?

Answer (From MO.) When $\operatorname{Tor}_1^A(A/I, A/J) = 0$ (Tor_1^A is the derived functor of tensor products \otimes_A). For example, we can take A = k[V], $I = Z_W$, and $J = Z_U$, where U and W are subspaces of a vector space V such that U + W = V.

Last time, we started the proof of the following theorem:

Theorem 1.1. Let X be a space with functions. Then, X is affine if and only if X = Spec A for some finitely generated k-algebra A with no nilpotents.

Proof. The proof that X is affine if X = Spec A for some A was done in the last lecture. It remains to check that X = Spec A for some A if X is affine. Assume that X is affine. Note that k[X] =: A is a finitely generated k-algebra which is a nilpotent ring (since it is an algebra of functions). Take X' = Spec A. Since X is affine, the isomorphism $k[X] = A \cong k[X']$ gives a map $X' \longrightarrow X$. We also know that X' is affine. So, we get a map $X \longrightarrow X'$. Applying the affineness of X and X' to the two compositions, we see that these are inverse isomorphisms and X = Spec A.

Closed subvarieties of \mathbb{P}^n At the end of last lecture, we defined the projective space \mathbb{P}^n_k over a field k and described the regular functions on it. Recall that $\mathbb{P}^n_k = \mathbb{A}^{n+1} \setminus \{0\}/k^{\times}$. This space has an affine cover $\mathbb{P}^n_k = \bigcup_{i=0}^n \mathbb{A}^n_i$, where $\mathbb{A}^n_i = \{(x_0, x_1, \dots, x_n) : x_i \neq 0\}/k^{\times} \cong \{(x_0, x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n)\}$. Note that it

is a disjoint union of locally closed subsets since $\mathbb{P}_k^n \setminus \mathbb{A}_k^n \cong \mathbb{P}_k^{n-1}$ and $\mathbb{P}^n = \prod_{i=0}^n S_i$, where S_i is locally closed and isomorphic to \mathbb{A}^i .

Example 1. If $k = \mathbb{C}$, we can take $\mathbb{P}^n_{\mathbb{C}}$ to be a topological space with the complex (classical) topology. Since it a union of cells of even real dimension, we have

$$\dim H^i(\mathbb{P}^n_{\mathbb{C}}) = \begin{cases} 1 & i \text{ even} \\ 0 & i \text{ odd.} \end{cases}$$

Now consider the antipodal map $S^{2n+1} \to \mathbb{P}^n_{\mathbb{C}}$. Since this map is continuous and onto, it follows that $\mathbb{P}^n_{\mathbb{C}}$ is compact.

Example 2. Suppose that $k = \mathbb{F}_q$. Then, we have $|\mathbb{P}_k^n| = \sum_{i=0}^n q^i = \frac{q^{n+1}-1}{q-1} := [n]_q$ (q-analogues).

Definition 1. An algebraic variety is projective if it is isomorphic to a closed subvariety of a projective space.

Remark 1. If X is a projective variety over \mathbb{C} , then X taken in the classical topology is compact.

Definition 2. An algebraic variety is quasiprojective if it is a locally closed subvariety in a projective space.

Most of the things we use have this property.

Remark 2. It is important to check whether we are working with the Zariski topology or the classical topology. If a set is closed in the Zariski topology, it is also closed in the classical topology over \mathbb{C} since polynomials are continuous functions. However, a set which is closed in the classical topology may not be Zariski closed.

Next, we describe the closed subvarieties of \mathbb{P}^n . Note that closed subvarieties in \mathbb{P}^n correspond to the k^{\times} -invariant subvarieties of $\mathbb{A}^{n+1} \setminus \{0\}$. Let $V = k[x_0, \ldots, x_n]$ and $X \subset \mathbb{P}^n$ be a closed subvariety. Then, V is a graded vector space $V = \bigoplus_n V_n$, where V_n is the set of homogenous polynomials of degree n. Now

consider the action of $t \in k^{\times}$ on V. Since we have $t|_{V_n} = t^n \text{Id}$, we have that $f \in V$ vanishes on X if and only if all of its homogeneous components f_n vanish on X. Thus, we have that I_X is a homogeneous (= graded) ideal. If k is algebraically closed, we have the following correspondence ([SH77, p. 41-42]):

closed subvarieties in $\mathbb{P}^n \longleftrightarrow$ radical (nonunital) homogeneous (= graded) ideals in $k[x_0, \ldots, x_n]$

We can also obtain closed subvarieties of \mathbb{P}^n by taking projective closures of closed subvarieties X of \mathbb{A}^n . Recall that there is an open $\mathbb{A}^n_0 = \{(x_0, \ldots, x_n) : x_0 \neq 0\} = \mathbb{A}^n \subset \mathbb{P}^n$. For closed $X \subset \mathbb{A}^n$, we get \overline{X} , which is the closure of X in \mathbb{P}^n . If $P \in k[Y_1, \ldots, Y_n]$ vanishes on X, then $\tilde{P} = x_0^d P\left(\frac{x_1}{x_0}, \frac{x_2}{x_0}, \ldots, \frac{x_n}{x_0}\right)$ vanishes on \overline{X} , where $d = \deg P$. Note that $P = \tilde{P}(1, Y_1, \ldots, Y_n)$. For example, if $P = X^3 - Y^2 - Y + 1$, then $\tilde{P} = X^3 - ZY^2 - Z^2Y + Z^3$. We also have that $I_{\overline{X}} = (\tilde{P} : P \in I_X)$.

Example 3 (Linear subvarieties in \mathbb{P}^n). If I_X can be generated by linear polynomials, then X can be sent to $\{(x_0 : \cdots : x_n) : x_{i+1} = \cdots = x_n = 0\}$ by a linear change of variables (i.e. invariant matrices acting on \mathbb{P}^n). Let $X \subset \mathbb{P}^2$ be a degree d irreducible curve and $I_X = (P)$, where $P \in k[X, Y, Z]$ is a degree d irreducible polynomial.

Case 1: d = 1 This is the case where $X = \mathbb{P}^1$.

Case 2: d = 2 (char $k \neq 2$) Claim: $X \cong \mathbb{P}^1$ again. Proof sketch: By linear algebra, all irreducible degree 2 polynomials in 3 variables are permuted transitively by a linear change of variables. Without loss of generality, we can assume that $P = XY - Z^2$. On \mathbb{A}^2 ($Z \neq 0$), we get (XY = 1) $\cong \mathbb{A}^1 \setminus \{0\}$. Exercise: Finish this.

Here is another construction of the isomorphism $X \cong \mathbb{P}^1$. Fix $x \in X$. Consider the following correspondences:

{lines in \mathbb{P}^1 passing through x} \leftrightarrow {dim. 2 subvarieties of $\mathbb{A}^3 := V$ containing L_x } \leftrightarrow {dim. 1 subvarieties in V/L_x }

Note that the last set is isomorphic to \mathbb{P}^1 . Here, $L_x \subset \mathbb{A}^3$ is the set of lines passing through x. Now construct the map $X \setminus x \longrightarrow \mathbb{P}^1$ sending y to the line passing through x and y. Exercise: Finish this.

Case 3: d = 3 X is not necessarily isomorphic to \mathbb{P}^1 in this case. For example, suppose that X is an elliptic curve. Claim: By a linear change of variables, we can get X to the Weierstrass normal form $y^2 = x^3 + ax + b$. The closure of this curve in \mathbb{P}^2 intersects the line at infinity at 1 point:

$$\begin{split} ZY^2 &= X^3 + aXZ^2 + bZ^3\\ Z &= 0 \Rightarrow X = 0\\ Intersection \ point \ : \ (0:1:0) \end{split}$$

Note that \mathbb{P}^1 also has one point at infinity. Comparing the set regular functions on the affine parts of X and \mathbb{P}^1 and noting that $k[X,Y]/(Y^2 - X^3 - aX - b)$ is not generated by one element (has a filtration with the associated graded ring $k[X,Y]/(Y^2 = X^2)$), we find that $X \cong \mathbb{P}^1$.

Noether normalization lemma and applications

Theorem 1.2. (Noether normalization lemma)

Let A be a finitely generated k-algebra, where k is any field (not necessarily algebraically closed). Then, we can find $B \subset A$ such that $B \cong k[x_1, \ldots, x_n]$ for some n and A is finitely generated as a B-module.

Remark 3. Here is a "geometric" version of the theorem which has to do with subvarieties in affine space:

If $B \subset A$ and A is a finitely generated B-module, then the map Spec $A \longrightarrow$ Spec B is onto and has finite fibers.

We will prove the theorem in the case where k is infinite.

Lemma 1. Take $P \in k[x_1, \ldots, x_n]$ be a nonconstant polynomial and let $d = \deg P$. There is a linear change of variables such that P has for form $x_n^d + (\text{terms of } \deg_{x_n} < d)$.

Proof. Write $x_i = x'_i + \lambda_i x'_n$ for $1 \le i \le n-1$ and $x'_n = \lambda_n x_n$. If $d = \deg P$ and $P = P_d + (\text{terms of } \deg < d)$, then $P(x_i) = x_n^d P_d(\lambda_1, \ldots, \lambda_n) + (\text{terms of } \deg_{x_n} < d)$. Thus, we would like to find $\lambda_1, \ldots, \lambda_n$ such that $P_d(\lambda_1, \ldots, \lambda_n) = 1$. Since P_d is homogeneous, it suffices to show that there exist μ_1, \ldots, μ_n such that $P_d(\mu_1, \ldots, \mu_n) \ne 0$. Thus, the proof reduces to the following claim:

Claim : A nonzero polynomial over an infinite field takes nonzero values.

This can be proved using induction in number of variables.

Now we begin the proof of the Noether normalization lemma.

Proof. Since A is finitely generated, we have a surjection $\phi : k[x_1, \ldots, x_n] \to A$. We use induction on n. Let $I = \ker \phi$. If I = (0), we are done. Now suppose that $I \neq (0)$. Take $0 \neq P \in I$. By the lemma above, we can assume without loss of generality that $P = x_n^d + (\operatorname{terms of deg}_{x_n} < d)$. Note that $k[x_1, \ldots, x_n]/(P) \to A$ and $k[x_1, \ldots, x_n]/(P)$ is finite over $k[x_1, \ldots, x_{n-1}]$. Let $A' = \phi(k[x_1, \ldots, x_{n-1}])$. Applying the induction assumption to A', there exists $B \cong k[x_1, \ldots, x_m]$ such that A' is finite over B. Since A is finite over A', A is finite over B and we are done.

Next, we can show that $k[x_1, \ldots, x_n]$ is Noetherian.

Proposition 1. (Hilbert basis theorem) $k[x_1, \ldots, x_n]$ is Noetherian.

Proof. It is enough to check that every ideal is finitely generated. As above, we use induction on n. Let I be a nonzero ideal of A and $0 \neq P$ be an element of I. Without loss of generality, we can assume that A/(P) is finite as a module over $k[x_1, \ldots, x_{n-1}]$. Since $k[x_1, \ldots, x_{n-1}]$ is Noetherian by induction, every submodule of A/(P) is finitely generated over $k[x_1, \ldots, x_{n-1}]$. Hence, I/(P) is finitely generated, which implies that I is finitely generated.

We need another result in order to finish the proof of the "essential Nullstellensatz" from the first lecture.

Lemma 2. (Nakayama lemma)

Let M be a finitely generated module over a commutative ring A. If I is an ideal of A such that IM = M, then there exists $a \in A$ such that aM = 0 and $a \equiv 1 \pmod{I}$.

Proof. Let $\{m_i\}$ be generators of M. Then, $m_i = \sum a_{ij}m_j$, where $a_{ij} \in I$. Then, we can set $a = \det(1 - a_{ij})$.

Finally, we can finish the proof of the essential Nullstellensatz.

Theorem 1.3. ("essential Nullstellensatz") Let A be a finitely generated k-algebra. If A is a field, then A/k is algebraic.

Proof. Since A is a finitely generated k-algebra, it follows from the Noether normalization lemma that there exists $B \cong k[x_1, \ldots, x_n]$ such that $A \supset B$ and A is finitely generated as a B-module. If n = 0, we are done since A/k would be a finite extension, which must be algebraic. Suppose that $n \ge 1$. Then, $A \supset \mathfrak{m}$, where \mathfrak{m} is a maximal ideal of B. It follows from Nakayama's lemma that $\mathfrak{m}A \neq A$. Otherwise, there exists $b \in B$ such that bA = 0 and $b \equiv 1 \pmod{\mathfrak{m}}$. This would imply that $bB = 0 \Rightarrow B/\mathfrak{m} = 0$, which is impossible since $\mathfrak{m} \subsetneq B$. Since A has a proper ideal $\mathfrak{m}A$, it is not a field.

Irreducibility Here is a list of some definitions and properties of topological spaces which will be discussed in more detail in the next lecture.

Definition 3. A topological space is irreducible if any two nonempty open subsets intersect. Equivalently, it is not a union of two proper closed subsets. Another equivalent definition is a space where a nonempty open subset is dense (sort of opposite to Hausdorff...).

Remark 4. An irreducible topological space is connected, but a connected space is not necessarily irreducible.

Remark 5. Every variety is a union of irreducible pieces.

Proposition 2. Spec A is irreducible if and only if A has no zerodivisors.

Definition 4. A component of a topological space is a maximal irreducible closed subset.

Proposition 3. A Noetherian topological space is the union of its components (finite in number).

Corollary 1. We have the following correspondences:

Irreducible closed subsets in Spec $A \leftrightarrow$ Prime ideals in A

Components \leftrightarrow minimal prime ideals (i.e. prime ideals not containing any other prime ideals)

Corollary 2. $0 = \bigcap (\text{minimal prime ideals}).$

References

[SH77] Igor Rostislavovich Shafarevich and Kurt Augustus Hirsch. *Basic algebraic geometry*. Vol. 1. Springer, 1977.

MIT OpenCourseWare http://ocw.mit.edu

18.725 Algebraic Geometry Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.