Lecture 7: Product of Varieties, Separatedness

Here are some additions to last time. Recall that if $R(X) \cong R(Y)$, then there are open subsets $U \subseteq X$, $V \subseteq Y$ which are isomorphic. To see this, replace X, Y with U, V such that we have morphisms $f: U \to V$ and $g: V' \to U$ (where $V' \subseteq V$) which are induced by the isomorphism $R(X) \cong R(Y)$. Then $fg: V' \to V'$ is the identity (induced by $R(Y) \to R(X) \to R(Y)$ which is the identity). Then $g: V' \to f^{-1}(V')$, and set $U' = f^{-1}(V')$. Then $gf: U' \to U'$ is the identity for similar reasons. Hence $U' \simeq V'$.

In the proof of a lemma from last time (that the set of unramified points is open), we used that if $\operatorname{Spec} A \to \operatorname{Spec} (C = B[t]/P) \to \operatorname{Spec} B$ (where everything has dimension n), then $C \subseteq A$; that is, $C \to A$ is an injection. If not, then the kernel is nontrivial, and consequently $\operatorname{Spec}(\operatorname{image})$ has dimension less than n, and hence dim $\operatorname{Spec} A < n$.

Products Let C be any category and $X, Y \in Ob(C)$. Then $X \times Y$ is an object $Z \in Ob(C)$ together with maps $\pi_X : Z \to X, \pi_Y : Z \to Y$ such that for any other $T \in Ob(C)$, there is an isomorphism $\operatorname{Hom}(T, Z) \xrightarrow{\sim} \operatorname{Hom}(T, X) \times \operatorname{Hom}(T, Y)$ given by $f \mapsto (\pi_X \circ f, \pi_Y \circ f)$. Equivalently, $X \times Y$ is the object corresponding to the functor $T \mapsto \operatorname{Hom}(T, X) \times \operatorname{Hom}(T, Y)$, if it exists. Yoneda's lemma implies that if it exists, then it is unique up to unique isomorphism.

Similarly, the coproduct X II Y is defined such that $\operatorname{Hom}(X \amalg Y, T) \xrightarrow{\sim} \operatorname{Hom}(X, T) \times \operatorname{Hom}(Y, T)$.

Example 1. Let C be the category of commutative k-algebras. Then the product is the usual direct product, or direct sum. The coproduct of A, B would be $A \otimes_k B$. We have an equivalence of categories

 $\{affine algebraic varieties\} = \{finitely generated commutative nilpotent-free k-algebras\}^{op},$

where the op means the opposite category; the objects are the same, but the arrows are reversed. Thus, product of affine algebraic varieties corresponds to the tensor product of their global sections.

Exercise 1. Describe the product and coproduct in the category of not necessarily commutative k-algebras.

Lemma 1. If A, B are nilpotent-free k-algebras, so is $A \otimes_k B$.

Proof. We check that $A \otimes_k B$ injects into $\operatorname{Hom}_{k-\operatorname{alg}}(\operatorname{Spec} A \times \operatorname{Spec} B)$. For contradiction, take a nonzero element $\sum a_i \otimes b_i \in A \otimes_k B$ in the kernel. Without loss of generality, the a_i are linearly independent, as well as the b_i . Find $x \in \operatorname{Spec} A$ such that for some $i, a_i(x) \neq 0$. Restricting to $\{x\} \times \operatorname{Spec} B$, we get a contradiction to linear independence of the b_i . Therefore, we can identify $A \otimes_k B$ with a subspace of $\operatorname{Hom}_{k-\operatorname{alg}}(\operatorname{Spec} A \times \operatorname{Spec} B)$, which clearly contains no nilpotents.

Therefore, $\operatorname{Spec} A \otimes_k B$ makes sense, and $\operatorname{Hom}(X, \operatorname{Spec} A \otimes_k B) = \operatorname{Hom}(A \otimes_k B, k[X]) \simeq \operatorname{Hom}(A, k[X]) \times \operatorname{Hom}(B, k[X]) = \operatorname{Hom}(X, \operatorname{Spec} A) \times \operatorname{Hom}(X, \operatorname{Spec} B)$ implies that $\operatorname{Spec} A \times \operatorname{Spec} B = \operatorname{Spec} A \otimes_k B$.

Remark 1. Caution: The topology on the product of spaces with functions is **not** the product topology.

Suppose X, Y are algebraic varieties, or spaces with functions. We define a basis of open sets on $X \times Y$ to be those subsets of the form $U \subseteq V_1 \times V_2$, where $V_1 \subseteq X$, $V_2 \subseteq Y$ are open and U is the complement to $\operatorname{zeroes}(f = \sum f_i g_i)$ where f_i are regular on V_1 , g_i are regular on V_2 . Another construction can be given as follows: suppose that X and Y can be written as $X = \bigcup U_i, Y = \bigcup V_j$ for $U_i = \operatorname{Spec} A_i$ and $V_j = \operatorname{Spec} B_j$. Then $X \times Y$ will be $\bigcup \operatorname{Spec}(A_i \otimes B_j)$, glued properly.

Theorem 1.1. $\dim(X \times Y) = \dim(X) + \dim(Y)$

Proof. The computation is local, so assume X, Y are affine of dimension n, m respectively. Then there are finite onto maps $X \to \mathbb{A}^n$, $Y \to \mathbb{A}^m$, so their product is a finite onto map $X \times Y \to \mathbb{A}^{n+m}$, which implies that $X \times Y$ is of dimension n + m.

Lemma 2. Suppose that for $i \in \{1, 2\}$, X_i is a closed subvariety of Y_i . Then $X_1 \times X_2$ is a closed subvariety of $Y_1 \times Y_2$.

Proof. Work locally to reduce to the case when Y_1, Y_2 are affine. The corresponding algebraic statement to check is that the tensor product of two surjective maps is still surjective; this is true.

Proposition 1. The product of projective varieties is projective.

Proof. By the previous lemma, it suffices to check that $\mathbb{P}^n \times \mathbb{P}^m$ is projective. To do so, use the Segre embedding into \mathbb{P}^{nm+n+m} . Geometrically, the Segre embedding takes $(x, y) \in \mathbb{P}^n \times \mathbb{P}^m$, considers the duals of x, y given by lines $L_x \subseteq k^{n+1} = V$, $L_y \subseteq k^{m+1} = W$, takes the line $L_x \otimes L_y \subseteq V \times W = k^{(n+1)(m+1)}$, and identifies that with its dual, which is a point in \mathbb{P}^{nm+n+m} . More concretely, it takes $((x_0 : \cdots : x_n), (y_0 : \cdots : y_m)) \mapsto (\cdots : x_i y_j : \cdots)$. If the coordinate are given by z_{ij} such that the $x_i y_j$ belongs to the z_{ij} coordinate, then the image of the Segre embedding is cut out by $z_{ij} z_{kl} - z_{kj} z_{il}$.

Separatedness

Example 2. Here is a non-quasiprojective variety: the line with a double point. It is given by $\mathbb{A}^1 \times \{0,1\}/((x,0) \sim (x,1)$ unlessx = 0).

Definition 1. An algebraic variety is separated if its diagonal Δ_X is a closed subvariety in $X \times X$.

In general, the diagonal is always a locally closed subvariety. Furthermore, affine varieties are separated because if X = SpecA, then the multiplication map $A \otimes A \twoheadrightarrow A$ is surjective. Therefore, if X is an algebraic variety such that $X = \bigcup U_i$ where the U_i are affine, then $\Delta_X \cap (U_i \times U_i)$ is closed in U_i .

Lemma 3. A locally closed subvariety in a separated variety is separated.

Proof. Suppose X is separated and $Z \subseteq X$ is a subvariety. Then $Z \times Z \subseteq X \times X$ is a subvariety, and $\Delta_Z = \Delta_X \times (Z \times Z)$.

Lemma 4. \mathbb{P}^n is separated.

Proof. Write $\mathbb{P}^n = \bigcup \mathbb{A}_i^n$. Then $\mathbb{A}_i^n \times \mathbb{A}_j^n \supseteq \Delta \cap (\mathbb{A}_i^n \times \mathbb{A}_j^n)$. When i = j, we are reduced to the affine case. When $i \neq j$, say i = 0 and j = 1, we take coordinates x_1, \dots, x_n and y_0, y_2, \dots, y_n and see that being on the diagonal is the closed condition $x_a y_b = x_b y_a$.

Corollary 1. A quasiprojective variety is separated.

The line with a doubled origin is not separated. To see this, denote this algebraic variety by X, and note that we have a natural map $X \to \mathbb{A}^1$. Then $X^2 \to \mathbb{A}^2$, and over 0 we have $\{0_{ij}\}_{i,j\in\{1,2\}}$. The closure of diagonal contains all four points, while only two points 0_{11} and 0_{22} belong to the diagonal. In particular, X cannot be quasiprojective as it is not separated.

Remark 2. Often (including Hartshorne), an "abstract variety" is taken to be separated and irreducible.

Definition 2. Let $f : X \to Y$ be a morphism. Then Γ_f , called the graph of f, is the image of $id \times f$ in $X \times Y$.

Note that Γ_f is a subvariety isomorphic to X, and Γ_{id} is the diagonal. Furthermore, Γ_f is always locally closed. If Y is separated, then Γ is a closed subvariety.

Corollary 2. If X is irreducible and Y is separated and $f, g : X \to Y$ agree on a nonempty open set, then f = g.

Proof. Suppose f, g agree on a nonempty open set $U \subseteq X$. Then $\Gamma_f|_U = \Gamma_g|_U$, and taking closures gives that $\Gamma_f = \overline{\Gamma_f|_U} = \overline{\Gamma_g|_U} = \Gamma_g$. Therefore, f = g.

Corollary 3. Suppose X is irreducible, Y is separated, U is a nonempty open subset of X, and $f: U \to Y$ is a morphism. Then there is a maximal open subset V of X to which f extends.

MIT OpenCourseWare http://ocw.mit.edu

18.725 Algebraic Geometry Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.