
18.725 Algebraic Geometry I Lecture

Lecture 3: Projective Varieties, Noether Normalization

Review of last lecture Recall that Spec A = Homk−alg(A, k). Let I and J be ideals of A. The following
question was asked while we were discussing the topology on Spec A.

Question 1. When do we have that IJ = I ∩ J?

Answer (From MO.) When TorA1 (A/I,A/J) = 0 (TorA1 is the derived functor of tensor products ⊗A). For
example, we can take A = k[V ], I = ZW , and J = ZU , where U and W are subspaces of a vector space V
such that U +W = V .

Last time, we started the proof of the following theorem:

Theorem 1.1. Let X be a space with functions. Then, X is affine if and only if X = Spec A for some
finitely generated k-algebra A with no nilpotents.

Proof. The proof that X is affine if X = Spec A for some A was done in the last lecture. It remains to
check that X = Spec A for some A if X is affine. Assume that X is affine. Note that k[X] =: A is a finitely
generated k-algebra which is a nilpotent ring (since it is an algebra of functions). Take X ′ = Spec A. Since
X is affine, the isomorphism k[X] = A ∼= k[X ′] gives a map X ′ −→ X. We also know that X ′ is affine. So,
we get a map X −→ X ′. Applying the affineness of X and X ′ to the two compositions, we see that these
are inverse isomorphisms and X = Spec A.

Closed subvarieties of Pn At the end of last lecture, we defined the projective space Pn
k over a field k

and described the regular functions on it. Recall that Pn
k = An+1 \ {0

n
}/k×. This space has an affine cover

Pn
k =

⋃
An where n

i , Ai = {(x0, x1, . . . , xn) : xi = 0}/k× ∼= {(x0, x1, . . . , xi , x−1, 1, xi+1, . . . n) that
=0

}. Note it
i

n

is a disjoint union of locally closed subsets since Pn
k \ An

k =∼ Pn−1
k and Pn = Si, where Si is locally closed

i=0

and isomorphic to Ai.

∐

Example 1. If k = C, we can take Pn to be a topological space with the complex (classical) topology. SinceC
it a union of cells of even real dimension, we have

1 i even
dimHi(Pn) =C

{
0 i odd.

Now consider the antipodal map S2n+1 � Pn. Since this map is continuous and onto, it follows thatC Pn
C

is compact.

n n+1

Example 2. Suppose that k = Fq. Then, we have |Pn i q 1
k | =

∑
q =

−
:= [n]

q
i=0

− q (q-analogues).
1

Definition 1. An algebraic variety is projective if it is isomorphic to a closed subvariety of a projective
space.

Remark 1. If X is a projective variety over C, then X taken in the classical topology is compact.

Definition 2. An algebraic variety is quasiprojective if it is a locally closed subvariety in a projective space.

Most of the things we use have this property.
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Remark 2. It is important to check whether we are working with the Zariski topology or the classical
topology. If a set is closed in the Zariski topology, it is also closed in the classical topology over C since
polynomials are continuous functions. However, a set which is closed in the classical topology may not be
Zariski closed.

Next, we describe the closed subvarieties of Pn. Note that closed subvarieties in Pn correspond to the
k×-invariant subvarieties of An+1⊕\ {0}. Let V = k[x0, . . . , xn] and X ⊂ Pn be a closed subvariety. Then,

V is a graded vector space V = Vn, where Vn is the set of homogenous polynomials of degree n. Now
n

consider the action of t ∈ k× on V . Since we have t| = tnVn Id, we have that f ∈ V vanishes on X if and only
if all of its homogeneous components fn vanish on X. Thus, we have that IX is a homogeneous (= graded)
ideal. If k is algebraically closed, we have the following correspondence ([SH77, p. 41-42]):

closed subvarieties in Pn ←→ radical (nonunital) homogeneous (= graded) ideals in k[x0, . . . , xn]

We can also obtain closed subvarieties of Pn by taking projective closures of closed subvarieties X of An.
Recall that there is an open An = {(x , . . . , x ) : x = 0} = An n

0 0 n 0 ⊂ P . For closed X ⊂ An, we get X, which

is the closure of X in Pn x˜ 1 x2 xn
. If P ∈ k[Y . . , Yn] vanishes on X, then P = xd1, . 0P , , . . . , vanishes

x0 x0 x0
˜on X, where d = degP . Note that P = P (1, Y1, . . . , Yn). For example, if P

(
= X3

)
− Y 2 − Y + 1, then

P̃ = X3 − ZY 2 − Z2Y + Z3 ˜. We also have that IX = (P : P ∈ IX).

Example 3 (Linear subvarieties in Pn). If IX can be generated by linear polynomials, then X can be sent
to {(x0 : · · · : xn) : xi+1 = · · · = xn = 0} by a linear change of variables (i.e. invariant matrices acting on
Pn). Let X ⊂ P2 be a degree d irreducible curve and IX = (P ), where P ∈ k[X,Y, Z] is a degree d irreducible
polynomial.

Case 1: d = 1 This is the case where X = P1.

Case 2: d = 2 (char k = 2) Claim: X ∼= P1 again. Proof sketch: By linear algebra, all irreducible
degree 2 polynomials in 3 variables are permuted transitively by a linear change of variables. Without loss
of generality, we can assume that P = XY − Z2. On A2 (Z = 0), we get (XY = 1) ∼= A1 \ {0}. Exercise:
Finish this.

Here is another construction of the isomorphism X ∼= P1. Fix x ∈ X. Consider the following correspon-
dences:

{lines in P1 passing through x} ↔ {dim. 2 subvarieties of A3 := V containing Lx} ↔ {dim. 1 subvarieties in V/Lx}

Note that the last set is isomorphic to P1. Here, Lx ⊂ A3 is the set of lines passing through x. Now construct
the map X \ x −→ P1 sending y to the line passing through x and y. Exercise: Finish this.

Case 3: d = 3 X is not necessarily isomorphic to P1 in this case. For example, suppose that X is
an elliptic curve. Claim: By a linear change of variables, we can get X to the Weierstrass normal form
y2 = x3 + ax+ b. The closure of this curve in P2 intersects the line at infinity at 1 point:

ZY 2 = X3 + aXZ2 + bZ3

Z = 0⇒ X = 0

Intersection point : (0 : 1 : 0)

Note that P1 also has one point at infinity. Comparing the set regular functions on the affine parts of X
and P1 and noting that k[X,Y ]/(Y 2 −X3 − aX − b) is not generated by one element (has a filtration with
the associated graded ring k[X,Y ]/(Y 2 = X2)), we find that X ∼= P1.
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Noether normalization lemma and applications

Theorem 1.2. (Noether normalization lemma)
Let A be a finitely generated k-algebra, where k is any field (not necessarily algebraically closed). Then, we
can find B ⊂ A such that B ∼= k[x1, . . . , xn] for some n and A is finitely generated as a B-module.

Remark 3. Here is a “geometric” version of the theorem which has to do with subvarieties in affine space:

If B ⊂ A and A is a finitely generated B-module, then the map Spec A −→ Spec B is onto and has finite
fibers.

We will prove the theorem in the case where k is infinite.

Lemma 1. Take P ∈ k[x1, . . . , xn] be a nonconstant polynomial and let d = degP . There is a linear change
of variables such that P has for form xdn + (terms of degxn

< d).

Proof. Write xi = x′i+λix
′
n for 1 ≤ i ≤ n−1 and x′n = λnxn. If d = degP and P = Pd+(terms of deg < d),

then P (xi) = xdnPd(λ1, . . . , λn) + (terms of degxn
< d). Thus, we would like to find λ1, . . . , λn such that

Pd(λ1, . . . , λn) = 1. Since Pd is homogeneous, it suffices to show that there exist µ1, . . . , µn such that
Pd(µ1, . . . , µn) = 0. Thus, the proof reduces to the following claim:

Claim : A nonzero polynomial over an infinite field takes nonzero values.

This can be proved using induction in number of variables.

Now we begin the proof of the Noether normalization lemma.

Proof. Since A is finitely generated, we have a surjection φ : k[x1, . . . , xn] � A. We use induction on n. Let
I = kerφ. If I = (0), we are done. Now suppose that I = (0). Take 0 = P ∈ I. By the lemma above, we can
assume without loss of generality that P = xdn + (terms of degxn

< d). Note that k[x1, . . . , xn]/(P ) � A
and k[x1, . . . , xn]/(P ) is finite over k[x1, . . . , xn 1]. Let A′ = φ(k[x1, . . . , x− n−1]). Applying the induction
assumption to A′, there exists B ∼= k[x1, . . . , xm] such that A′ is finite over B. Since A is finite over A′, A
is finite over B and we are done.

Next, we can show that k[x1, . . . , xn] is Noetherian.

Proposition 1. (Hilbert basis theorem) k[x1, . . . , xn] is Noetherian.

Proof. It is enough to check that every ideal is finitely generated. As above, we use induction on n. Let I be
a nonzero ideal of A and 0 = P be an element of I. Without loss of generality, we can assume that A/(P ) is
finite as a module over k[x1, . . . , xn 1]. Since k[x1, . . . , x ] is Noetherian by induction, every submodule− n−1
of A/(P ) is finitely generated over k[x1, . . . , xn 1]. Hence, I/(P ) is finitely generated, which implies that I−
is finitely generated.

We need another result in order to finish the proof of the “essential Nullstellensatz” from the first lecture.

Lemma 2. (Nakayama lemma)
Let M be a finitely generated module over a commutative ring A. If I is an ideal of A such that IM = M ,
then there exists a ∈ A such that aM = 0 and a ≡ 1 (mod I).

Proof. Let {mi} be generators of M . Then, mi =
∑

aijmj , where aij ∈ I. Then, we can set a =

det(1− aij).

Finally, we can finish the proof of the essential Nullstellensatz.

Theorem 1.3. (“essential Nullstellensatz”) Let A be a finitely generated k-algebra. If A is a field, then A/k
is algebraic.
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Proof. Since A is a finitely generated k-algebra, it follows from the Noether normalization lemma that there
exists B ∼= k[x1, . . . , xn] such that A ⊃ B and A is finitely generated as a B-module. If n = 0, we are done
since A/k would be a finite extension, which must be algebraic. Suppose that n ≥ 1. Then, A ⊃ m, where
m is a maximal ideal of B. It follows from Nakayama’s lemma that mA = A. Otherwise, there exists b ∈ B
such that bA = 0 and b ≡ 1 (mod m). This would imply that bB = 0⇒ B/m = 0, which is impossible since
m ( B. Since A has a proper ideal mA, it is not a field.

Irreducibility Here is a list of some definitions and properties of topological spaces which will be discussed
in more detail in the next lecture.

Definition 3. A topological space is irreducible if any two nonempty open subsets intersect. Equivalently,
it is not a union of two proper closed subsets. Another equivalent definition is a space where a nonempty
open subset is dense (sort of opposite to Hausdorff...).

Remark 4. An irreducible topological space is connected, but a connected space is not necessarily irre-
ducible.

Remark 5. Every variety is a union of irreducible pieces.

Proposition 2. Spec A is irreducible if and only if A has no zerodivisors.

Definition 4. A component of a topological space is a maximal irreducible closed subset.

Proposition 3. A Noetherian topological space is the union of its components (finite in number).

Corollary 1. We have the following correspondences:

Irreducible closed subsets in Spec A↔ Prime ideals in A

Components ↔ minimal prime ideals (i.e. prime ideals not containing any other prime ideals)

Corollary 2. 0 =
⋂

(minimal prime ideals).
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