HOMEWORK 8 FOR 18.725, FALL 2015 DUE THURSDAY, NOVEMBER 12 BY 1PM.

- (1) (a) Prove that if X = Spec(A) is affine and locally factorial, then Pic(X) is trivial iff A is a UFD.
 - (b) Let $X \subset \mathbb{P}^n$ be a projective variety. Suppose that the homogeneous coordinate ring of X is a UFD. Show that $Pic(X) \cong \mathbb{Z}$.
- (2) (a) Let X ⊂ P² be the plane curve given by zy² = x³ x²z. Prove that Pic⁰(X) ≅ k^{*}.
 [Hint: Recall the map P¹ → X sending two points (say, 0, ∞) to x₀ = (0 : 0 : 1) and inducing an isomorphism P¹ \ {0,∞} → X \ x₀. Pull-back of a degree zero line bundle to P¹ is trivial, while its fibers at 0 and ∞ are identified. The ratio of that identification with the one
 - coming from the trivialization of the line bundle is an element in k^*]. (b) Let $X \subset \mathbb{P}^2$ be the plane curve given by $zy^2 = x^3$. Prove that $Pic^0(X) \cong (k, +)$. [Hint: Recall the bijective map $\mathbb{P}^1 \to X$ sending, say, 0 to $x_0 = (0:0:1)$ and inducing an isomorphism $\mathbb{P}^1 \setminus 0 \to X \setminus x_0$. Pull-back of a degree zero line bundle to \mathbb{P}^1 is a sheaf L, s.t. on the one hand $L \cong \mathcal{O}$, while on the other hand we have an isomorphism $L \otimes (\mathcal{O}_{\mathbb{P}^1}/(\mathcal{O}_{\mathbb{P}^1}(-2(0))) \cong \mathcal{O}_{\mathbb{P}^1}/(\mathcal{O}_{\mathbb{P}^1}(-2(0)))$. Compare the last isomorphism with one coming from the trivialization of L to get an element in k].
- (c) In both cases (a,b) describe the kernel of the map $Div_C(X) \to Div_W(X)$. (3) Let $X = (\mathbb{A}^n \setminus \{0\})/\{\pm 1\}$ (n > 1). Compute Pic(X).

[Hint: the answer is $\mathbb{Z}/2\mathbb{Z}$. Divisors in X are in bijection with divisors in \mathbb{A}^n invariant under the map $x \mapsto -x$. Such a divisor D is the divisor of a function f which is either even or odd; the corresponding divisor on X is principal iff f is even.]

(4) Show that the number of singular points of an irreducible plane curve of degree n can not exceed $\frac{(n-1)(n-2)}{2}$.

[Hint: Use linear algebra to find a degree n curve passing through $\frac{(n-1)(n-2)}{2} + 1$ singular points and as many nonsingular points as possible, then apply Bezout Theorem. Make sure to use that X is irreducible: otherwise the statement fails already for n = 2.]

- (5) (Optional problem)
 - (a) Let A be an associative algebra. For $a \in A$ define $ad(a) \in End(A)$ by $ad(a) : x \mapsto ax xa$. Show that if A is an algebra over \mathbb{F}_p then $ad(a)^p = ad(a^p)$.
 - (b) Let ∂ be a derivation of an associative \mathbb{F}_p -algebra C. Show that ∂^p is also a derivation of C.

[Hint: Apply part (a) to $A = End_{\mathbb{F}_p}(C)$, $a = \partial$ and x the operator of left multiplication by an element in C].

2 HOMEWORK 8 FOR 18.725, FALL 2015 DUE THURSDAY, NOVEMBER 12 BY 1PM.

Thus for an affine algebraic variety X = Spec(C) over a field of characteristic p > 0 and a vector field $\xi \in Vect(X)$ we get another vector field $\xi^{[p]}$ on X, $\xi^{[p]} \cdot f = \xi \cdots \xi \cdot f$, where ξ appears p times in the right hand side; $\xi^{[p]}$ is called the restricted power of ξ . The definition clearly extends to nonaffine varieties.

(c) Recall that an irreducible normal curve X is an elliptic curve if the sheaf of Kahler differentials on X is trivial¹ (isomorphic to \mathcal{O}). Thus an elliptic curve carries a unique (up to scaling) nonzero vector field ξ . The elliptic curve is called *supersingular* if $\xi^{[p]} = 0$; otherwise it is called ordinary.²

Let f be a cubic polynomial with no multiple root. Check that the projective closure of the curve $y^2 = f(x)$ is a supersingular elliptic curve iff x^{p-1} enters $f(x)^{(p-1)/2}$ with zero coefficient $(p \neq 2)$.

¹Oftentimes by an elliptic curve one understands a curve with this property together with a fixed point $x_0 \in X$.

²There are several other equivalent forms of the definition. For example, an elliptic curve X over \mathbb{F}_q is supersingular iff $|X(\mathbb{F}_{q^n})|$ is prime to p for all n.

18.725 Algebraic Geometry Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.