## Lecture 7: Product of Varieties, Separatedness

Here are some additions to last time. Recall that if $R(X) \cong R(Y)$, then there are open subsets $U \subseteq X$, $V \subseteq Y$ which are isomorphic. To see this, replace $X, Y$ with $U, V$ such that we have morphisms $f: U \rightarrow V$ and $g: V^{\prime} \rightarrow U$ (where $V^{\prime} \subseteq V$ ) which are induced by the isomorphism $R(X) \cong R(Y)$. Then $f g: V^{\prime} \rightarrow V^{\prime}$ is the identity (induced by $R(Y) \rightarrow R(X) \rightarrow R(Y)$ which is the identity). Then $g: V^{\prime} \rightarrow f^{-1}\left(V^{\prime}\right)$, and set $U^{\prime}=f^{-1}\left(V^{\prime}\right)$. Then $g f: U^{\prime} \rightarrow U^{\prime}$ is the identity for similar reasons. Hence $U^{\prime} \simeq V^{\prime}$.

In the proof of a lemma from last time (that the set of unramified points is open), we used that if $\operatorname{Spec} A \rightarrow \operatorname{Spec}(C=B[t] / P) \rightarrow \operatorname{Spec} B$ (where everything has dimension $n$ ), then $C \subseteq A$; that is, $C \rightarrow A$ is an injection. If not, then the kernel is nontrivial, and consequently Spec(image) has dimension less than $n$, and hence $\operatorname{dim} \operatorname{Spec} A<n$.

Products Let $\mathcal{C}$ be any category and $X, Y \in \mathrm{Ob}(C)$. Then $X \times Y$ is an object $Z \in \mathrm{Ob}(C)$ together with maps $\pi_{X}: Z \rightarrow X, \pi_{Y}: Z \rightarrow Y$ such that for any other $T \in \mathrm{Ob}(C)$, there is an isomorphism $\operatorname{Hom}(T, Z) \xrightarrow{\sim} \operatorname{Hom}(T, X) \times \operatorname{Hom}(T, Y)$ given by $f \mapsto\left(\pi_{X} \circ f, \pi_{Y} \circ f\right)$. Equivalently, $X \times Y$ is the object corresponding to the functor $T \mapsto \operatorname{Hom}(T, X) \times \operatorname{Hom}(T, Y)$, if it exists. Yoneda's lemma implies that if it exists, then it is unique up to unique isomorphism.

Similarly, the coproduct $X \amalg Y$ is defined such that $\operatorname{Hom}(X \amalg Y, T) \xrightarrow{\sim} \operatorname{Hom}(X, T) \times \operatorname{Hom}(Y, T)$.
Example 1. Let $\mathcal{C}$ be the category of commutative $k$-algebras. Then the product is the usual direct product, or direct sum. The coproduct of $A, B$ would be $A \otimes_{k} B$. We have an equivalence of categories
$\{$ affine algebraic varieties $\}=\{\text { finitely generated commutative nilpotent-free } k \text {-algebras }\}^{\mathrm{op}}$,
where the op means the opposite category; the objects are the same, but the arrows are reversed. Thus, product of affine algebraic varieties corresponds to the tensor product of their global sections.

Exercise 1. Describe the product and coproduct in the category of not necessarily commutative $k$-algebras.
Lemma 1. If $A, B$ are nilpotent-free $k$-algebras, so is $A \otimes_{k} B$.
Proof. We check that $A \otimes_{k} B$ injects into $\operatorname{Hom}_{k-\operatorname{alg}}(\operatorname{Spec} A \times \operatorname{Spec} B)$. For contradiction, take a nonzero element $\sum a_{i} \otimes b_{i} \in A \otimes_{k} B$ in the kernel. Without loss of generality, the $a_{i}$ are linearly independent, as well as the $b_{i}$. Find $x \in \operatorname{Spec} A$ such that for some $i, a_{i}(x) \neq 0$. Restricting to $\{x\} \times \operatorname{Spec} B$, we get a contradiction to linear independence of the $b_{i}$. Therefore, we can identify $A \otimes_{k} B$ with a subspace of $\operatorname{Hom}_{k-\mathrm{alg}}(\operatorname{Spec} A \times \operatorname{Spec} B)$, which clearly contains no nilpotents.

Therefore, $\operatorname{Spec} A \otimes_{k} B$ makes sense, and $\operatorname{Hom}\left(X, \operatorname{Spec} A \otimes_{k} B\right)=\operatorname{Hom}\left(A \otimes_{k} B, k[X]\right) \simeq \operatorname{Hom}(A, k[X]) \times$ $\operatorname{Hom}(B, k[X])=\operatorname{Hom}(X, \operatorname{Spec} A) \times \operatorname{Hom}(X, \operatorname{Spec} B)$ implies that $\operatorname{Spec} A \times \operatorname{Spec} B=\operatorname{Spec} A \otimes_{k} B$.

Remark 1. Caution: The topology on the product of spaces with functions is not the product topology.
Suppose $X, Y$ are algebraic varieties, or spaces with functions. We define a basis of open sets on $X \times Y$ to be those subsets of the form $U \subseteq V_{1} \times V_{2}$, where $V_{1} \subseteq X, V_{2} \subseteq Y$ are open and $U$ is the complement to zeroes $\left(f=\sum f_{i} g_{i}\right)$ where $f_{i}$ are regular on $V_{1}, g_{i}$ are regular on $V_{2}$. Another construction can be given as follows: suppose that $X$ and $Y$ can be written as $X=\cup U_{i}, Y=\cup V_{j}$ for $U_{i}=\operatorname{Spec} A_{i}$ and $V_{j}=\operatorname{Spec} B_{j}$. Then $X \times Y$ will be $\cup \operatorname{Spec}\left(A_{i} \otimes B_{j}\right)$, glued properly.

Theorem 1.1. $\operatorname{dim}(X \times Y)=\operatorname{dim}(X)+\operatorname{dim}(Y)$
Proof. The computation is local, so assume $X, Y$ are affine of dimension $n, m$ respectively. Then there are finite onto maps $X \rightarrow \mathbb{A}^{n}, Y \rightarrow \mathbb{A}^{m}$, so their product is a finite onto map $X \times Y \rightarrow \mathbb{A}^{n+m}$, which implies that $X \times Y$ is of dimension $n+m$.

Lemma 2. Suppose that for $i \in\{1,2\}, X_{i}$ is a closed subvariety of $Y_{i}$. Then $X_{1} \times X_{2}$ is a closed subvariety of $Y_{1} \times Y_{2}$.

Proof. Work locally to reduce to the case when $Y_{1}, Y_{2}$ are affine. The corresponding algebraic statement to check is that the tensor product of two surjective maps is still surjective; this is true.

Proposition 1. The product of projective varieties is projective.
Proof. By the previous lemma, it suffices to check that $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is projective. To do so, use the Segre embedding into $\mathbb{P}^{n m+n+m}$. Geometrically, the Segre embedding takes $(x, y) \in \mathbb{P}^{n} \times \mathbb{P}^{m}$, considers the duals of $x, y$ given by lines $L_{x} \subseteq k^{n+1}=V, L_{y} \subseteq k^{m+1}=W$, takes the line $L_{x} \otimes L_{y} \subseteq V \times W=k^{(n+1)(m+1)}$, and identifies that with its dual, which is a point in $\mathbb{P}^{n m+n+m}$. More concretely, it takes $\left(\left(x_{0}: \cdots: x_{n}\right),\left(y_{0}: \cdots\right.\right.$ : $\left.\left.y_{m}\right)\right) \mapsto\left(\cdots: x_{i} y_{j}: \cdots\right)$. If the coordinate are given by $z_{i j}$ such that the $x_{i} y_{j}$ belongs to the $z_{i j}$ coordinate, then the image of the Segre embedding is cut out by $z_{i j} z_{k l}-z_{k j} z_{i l}$.

## Separatedness

Example 2. Here is a non-quasiprojective variety: the line with a double point. It is given by $\mathbb{A}^{1} \times$ $\{0,1\} /((x, 0) \sim(x, 1)$ unless $x=0)$.

Definition 1. An algebraic variety is separated if its diagonal $\Delta_{X}$ is a closed subvariety in $X \times X$.
In general, the diagonal is always a locally closed subvariety. Furthermore, affine varieties are separated because if $X=\operatorname{Spec} A$, then the multiplication map $A \otimes A \rightarrow A$ is surjective. Therefore, if $X$ is an algebraic variety such that $X=\cup U_{i}$ where the $U_{i}$ are affine, then $\Delta_{X} \cap\left(U_{i} \times U_{i}\right)$ is closed in $U_{i}$.

Lemma 3. A locally closed subvariety in a separated variety is separated.
Proof. Suppose $X$ is separated and $Z \subseteq X$ is a subvariety. Then $Z \times Z \subseteq X \times X$ is a subvariety, and $\Delta_{Z}=\Delta_{X} \times(Z \times Z)$.

Lemma 4. $\mathbb{P}^{n}$ is separated.
Proof. Write $\mathbb{P}^{n}=\cup \mathbb{A}_{i}^{n}$. Then $\mathbb{A}_{i}^{n} \times \mathbb{A}_{j}^{n} \supseteq \Delta \cap\left(\mathbb{A}_{i}^{n} \times \mathbb{A}_{j}^{n}\right)$. When $i=j$, we are reduced to the affine case. When $i \neq j$, say $i=0$ and $j=1$, we take coordinates $x_{1}, \cdots, x_{n}$ and $y_{0}, y_{2}, \cdots, y_{n}$ and see that being on the diagonal is the closed condition $x_{a} y_{b}=x_{b} y_{a}$.

Corollary 1. A quasiprojective variety is separated.
The line with a doubled origin is not separated. To see this, denote this algebraic variety by $X$, and note that we have a natural map $X \rightarrow \mathbb{A}^{1}$. Then $X^{2} \rightarrow \mathbb{A}^{2}$, and over 0 we have $\left\{0_{i j}\right\}_{i, j \in\{1,2\}}$. The closure of diagonal contains all four points, while only two points $0_{11}$ and $0_{22}$ belong to the diagonal. In particular, $X$ cannot be quasiprojective as it is not separated.

Remark 2. Often (including Hartshorne), an "abstract variety" is taken to be separated and irreducible.
Definition 2. Let $f: X \rightarrow Y$ be a morphism. Then $\Gamma_{f}$, called the graph of $f$, is the image of $\mathrm{id} \times f$ in $X \times Y$.

Note that $\Gamma_{f}$ is a subvariety isomorphic to $X$, and $\Gamma_{\mathrm{id}}$ is the diagonal. Furthermore, $\Gamma_{f}$ is always locally closed. If $Y$ is separated, then $\Gamma$ is a closed subvariety.

Corollary 2. If $X$ is irreducible and $Y$ is separated and $f, g: X \rightarrow Y$ agree on a nonempty open set, then $f=g$.

Proof. Suppose $f, g$ agree on a nonempty open set $U \subseteq X$. Then $\left.\Gamma_{f}\right|_{U}=\left.\Gamma_{g}\right|_{U}$, and taking closures gives that $\Gamma_{f}=\overline{\left.\Gamma_{f}\right|_{U}}=\overline{\left.\Gamma_{g}\right|_{U}}=\Gamma_{g}$. Therefore, $f=g$.

Corollary 3. Suppose $X$ is irreducible, $Y$ is separated, $U$ is a nonempty open subset of $X$, and $f: U \rightarrow Y$ is a morphism. Then there is a maximal open subset $V$ of $X$ to which $f$ extends.

MIT OpenCourseWare
http://ocw.mit.edu

### 18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

