HOMEWORK 8 FOR 18.725, FALL 2015 DUE THURSDAY, NOVEMBER 12 BY 1PM.

(1) (a) Prove that if $X=\operatorname{Spec}(A)$ is affine and locally factorial, then $\operatorname{Pic}(X)$ is trivial iff A is a UFD.
(b) Let $X \subset \mathbb{P}^{n}$ be a projective variety. Suppose that the homogeneous coordinate ring of X is a UFD. Show that $\operatorname{Pic}(X) \cong \mathbb{Z}$.
(2) (a) Let $X \subset \mathbb{P}^{2}$ be the plane curve given by $z y^{2}=x^{3}-x^{2} z$. Prove that $\operatorname{Pic}^{0}(X) \cong k^{*}$.
[Hint: Recall the map $\mathbb{P}^{1} \rightarrow X$ sending two points (say, $0, \infty$) to $x_{0}=(0: 0: 1)$ and inducing an isomorphism $\mathbb{P}^{1} \backslash\{0, \infty\} \rightarrow X \backslash x_{0}$. Pull-back of a degree zero line bundle to \mathbb{P}^{1} is trivial, while its fibers at 0 and ∞ are identified. The ratio of that identification with the one coming from the trivialization of the line bundle is an element in k^{*}].
(b) Let $X \subset \mathbb{P}^{2}$ be the plane curve given by $z y^{2}=x^{3}$. Prove that $\operatorname{Pic}^{0}(X) \cong(k,+)$.
[Hint: Recall the bijective map $\mathbb{P}^{1} \rightarrow X$ sending, say, 0 to $x_{0}=(0: 0$: 1) and inducing an isomorphism $\mathbb{P}^{1} \backslash 0 \rightarrow X \backslash x_{0}$. Pull-back of a degree zero line bundle to \mathbb{P}^{1} is a sheaf L, s.t. on the one hand $L \cong \mathcal{O}$, while on the other hand we have an isomorphism $L \otimes\left(\mathcal{O}_{\mathbb{P}^{1}} /\left(\mathcal{O}_{\mathbb{P}^{1}}(-2(0))\right) \cong\right.$ $\mathcal{O}_{\mathbb{P}^{1}} /\left(\mathcal{O}_{\mathbb{P}^{1}}(-2(0))\right.$. Compare the last isomorphism with one coming from the trivialization of L to get an element in $k]$.
(c) In both cases (a,b) describe the kernel of the map $\operatorname{Div}_{C}(X) \rightarrow \operatorname{Div}_{W}(X)$.
(3) Let $X=\left(\mathbb{A}^{n} \backslash\{0\}\right) /\{ \pm 1\}(n>1)$. Compute $\operatorname{Pic}(X)$.
[Hint: the answer is $\mathbb{Z} / 2 \mathbb{Z}$. Divisors in X are in bijection with divisors in \mathbb{A}^{n} invariant under the map $x \mapsto-x$. Such a divisor D is the divisor of a function f which is either even or odd; the corresponding divisor on X is principal iff f is even.]
(4) Show that the number of singular points of an irreducible plane curve of degree n can not exceed $\frac{(n-1)(n-2)}{2}$.
[Hint: Use linear algebra to find a degree n curve passing through $\frac{(n-1)(n-2)}{2}+1$ singular points and as many nonsingular points as possible, then apply Bezout Theorem. Make sure to use that X is irreducible: otherwise the statement fails already for $n=2$.]
(5) (Optional problem)
(a) Let A be an associative algebra. For $a \in A$ define $a d(a) \in \operatorname{End}(A)$ by $a d(a): x \mapsto a x-x a$. Show that if A is an algebra over \mathbb{F}_{p} then $a d(a)^{p}=a d\left(a^{p}\right)$.
(b) Let ∂ be a derivation of an associative \mathbb{F}_{p}-algebra C. Show that ∂^{p} is also a derivation of C.
[Hint: Apply part (a) to $A=\operatorname{End}_{\mathbb{F}_{p}}(C), a=\partial$ and x the operator of left multiplication by an element in $C]$.

Thus for an affine algebraic variety $X=\operatorname{Spec}(C)$ over a field of characteristic $p>0$ and a vector field $\xi \in \operatorname{Vect}(X)$ we get another vector field $\xi^{[p]}$ on $X, \xi^{[p]} \cdot f=\xi \cdots \cdots \xi \cdot f$, where ξ appears p times in the right hand side; $\xi^{[p]}$ is called the restricted power of ξ. The definition clearly extends to nonaffine varieties.
(c) Recall that an irreducible normal curve X is an elliptic curve if the sheaf of Kahler differentials on X is trivial ${ }^{1}$ (isomorphic to \mathcal{O}). Thus an elliptic curve carries a unique (up to scaling) nonzero vector field ξ. The elliptic curve is called supersingular if $\xi^{[p]}=0$; otherwise it is called ordinary. $\underline{-}$
Let f be a cubic polynomial with no multiple root. Check that the projective closure of the curve $y^{2}=f(x)$ is a supersingular elliptic curve iff x^{p-1} enters $f(x)^{(p-1) / 2}$ with zero coefficient $(p \neq 2)$.

[^0]MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Oftentimes by an elliptic curve one understands a curve with this property together with a fixed point $x_{0} \in X$.
 ${ }^{2}$ There are several other equivalent forms of the definition. For example, an elliptic curve X over \mathbb{F}_{q} is supersingular iff $\left|X\left(\mathbb{F}_{q^{n}}\right)\right|$ is prime to p for all n.

