
18.725 Algebraic Geometry I Lecture

Lecture 5: More on Finite Morphisms and Irreducible Varieties

Lemma 1. Let f : X → Y be a finite map of varieties and Z1 ( Z2 irreducible subvarieties of X. Then
f(Z1) ( f(Z2).

Proof. We can assume WLOG that f : X = Spec(A) → Spec(B) = Y is surjective and Z2 = X. Pick
a nonzero function g ∈ I(Z1). Since f is finite, the ring map B → A turns A into a finitely-generated
B-module. In particular, the B-subalgebra of A generated by g is finitely-generated as a B-module. Hence,
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Lemma 2. If f : X → Y is a finite surjection of varieties, then dim(X) = dim(Y ).

Proof. Let X0 ( X1 ( ... ( Xn be any chain of non-empty irreducible closed subsets of X. Set Yi = f(Xi).
Since f is continuous, {Yi} are irreducible and since f is finite {Yi} are closed. By the previous lemma, the
sequence Y0 ⊂ ... ⊂ Yn is strictly increasing. Hence, dim(Y ) ≥ dim(X). Conversely, let Y0 ( Y1 ( ... ( Ym
be a chain of non-empty irreducible closed subsets of Y . We wish to show that there is a sequence (of
non-empty irreducible closed subsets) X0 ( ... ⊂ Xm of X such that f(Xi) = Yi. Write f−1Ym as a union
of irreducible components V1 ∪ ...∪ Vt. Since f is surjective and finite, Ym = f(V1)∪ ...∪ f(Vt), where f(Vt)
are closed and irreducible. Since Ym is irreducible, we must have Ym = f(Vj) for some index j. By induction
on m, we may find a chain of non-empty closed irreducibles X0 ( ... ( Xm 1 of Vj with f(X− i) = Yi. Then
X0 ( ... ( Xm 1 ( V− j is the desired sequence in X.

Theorem 1.1. dim(An) = n

Proof. dim(An) ≥ n is clear. Suppose Z0 ( ... ( Zm is a saturated chain of non-empty closed irreducible
subsets of An. We need to show that m ≤ n. Then Z = An

m and Zm−1 is a closed, proper subset of
An. In particular, one can find a non-constant function g ∈ k[X1, ..., Xn] such that Zm−1 ⊆ Z(g). By (the
proof of) Noether normalization, there is a finite surjective morphism Z(g) → An−1. Then the previous
lemma implies dim(Z(g)) = dim(An−1). Inducting on n, we can assume dim(An−1) = n − 1. Hence
m− 1 ≤ dim(Z(g)) = dim(An−1) = n− 1, which completes the proof.

Corollary 1. If X is a hypersurface in An defined by a non-constant polynomial then dim(X) = n− 1.

Corollary 2. Every variety has finite dimension.

We now return to curves.

Proposition 1. All irreducible curves over a given field (or even various fields of equal cardinality!) are
homeomorphic

Proof. From the definition of dimension it is clear that a closed irreducible subset of an irreducible curve
X is either zero dimensional or X. Any proper closed subset of X is therefore finite. Hence, any bijection
between irreducible curves is a homeomorphism. But a curve over a field k has as many points as k. The
proposition follows.

Definition 1. Let X ⊂ An be a hypersurface defined by a polynomial g. Write g as a sum of homogenous
components g = gm + gm+1 + ... with gm = 0. If 0 ∈ X, the multiplicity of X at 0 is defined to be the natural
number m. The multiplicity at p ∈ X is the multiplicity at 0 after applying a linear change of coordinates
mapping p to 0.

Definition 2. Let X, Y be two curves in A2 with no common component and (a, b) be an intersection point.
If IX and IY are the ideals in k[x, y] defining X and Y , respectively. Then V = k[x, y]/(IX + IY ) is a finite
dimensional vector spaces and multiplication by x,y induce two commuting operators on V . The multiplicity
of intersection of X and Y at (a, b) is defined as dimension of the common generalized eigenspace of the two
operators, with eigenvalues a,b respectively.

1

6

6

5



18.725 Algebraic Geometry I Lecture

Theorem 1.2 (Bezout). Let X,Y ⊂ P2 be curves without a common component, of degree d and e, respec-
tively. Then X ∩ Y contains de points, counted with multiplicities.

Proof. Proof in lecture notes from 11/5.

Theorem 1.3 (Pascal). Let Q be a circle in P2 and X a hexagon inscribed in C. Then the three pairs of
opposite sides of X intersect at three points which lie on a straight line.

Proof. Let A,B,C be linear equations of three pairwise nonintersecting sides of our hexagon inscribed in Q
and A′, B′, C ′ be the equations of the remaining three ones with A′ opposite to A etc. Pick a 7th point on
Q and consider a degree 3 homogeneous polynomial P=ABC - t A’B’C’ where t is such that P vanishes at
the chosen 7th point. By Bezout’s theorem, the intersection of Q with a deg 3 curve has at most 6 points,
unless they have a common component. Since P has at least 7 zeroes, the latter must be true. Hence, the
vanishing locus of P is the union of Q with some other component, which has to be a line L by a degree
count. Now the intersection point of A and A′ has to lie on L, as well as that of B with B′ and C with C ′.

Theorem 1.4. Let X be an irreducible variety of dimension n and let g be a non-constant function on X.
Then any irreducible component of Z(g) has dimension n− 1.

Lemma 3. dim(Z(g)) ≥ n− 1.

Proof. The special case X = An is proved above. We will reduce to this special case by Noether’s lemma:
choose B = k[x1, ..., xn] ⊂ k[X] = A such that A is a finitely-generated B-module. Then g is the root of
some monic irreducible polynomial P ∈ B[t] = k[x n

1, ..., xn, t]. Write P = a0 + a1t + ... + t with ai ∈ B.
The inclusion B ⊂ A descends to a map B/(a0) → A/(g). It is enough to show that the map of spectra
Spec(A/(g))→ Spec(B/(a0)) is surjective. Let C = B[t]/(P ) and factor B ⊂ A as B ⊂ C ⊂ A. Spec(C) is
irreducible of dimension n. Thus π : Spec(A) → Spec(C) is onto, so the preimage π−1(Z(t)) = Z(g) maps
onto Z(t). But B/(a0) ⊂ C/(t) = B/(free terms of polynomials in P ).

Lemma 4. Let X be an irreducible variety and U ⊂ X a non-empty open subset. Then dim(U) = dim(X).

Proof. If we replaceX by An the lemma is clear: dim(U) ≤ dim(X) since U ⊆ X and the chain (point in U) (
line ( ... ( An of closed irreducibles in U shows that dim(U) ≥ dim(X). For X affine, use Noether’s lemma
to get a finite surjection π : X → An. Since π is closed, V = An − π(X − U) is open. Let U ′ = π−1V .
Then π : U ′ → V is a finite surjection. Hence, dim(U ′) = dim(V ) = n. On the other hand, U ′ ⊆ U so
dim(U ′) ≤ dim(U) ≤ dim(X) = n. So dim(U) = n as desired. For general X, reduce to the affine case by
using dim(X) = max {dim(U);U affine}.

Proof of Theorem 1.4. Assume Z is a component of Z(g) and dim(Z) ≤ dim(X) − 2. We can find an
open affine subvariety U of X such that U ∩ Z(g) = Z ∩ U is non-empty. Then by lemma 4 we have
dim(U ∩ Z) = dim(Z) ≤ dim(X)− 2 = dim(U)− 2. Then by lemma 3, g|U is constant. But U is an open
subset in an irreducible variety and therefore dense, so continuity implies g is globally constant.
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