HOMEWORK 4 FOR 18.725, FALL 2015 DUE TUESDAY, OCTOBER 6 BY 1PM.

(1) Let $f: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ be a finite map.
(a) Prove that $y \in \mathbb{A}^{1}$ is a ramification point iff the graph of f has an intersection with multiplicity $m>1$ with the fiber of the second projection $\mathbb{A}^{1} \times\{y\}$.
(b) Show that if the base field k has characteristic zero then f has a ramification point unless f is an isomorphism.
[In fact, this is true more generally for a finite morphism from an irreducible curve to \mathbb{A}^{1}].
(c) Show that the Artin-Schreier map $f(x)=x^{p}-x, p=\operatorname{char}(k)$ has no ramification points.
(2) For an algebraic variety X over a field k of characteristic p the Frobenius twist X^{\prime} of X is defined as follows.
$X^{\prime}=X$ as a topological space. A function f on $U^{\prime} \subset X^{\prime}$ is regular iff $f(x)=\phi(x)^{p}$ where ϕ is a regular function on $U=U^{\prime} \subset X$. The identity map $X \rightarrow X^{\prime}$ defines a morphism $\operatorname{Fr}: X \rightarrow X^{\prime}$ called the Frobenius morphism.
[Notice though that it does not define a morphism from X^{\prime} to X.]
(a) Check that if X is a closed subvariety in \mathbb{A}^{n} or \mathbb{P}^{n} whose ideal is generated by polynomials with coefficients in \mathbb{F}_{p}, then $X^{\prime} \cong X$. Moreover, we have an isomorphism such that that composition $X \xrightarrow{F r} X^{\prime} \cong X$ is given by $\left(x_{i}\right) \mapsto\left(x_{i}^{p}\right)$.
(b) Let X be a normal irreducible variety of dimension n. Prove that $F r: X \rightarrow X^{\prime}$ is finite, find its degree and prove that every point is its ramification point.
[Hint: reduce to the case of $X=\mathbb{A}^{n}$].
(c) Describe the intersection points of the graph of Frobenius $F r: \mathbb{A}^{1} \rightarrow$ \mathbb{A}^{1} with the diagonal and check that each one has multiplicity one.
(3) Let X be the line with a double point at zero, thus we have a map $X \rightarrow \mathbb{A}^{1}$ which is an isomorphism over $\mathbb{A}^{1} \backslash\{0\}$ and the preimage of 0 consists of two points.
(a) Let $Y=\mathbb{A}^{2} \backslash\{0\}$. Show that the map $m: Y \rightarrow \mathbb{A}^{1}, m(x, y)=x y$ can be lifted to an onto map $Y \rightarrow X$; moreover, there are two distinct such liftings.
(b) Describe the closure of the diagonal in X^{2} and X^{3}. More precisely, define a map from that closure to \mathbb{A}^{1}, which is an isomorphism over $\mathbb{A}^{1} \backslash\{0\}$ and count the number of points in the preimage of zero.
(4) $X \subset \mathbb{A}^{n+1}$ is the zero set of a polynomial P which is irreducible and has the form $P=P_{d}+P_{d+1}$ where P_{d}, P_{d+1} are nonzero homogeneous polynomials of degrees $d, d+1$ respectively. Prove that X is birationally equivalent to \mathbb{A}^{n}.

MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

