Lecture 8: Product Topology, Complete Varieties

To check that \mathbb{P}^{n} is separated, we used an affine covering of \mathbb{P}^{n} as $\cup \mathbb{A}_{i}^{n}$. Instead, we could have checked that the preimage of $\Delta \subseteq \mathbb{P}^{n} \times \mathbb{P}^{n}$ in $\left(\mathbb{A}^{n+1} \backslash 0\right)^{2}$ is closed; this is given by the equation $X \wedge Y=0$ (recall that $\mathbb{P}^{n}=\left(\mathbb{A}^{n+1} \backslash 0\right) / k^{\times}$.

Remark 1. We have that X is Hausdorff if and only if the diagonal in X^{2} is closed with respect to the product topology, and not the Zariski topology.

Corollary 1. If $k=\mathbb{C}$, then X is separated iff and only if X_{cl} (which is X with the classical topology coming from \mathbb{C}) is Hausdorff.

Proof. Let X be a variety over k, and $Z \subseteq X$ be a Zariski locally closed subset. We claim that Z is Zariski closed if and only if it is classically closed. To see this, it suffices to check that if Z is Zariski locally closed and classically closed, then it is Zariski closed. Note that Z is Zariski open in $\overline{Z_{\mathrm{Zar}}}$, and so it is open dense in $\overline{Z_{\mathrm{cl}}}$, so $\overline{Z_{\mathrm{Zar}}}=\overline{Z_{\mathrm{cl}}}$. Since the diagonal Δ is Zariski locally closed, we are done.

Remark 2. The image of a morphism may not be a subvariety. For example, take the map from \mathbb{A}^{2} to itself induced by the polynomial mapping $k[a, b] \rightarrow k[x, y]$, $a \mapsto x, b \mapsto x y$. The image is $\{a \neq 0\} \cup\{(0,0)\}$. It is not a subvariety, but it will be a constructible subset (this is Chevalley's Theorem, which will be proven later). Suppose X, Y are irreducible and $f: X \rightarrow Y$ is a morphism. Then either $f(X)$ is contained in a closed subset $Z \supsetneq Y$, or $f(X)$ contains an open dense subset U.

Proposition 1. X is separated if and only if for any affine open $U, V \subseteq X, U \cap V$ is affine and $k[U \cap V]$ is generated by $k[U]$ and $k[V]$.

Proof. Consider an open $U \times V \subseteq X \times X$ where U, V are open subsets in X. Since X is separated, the intersection of diagonal with $U \times V$ is closed in $U \times V$; furthermore, this intersection equals $U \cap V$. As $U \times V$ is affine and $U \cap V$ is closed, we see that $U \cap V$ is affine. We also have $k[U] \otimes k[V]=k[U \times V] \rightarrow k[U \cap V]$.

For the converse, the second condition implies that $(U \times V) \cap \Delta$ is closed in $U \times V$, so Δ is closed.
Example 1. Let X be the affine line with a doubled origin, with the usual affine open covering $U \cup V$ where $U=\mathbb{A}_{1}^{1}, V=\mathbb{A}_{2}^{1}$. Then this covering corresponds to $k\left[t_{1}, t_{2}\right] \mapsto k\left[t, t^{-1}\right]$ where $t_{1}, t_{2} \mapsto t$. This is not surjective.

Consider X to now be the affine plane with a doubled origin, with affine open covering $U \cup V$ where $U=\mathbb{A}_{1}^{2}, V=\mathbb{A}_{2}^{2}$. In this case, $U \cap V=\mathbb{A}^{2} \backslash\{0\}$ is not affine.

Also, we checked last time that for Y separated, $f: X \rightarrow Y$ is determined by $\left.f\right|_{U}$ where U is a dense open subset of X.

Proposition 2. (Caternary property). Let X be an algebraic variety, with $X=Z_{n} \supsetneq Z_{n-1} \supsetneq \cdots \supsetneq Z_{0}$ where each Z_{i} is closed irreducible. If this chain cannot be refined, then $\operatorname{dim} Z_{i}=i$.

Proof. Theorem 2.6.7 of [K].
Now we consider "dimension and rate of growth." Let A be a finitely generated k-algebra. Let V be the space of generators. Set $V_{n}=\operatorname{span}\left\{x_{1} \cdots x_{k}: x_{i} \in V, k \leq n\right\}$ and $D_{V}(n)=\operatorname{dim} V_{n}$. The asymptotic behavior of $D_{V}(n)$ actually does not depend on V. For if $V^{\prime} \subseteq V_{d}$, then $D_{V^{\prime}}(n) \leq D_{V}(n d)$.
Proposition 3. If $A=k[X]$ where X is affine of dimension d, then $D_{V}(n)=\Theta\left(n^{d}\right)$; that is, there exist constants c^{\prime}, c such that for all n,

$$
\begin{equation*}
c^{\prime} n^{d} \leq D_{V}(n) \leq c n^{d} \tag{}
\end{equation*}
$$

Proof. Suppose $B \subseteq A$ and A is finite over B. If $\left({ }^{*}\right)$ holds for B, then it holds for A. Given V_{B} to be generators for $B, V_{A}=V_{B} \cup W$ where W are generators for A as a B-module, note each $x \in W$ satisfies an equation of the form $x^{r}=b_{r-1} x^{r-1}+\cdots+b_{0}$ for $b_{i} \in B$. We can assume without loss of generality that $b_{i} \in V_{B}$. Then $D_{V_{B}}(n) \leq D_{V_{A}}(n) \leq D_{V_{B}}(n) \cdot c$ where $c=r^{\operatorname{dim} W}$. Setting $B=k\left[x_{1}, \cdots, x_{d}\right]$, an explicit computation gives a polynomial in n of degree d.

Remark 3.

(1) The order of growth function has been used to generalized the concept of dimension to noncommutative algebras, groups etc. in the works of Artin, Gromov and others.
(2) In our commutative setting the function $D_{V}(n)$ can in fact be analyzed much more precisely. It turns out that for large n we have $D_{V}(n)=P(n)$ for a certain polynomial P. It is closely related to the so called Hilbert polynomial, to be described in 18.726.

Theorem 1.1. Suppose X, Y are irreducible subvarieties in \mathbb{A}^{n}. Then each component of $X \cap Y$ has codimension at most $\operatorname{codim} X+\operatorname{codim} Y$.

Proof. Rewrite $X \cap Y=(X \times Y) \cap \Delta_{\mathbb{A}^{n}} \subseteq \mathbb{A}^{n} \times \mathbb{A}^{n}$. From last time, $\operatorname{dim}(X \times Y)=\operatorname{dim} X+\operatorname{dim} Y$. The diagonal in affine space is cut out by the n linear equations $x_{i}=y_{i}$. By a theorem of last time we know that each component of $Z_{f} \subseteq X$ has dimension equal to $\operatorname{dim} X-1$, so $\operatorname{dim}(X \cap Y) \geq \operatorname{dim}(X \times Y)-n=$ $\operatorname{dim} X+\operatorname{dim} Y-n$.

Remark 4. This theorem doesn't exclude empty intersections. The obvious example is the intersection of subvarieties $x_{1}=0$ and $x_{1}=1$.

Theorem 1.2. The previous theorem holds for $X, Y \subseteq \mathbb{P}^{n}$; moreover, the intesection $X \cap Y$ is nonempty if $\operatorname{dim} X+\operatorname{dim} Y>n$.

Proof. Here is a lemma: the dimension of C_{X} (the cone over X) equals $\operatorname{dim} X+1$. To see this, note that $C_{X} \cap\left\{x_{i}=1\right\}$ is isomorphic to $U_{i}=X \cap \mathbb{A}_{i}^{n} \subseteq X$, and from this it is a straightforward exercise to complete the proof of this lemma.

Using this, the proof of the theorem goes as follows: $\operatorname{dim}(X \cap Y)=\operatorname{dim} C_{X \cap Y}-1=\operatorname{dim}\left(C_{X} \cap C_{Y}\right)-1 \geq$ $\operatorname{dim} C_{X}+\operatorname{dim} C_{Y}-(n+1)-1=\operatorname{dim} X+\operatorname{dim} Y-n$. The intersection of cones is nonempty as it contains 0 .

Complete varieties

Definition 1. A variety X is complete if it is separated and universally closed, which means that for all Y, the projection map $Y \times X \rightarrow Y$ sends closed sets to closed sets.

We will see that for $k=\mathbb{C}, X$ is complete if and only if X_{cl} is compact. Also, if X is quasiprojective, we will see that complete is equivalent to projective. For the forward direction, suppose $\iota: X \hookrightarrow \mathbb{P}^{n}$ is locally closed. Then X is in the image of the closed embedding $\Gamma_{\iota} \hookrightarrow X \times \mathbb{P}^{n}$, so $X \subseteq \mathbb{P}^{n}$ is closed.

Lemma 1.

(i) Suppose Z is closed in X. Then X is complete implies Z is complete.
(ii) If $f: X \rightarrow Z$ is a morphism with Z separated and X complete, then $f(X) \subseteq Z$ is a closed complete subvariety.
(iii) If X, Y are complete, then so is $X \times Y$.

Proof. (i) We see that $Y \times Z$ is closed in $Y \times X$, so by considering the projection to Y, this is clear.
(ii) Identify $f(X)$ with Γ_{f} in $X \times Z$. As X, Z are separated, so is $X \times Z$. As Γ_{f} is a closed subvariety of $X \times Z$, it is also separated (for these facts, see Lemma 3.3.2 of $[\mathrm{K}]$). Hence $f(x)$ is separated.
To check that $f(X)$ is universally closed, take a variety Y and closed subset $T \subseteq f(X) \times Y$. It suffices to check that the image of T in Y is closed. Consider the map $f \times \mathrm{id}: X \times Y \rightarrow f(X) \times Y$, and let $\widetilde{T}=(f \times \mathrm{id})^{-1}(T) \subseteq X \times Y$. Then it suffices to check that the image of \widetilde{T} under the projection $X \times Y \rightarrow Y$ is closed, which follows from X being complete.
(iii) As X, Y are both separated, so is $X \times Y$ (Lemma 3.3.2 of [K]).

Let Z be any variety and $T \subseteq X \times Y \times Z$ closed. As X is universally closed, the image of T in $Y \times Z$ is closed. As Y is universally closed, the image of T in Z is closed. Hence, $X \times Y$ is universally closed.

Proposition 4. \mathbb{P}^{n} is complete.
Proof. We know \mathbb{P}^{n} is separated (Lemma 3.3 .2 of $[\mathrm{K}]$), so it suffices to check that it is universally closed.
We use an "elimination theory" argument. Let Y be any variety and $Z \subseteq \mathbb{P}^{n} \times Y$ be a closed subset. Then Z comes from a closed subset $\widetilde{Z} \subseteq \mathbb{A}^{n+1} \times Y$. Suppose $I_{\widetilde{Z}}$, the ideal of functions vanishing on \widetilde{Z}, is generated by some homogeneous polynomials $P_{i} \in k[Y]\left[x_{0}, \cdots, x_{n}\right]$. For $y \in Y$, let $P_{i, y}=P_{i}(y,-) \in k\left[x_{0}, \cdots, x_{n}\right]_{d}$ for some d (this is the degree d homogeneous polynomials). Then $\left(P_{i, y}\right)$ is an ideal of $k\left[x_{0}, \cdots, x_{n}\right]$, so we let $U_{d}=\left\{y \in Y:\left(P_{i, y}\right) \supseteq k\left[x_{0}, \cdots, x_{n}\right]_{d}\right\}$. Letting $\operatorname{pr}(Z)$ be the image of Z in $\mathbb{P}^{n} \times Y \rightarrow Y$, we see that $y \notin \operatorname{pr}(Z)$ iff there is no point $\left(x_{0}, \cdots, x_{n}\right)$ which makes all of the $P_{i, y}$ vanish, iff it lies in some U_{d}. Therefore, $Y \backslash \operatorname{pr}(Z)=\cup_{d} U_{d}$. It is enough to check that each U_{d} is open, which is equivalent to checking that the natural map $\oplus_{i} k\left[x_{0}, \cdots, x_{n}\right]_{d-d_{i}} \rightarrow k\left[x_{0}, \cdots, x_{n}\right]_{d}$ (where d_{i} is the degree of P_{i}) defined by sending $\left(g_{i}\right) \mapsto \sum g_{i} P_{i, y}$ is surjective. This is equivalent to requiring that some matrix with $k[Y]$-entries, when evaluated at y, has maximal rank, which is some condition of non-vanishing of minors. So it is an open condition.

So projective varieties are complete, and a quasiprojective variety is complete if and only if it is projective.

MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

