Lecture 5: More on Finite Morphisms and Irreducible Varieties

Lemma 1. Let $f: X \rightarrow Y$ be a finite map of varieties and $Z_{1} \subsetneq Z_{2}$ irreducible subvarieties of X. Then $f\left(Z_{1}\right) \subsetneq f\left(Z_{2}\right)$.

Proof. We can assume WLOG that $f: X=\operatorname{Spec}(A) \rightarrow \operatorname{Spec}(B)=Y$ is surjective and $Z_{2}=X$. Pick a nonzero function $g \in I\left(Z_{1}\right)$. Since f is finite, the ring map $B \rightarrow A$ turns A into a finitely-generated B-module. In particular, the B-subalgebra of A generated by g is finitely-generated as a B-module. Hence, $g^{n}=\sum_{i=0}^{n-1} h_{i} g^{i}$ for some natural number n and $h_{0} \neq 0$. Since $h_{0}=g^{n}-\sum_{i=1}^{n-1} h_{i} g^{i}$ vanishes on Z_{1}, h_{0} vanishes on $f\left(Z_{1}\right)$.

Lemma 2. If $f: X \rightarrow Y$ is a finite surjection of varieties, then $\operatorname{dim}(X)=\operatorname{dim}(Y)$.
Proof. Let $X_{0} \subsetneq X_{1} \subsetneq \ldots \subsetneq X_{n}$ be any chain of non-empty irreducible closed subsets of X. Set $Y_{i}=f\left(X_{i}\right)$. Since f is continuous, $\left\{Y_{i}\right\}$ are irreducible and since f is finite $\left\{Y_{i}\right\}$ are closed. By the previous lemma, the sequence $Y_{0} \subset \ldots \subset Y_{n}$ is strictly increasing. Hence, $\operatorname{dim}(Y) \geq \operatorname{dim}(X)$. Conversely, let $Y_{0} \subsetneq Y_{1} \subsetneq \ldots \subsetneq Y_{m}$ be a chain of non-empty irreducible closed subsets of Y. We wish to show that there is a sequence (of non-empty irreducible closed subsets) $X_{0} \subsetneq \ldots \subset X_{m}$ of X such that $f\left(X_{i}\right)=Y_{i}$. Write $f^{-1} Y_{m}$ as a union of irreducible components $V_{1} \cup \ldots \cup V_{t}$. Since f is surjective and finite, $Y_{m}=f\left(V_{1}\right) \cup \ldots \cup f\left(V_{t}\right)$, where $f\left(V_{t}\right)$ are closed and irreducible. Since Y_{m} is irreducible, we must have $Y_{m}=f\left(V_{j}\right)$ for some index j. By induction on m, we may find a chain of non-empty closed irreducibles $X_{0} \subsetneq \ldots \subsetneq X_{m-1}$ of V_{j} with $f\left(X_{i}\right)=Y_{i}$. Then $X_{0} \subsetneq \ldots \subsetneq X_{m-1} \subsetneq V_{j}$ is the desired sequence in X.

Theorem 1.1. $\operatorname{dim}\left(\mathbb{A}^{n}\right)=n$
$\operatorname{Proof.} \operatorname{dim}\left(\mathbb{A}^{n}\right) \geq n$ is clear. Suppose $Z_{0} \subsetneq \ldots \subsetneq Z_{m}$ is a saturated chain of non-empty closed irreducible subsets of \mathbb{A}^{n}. We need to show that $m \leq n$. Then $Z_{m}=\mathbb{A}^{n}$ and Z_{m-1} is a closed, proper subset of \mathbb{A}^{n}. In particular, one can find a non-constant function $g \in k\left[X_{1}, \ldots, X_{n}\right]$ such that $Z_{m-1} \subseteq Z(g)$. By (the proof of) Noether normalization, there is a finite surjective morphism $Z(g) \rightarrow \mathbb{A}^{n-1}$. Then the previous lemma implies $\operatorname{dim}(Z(g))=\operatorname{dim}\left(\mathbb{A}^{n-1}\right)$. Inducting on n, we can assume $\operatorname{dim}\left(\mathbb{A}^{n-1}\right)=n-1$. Hence $m-1 \leq \operatorname{dim}(Z(g))=\operatorname{dim}\left(\mathbb{A}^{n-1}\right)=n-1$, which completes the proof.

Corollary 1. If X is a hypersurface in \mathbb{A}^{n} defined by a non-constant polynomial then $\operatorname{dim}(X)=n-1$.
Corollary 2. Every variety has finite dimension.
We now return to curves.
Proposition 1. All irreducible curves over a given field (or even various fields of equal cardinality!) are homeomorphic

Proof. From the definition of dimension it is clear that a closed irreducible subset of an irreducible curve X is either zero dimensional or X. Any proper closed subset of X is therefore finite. Hence, any bijection between irreducible curves is a homeomorphism. But a curve over a field k has as many points as k. The proposition follows.

Definition 1. Let $X \subset \mathbb{A}^{n}$ be a hypersurface defined by a polynomial g. Write g as a sum of homogenous components $g=g_{m}+g_{m+1}+\ldots$ with $g_{m} \neq 0$. If $0 \in X$, the multiplicity of X at 0 is defined to be the natural number m. The multiplicity at $p \in X$ is the multiplicity at 0 after applying a linear change of coordinates mapping p to 0 .

Definition 2. Let X, Y be two curves in \mathbb{A}^{2} with no common component and (a, b) be an intersection point. If I_{X} and I_{Y} are the ideals in $k[x, y]$ defining X and Y, respectively. Then $V=k[x, y] /\left(I_{X}+I_{Y}\right)$ is a finite dimensional vector spaces and multiplication by x, y induce two commuting operators on V. The multiplicity of intersection of X and Y at (a, b) is defined as dimension of the common generalized eigenspace of the two operators, with eigenvalues a, b respectively.

Theorem 1.2 (Bezout). Let $X, Y \subset \mathbb{P}^{2}$ be curves without a common component, of degree d and e, respectively. Then $X \cap Y$ contains de points, counted with multiplicities.

Proof. Proof in lecture notes from 11/5.
Theorem 1.3 (Pascal). Let Q be a circle in \mathbb{P}^{2} and X a hexagon inscribed in C. Then the three pairs of opposite sides of X intersect at three points which lie on a straight line.

Proof. Let A, B, C be linear equations of three pairwise nonintersecting sides of our hexagon inscribed in Q and $A^{\prime}, B^{\prime}, C^{\prime}$ be the equations of the remaining three ones with A^{\prime} opposite to A etc. Pick a 7 th point on Q and consider a degree 3 homogeneous polynomial $\mathrm{P}=\mathrm{ABC}-\mathrm{t} \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ where t is such that P vanishes at the chosen 7th point. By Bezout's theorem, the intersection of Q with a deg 3 curve has at most 6 points, unless they have a common component. Since P has at least 7 zeroes, the latter must be true. Hence, the vanishing locus of P is the union of Q with some other component, which has to be a line L by a degree count. Now the intersection point of A and A^{\prime} has to lie on L, as well as that of B with B^{\prime} and C with C^{\prime}.

Theorem 1.4. Let X be an irreducible variety of dimension n and let g be a non-constant function on X. Then any irreducible component of $Z(g)$ has dimension $n-1$.

Lemma 3. $\operatorname{dim}(Z(g)) \geq n-1$.
Proof. The special case $X=\mathbb{A}^{n}$ is proved above. We will reduce to this special case by Noether's lemma: choose $B=k\left[x_{1}, \ldots, x_{n}\right] \subset k[X]=A$ such that A is a finitely-generated B-module. Then g is the root of some monic irreducible polynomial $P \in B[t]=k\left[x_{1}, \ldots, x_{n}, t\right]$. Write $P=a_{0}+a_{1} t+\ldots+t^{n}$ with $a_{i} \in B$. The inclusion $B \subset A$ descends to a map $B /\left(a_{0}\right) \rightarrow A /(g)$. It is enough to show that the map of spectra $\operatorname{Spec}(A /(g)) \rightarrow \operatorname{Spec}\left(B /\left(a_{0}\right)\right)$ is surjective. Let $C=B[t] /(P)$ and factor $B \subset A$ as $B \subset C \subset A$. $\operatorname{Spec}(C)$ is irreducible of dimension n. Thus $\pi: \operatorname{Spec}(A) \rightarrow \operatorname{Spec}(C)$ is onto, so the preimage $\pi^{-1}(Z(t))=Z(g)$ maps onto $Z(t)$. But $B /\left(a_{0}\right) \subset C /(t)=B /($ free terms of polynomials in $P)$.

Lemma 4. Let X be an irreducible variety and $U \subset X$ a non-empty open subset. Then $\operatorname{dim}(U)=\operatorname{dim}(X)$.
Proof. If we replace X by \mathbb{A}^{n} the lemma is clear: $\operatorname{dim}(U) \leq \operatorname{dim}(X)$ since $U \subseteq X$ and the chain (point in U$) \subsetneq$ line $\subsetneq \ldots \subsetneq \mathbb{A}^{n}$ of closed irreducibles in U shows that $\operatorname{dim}(U) \geq \operatorname{dim}(X)$. For X affine, use Noether's lemma to get a finite surjection $\pi: X \rightarrow \mathbb{A}^{n}$. Since π is closed, $V=\mathbb{A}^{n}-\pi(X-U)$ is open. Let $U^{\prime}=\pi^{-1} V$. Then $\pi: U^{\prime} \rightarrow V$ is a finite surjection. Hence, $\operatorname{dim}\left(U^{\prime}\right)=\operatorname{dim}(V)=n$. On the other hand, $U^{\prime} \subseteq U$ so $\operatorname{dim}\left(U^{\prime}\right) \leq \operatorname{dim}(U) \leq \operatorname{dim}(X)=n$. So $\operatorname{dim}(U)=n$ as desired. For general X, reduce to the affine case by using $\operatorname{dim}(X)=\max \{\operatorname{dim}(U) ; U$ affine $\}$.

Proof of Theorem 1.4. Assume Z is a component of $Z(g)$ and $\operatorname{dim}(Z) \leq \operatorname{dim}(X)-2$. We can find an open affine subvariety U of X such that $U \cap Z(g)=Z \cap U$ is non-empty. Then by lemma 4 we have $\operatorname{dim}(U \cap Z)=\operatorname{dim}(Z) \leq \operatorname{dim}(X)-2=\operatorname{dim}(U)-2$. Then by lemma $\underline{3},\left.g\right|_{U}$ is constant. But $U \overline{\mathrm{is}}$ an open subset in an irreducible variety and therefore dense, so continuity implies g is globally constant.

MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

