
18.725 Algebraic Geometry I Lecture 1

Lecture 1: Course Introduction, Zariski topology

Some teasers So what is algebraic geometry? In short, geometry of sets given by algebraic equations.
Some examples of questions along this line:

1. In 1874, H. Schubert in his book Calculus of enumerative geometry proposed the question that given
4 generic lines in the 3-space, how many lines can intersect all 4 of them.

The answer is 2. The proof is as follows. Move the lines to a configuration of the form of two pairs, each
consists of two intersecting lines. Then there are two lines, one of them passing the two intersection
points, the other being the intersection of the two planes defined by each pair. Now we need to show
somehow that the answer stays the same if we are truly in a generic position. This is answered by
intersection theory, a big topic in AG.

2. We can generalize this statement. Consider 4 generic polynomials over C in 3 variables of degrees
d1, d2, d3, d4, how many lines intersect the zero sets of each polynomial? The answer is 2d1d2d3d4.
This is given in general by “Schubert calculus.”

3. Take C4, and 2 generic quadratic polynomials of degree two, how many lines are on the common zero
set? The answer is 16.

4. For a generic cubic polynomial in 3 variables, how many lines are on the zero set? There are exactly
27 of them. (This is related to the exceptional Lie group E6.)

Another major development of AG in the 20th century was on counting the numbers of solutions for
polynomial equations over F where q = pn 2

q . Here’s an example question: y = x3 +1. The answer, assuming

p = 2 (mod 3) and p = 2, is pn if n odd, and (pn/2 − (−1)n/2)2 − 1 otherwise.
A third idea is to study “the shape” (i.e. the topology) of the set of solutions of a system of polynomial

equations. For instance, if we consider y2 = x3 = ax+b in C2, this will yield ‘ T 1×T 1 with a point removed.
Another example: if we have a generic degree 4 equations in C3 (a K3 surface), then the rank of H2 (second
cohomology) of this space is 22.

Algebraic Varieties We always assume working over some algebraically closed field k. Algebraic varieties
are glued from affine varieties.

For instance, consider Ank = kn. It comes with the coordinate ring R = k[x1, . . . , xn] = k[An], which is a
commutative k-algebra. How do we recover kn from R = k[x1, . . . , xn]? The first answer, the tautological
one, is that kn ∼= Homk alg(R, k). Namely, given a point (a1, . . . , an), we can map x− i to ai. However, there
is a second answer: that kn is the set of maximal ideals of R, which we denotes as Spec R.

To see this, first note that kn embeds into Spec R. This is simple: you just map each point (a1, . . . , an) to
the kernel of the map R→ C given by xi 7→ ai. Surjectivity is less trivial: it is the essential Nullstellensatz.

Theorem 1.1 (Essential Nullstellensatz). If K/k is a field extension, and K is a finitely generated k-algebra,
then K/k is algebraic. In particular, if k = k, then K = k.

Assuming this statement, and that m is an maximal ideal, then K = R/m is a field, and it contains k, so
K = k, thus R = k⊕m, thus for each xi there’s some ai such that xi− ai ∈ m, so m is the kernel of xi 7→ ai.

Proof of essential Nullstellensatz. Let’s prove this when k is not countable. (Note in particular this excludes
the case of Q/Q.) Assume t ∈ K is not algebtraic over k, then k(t) ⊆ K. Note that (t− a)−1 ∈ k(t) for each
a ∈ k. But K is at most coun∑ tably dimensional as a vector space over k, so (t

1

−ai)−1 are linearly dependent,

so there is some relation bi(t − ai)− = 0. Then after getting rid of the denominator by multiplying by∏ i

(t− ai), we obtain a polynomial having t as a zero.

Definition 1. A Zariski closed subset in kn is a set given by the zero set of polynomial equations.

Theorem 1.2. Zariski closed subsets in kn are in bijection with radical ideals in R = k[x1, . . . , xn]. (Recall
that I is a radical ideal if R/I has no nilpotents.)
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Proof. An ideal I maps to ZI , the set of common zeroes of elements of I. A Zariski closed set Z goes to
IZ = {f | f |Z = 0}. Clearly ZIZ = Z. Need to check IZI = I. Let’s first consider ZI = ∅, then we want
I = R. If I = R, then choose m ⊇ I, then we know that m corresponds to some point a ∈ ZI , contradiction.
Now in general, if f |ZI = 0, then fn ∈ I for some n. Consider the localization R(f) = R[t]/(1−ft), which can
also be written as {p/fn | p ∈ R} mod out a certain equivalence relation ∼. Clearly there is an embedding
R→ R(f), and hence Spec(R(f)) ↪→ Spec(R), where the first is the set of {m ∈ R | f ∈/ m}, thus IR(f) is not
contained in a maximal ideal, i.e. IR(f) = R n n

(f) =⇒ p/f for some p ∈ I, then f = p ∈ I.

Corollary 1. There is a Zariski topology on An, where the closed sets are the Zariski closed sets.

Proof. One just need to check the condition for union and intersection.

Let’s introduce some notions to begin with. (This can be found as [Kem93], Section 1.1 and 1.2.) A
space with function is a topological space X, where we attach to each open set U a k-albegra, denoted by
k[U ] and called the regular functions on U . They need to satisfy some conditions:

1. If U =
⋃
Uα, and f is regular on U , then f

α

|Uα is regular on Uα for each α.

2. If f is regular on U , then D(f) = {x ∈ U | f(x) = 0} is open and 1/f is regular on D(f).

A morphism between spaces with functions is a map f : X → Y between spaces, such that if g is
regular on U , then f∗g is regular on f−1(U). The map f 7→ f∗ gives us a mapping ∗ : Morphism(X,Y ) →
k −Hom(k[Y ], k[X]).

Definition 2. An affine variety is a space with functions Y such that ∗ is bijective for every X and k[Y ] a
finitely generated k-algebra.
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