HOMEWORK 4 FOR 18.725, FALL 2015 DUE TUESDAY, OCTOBER 6 BY 1PM.

- (1) Let $f : \mathbb{A}^1 \to \mathbb{A}^1$ be a finite map.
 - (a) Prove that $y \in \mathbb{A}^1$ is a ramification point iff the graph of f has an intersection with multiplicity m > 1 with the fiber of the second projection $\mathbb{A}^1 \times \{y\}$.
 - (b) Show that if the base field k has characteristic zero then f has a ramification point unless f is an isomorphism.[In fact, this is true more generally for a finite morphism from an
 - irreducible curve to A¹].
 (c) Show that the Artin-Schreier map f(x) = x^p x, p = char(k) has no ramification points.
- (2) For an algebraic variety X over a field k of characteristic p the Frobenius twist X' of X is defined as follows.

X' = X as a topological space. A function f on $U' \subset X'$ is regular iff $f(x) = \phi(x)^p$ where ϕ is a regular function on $U = U' \subset X$. The identity map $X \to X'$ defines a morphism $Fr : X \to X'$ called the *Frobenius morphism*.

[Notice though that it does *not* define a morphism from X' to X.]

- (a) Check that if X is a closed subvariety in \mathbb{A}^n or \mathbb{P}^n whose ideal is generated by polynomials with coefficients in \mathbb{F}_p , then $X' \cong X$. Moreover, we have an isomorphism such that that composition $X \xrightarrow{Fr} X' \cong X$ is given by $(x_i) \mapsto (x_i^p)$.
- (b) Let X be a normal irreducible variety of dimension n. Prove that $Fr: X \to X'$ is finite, find its degree and prove that every point is its ramification point.

[Hint: reduce to the case of $X = \mathbb{A}^n$].

- (c) Describe the intersection points of the graph of Frobenius $Fr : \mathbb{A}^1 \to \mathbb{A}^1$ with the diagonal and check that each one has multiplicity one.
- (3) Let X be the line with a double point at zero, thus we have a map $X \to \mathbb{A}^1$ which is an isomorphism over $\mathbb{A}^1 \setminus \{0\}$ and the preimage of 0 consists of two points.
 - (a) Let $Y = \mathbb{A}^2 \setminus \{0\}$. Show that the map $m : Y \to \mathbb{A}^1$, m(x, y) = xy can be lifted to an onto map $Y \to X$; moreover, there are two distinct such liftings.
 - (b) Describe the closure of the diagonal in X² and X³. More precisely, define a map from that closure to A¹, which is an isomorphism over A¹ \ {0} and count the number of points in the preimage of zero.
- (4) $X \subset \mathbb{A}^{n+1}$ is the zero set of a polynomial P which is irreducible and has the form $P = P_d + P_{d+1}$ where P_d , P_{d+1} are nonzero homogeneous polynomials of degrees d, d+1 respectively. Prove that X is birationally equivalent to \mathbb{A}^n .

18.725 Algebraic Geometry Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.