
MIT OpenCourseWare
http://ocw.mit.edu 

18.726 Algebraic Geometry 
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) 
Projective morphisms, part 2 (updated 7 Mar 09) 

I particularly recommend Eisenbud-Harris for the material in this section; they give a 
complete description of the relationship between the two descriptions of a blowup (using 
charts versus relative Proj). 

1 Relative Proj 

Let X be a scheme. Let S = �� 
n=0Sn be a graded quasicoherent OX -algebra. For each open 

affine U in X, we can form the morphism Proj S(U) � U ; these glue to give a morphism 
Proj S � X. The object Proj S is called the relative Proj of S. 

We will hereafter assume that S1 is finitely generated (remember that this is a local 
notion), and that S is (locally) generated by S1 as a S0-algebra. We also assume that S0 is a 
quotient of OX ; Hartshorne assumes that in fact S0 = OX , but I’d rather not do that. Pick 
an open affine subset U of X and a surjection OU 

�(m+1) 
� S1|U ; we then obtain a surjection 

Sym OU 
�(m+1) 

� S|U , where 

Sym OU 
�(m+1) 

= �� 
n=0 Symn OU 

�(m+1) 
. 

This in turn gives a closed immersion Proj S � Proj Sym OU 
�(m+1)

, and the latter is nothing 
but the projective space Pn Consequently, Proj S � X is locally projective. U . 

We say that a morphism f : Y � X is projective if and only if it occurs as a relative Proj. 
This implies locally projective and is implied by globally projective, but does not coincide 
with either. 

Following EGA, we write P(F) for Proj Sym F whenever F is a finitely generated qua
sicoherent OX -module. 

2 Very ample sheaves 

An immersion is a morphism f : Y � X of schemes which on topological spaces is an 
isomorphism of Y with a locally closed subset (i.e., a closed subset of an open subset) of X, 
such that for each y ⊕ Y mapping to x ⊕ X, the map f � : OX,x � OY,y is surjective. Any 
composition of closed immersions and open immersions is an immersion; conversely, if f is 
an immersion, then it can be written as a closed immersion followed by an open immersion. 
(Let U be an open subset of X in which Y is closed; then f factors uniquely through the 
open immersion U � X, and the resulting map Y � U satisfies Hartshorne’s definition of 
a closed immersion.) 

Let f : Y � X be a morphism. A quasicoherent sheaf F on Y is very ample relative to f 
if there exists an immersion Y � P(S1) for some finitely generated quasicoherent OX -module 
S1, under which F occurs as the pullback of O(1). Unlike the definition of projectivity, this 
notion is indeed local on the base. 
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Lemma. The morphism f : Y � X is projective if and only if f is proper and there exists 
a very ample sheaf relative to f . 

Proof. See Hartshorne, Remark II.5.16.1. 

The very ample sheaf pulled back from O(1) can be used to retrieve the morphism to 
P(S1). Namely, if S1 is globally finitely generated, any set of generators pull back to sections 
of the pullback of O(1), and those define a morphism to projective space. See Hartshorne 
Theorem II.7.1. 

3 Blowups 

Here is a neat class of examples of relative Proj. Let I be a finitely generated ideal sheaf on 
the scheme X, and put Y = P(I). We call Y the blowup of X along I. 

For example, say X = Spec k[x, y] for k a field, and let I be the ideal sheaf defined by 
(x, y). Over U = D(x) ∼ D(y), we have an isomorphism I|U = OU , so Y ×X U � U is an 
isomorphism. But the fibre over the origin looks like a projective line with homogeneous 
coordinates x, y. 

The blowup defined by I carries less information than I itself. For instance, for any 
locally principal ideal sheaf, the blowup defined by I is the identity. 

Here is a special property of the blowup. For f : Y � X a morphism and I an ideal sheaf 
on X, we may compose the inclusion I � OX with f � : OX � f�(OY ) and then perform 
adjunction to get f �I � OY . The image is an ideal sheaf on Y , called the inverse image 
ideal sheaf of I under f . 

Theorem 1. If f : Y � X is the blowup defined by the finitely generated ideal sheaf I on 
X, then the inverse image ideal sheaf of I on Y is locally principal. 

Proof. Recall that Y = Proj S for Sn = Symn I. In this notation, the inverse image ideal 
sheaf of I on Y is simply OY (1), which is locally free. This proves the claim. 

In fact, f is universal for this property: any morphism Z � X such that the inverse 
image ideal sheaf of I on Z is locally principal factors uniquely through f (Hartshorne, 
Proposition II.7.14). 

More concrete description of the standard example: the blowup of Spec k[x, y] at (x, y) 
is covered by the two charts 

Spec k[x, y/x] Spec k[y, x/y] 

glued along Spec k[x, y, x/y, y/x]. In fact, any blowup can be described analogously: the 
blowup of Spec A along I = (r0, . . . , rm) is covered by m + 1 charts, a typical one of which is 

Spec A[t1, . . . , tm](t1r0 − r1, . . . , tmr0 − rm). 

The point is that the inverse image ideal sheaf is supposed to become locally principal, so you 
must force one of the generators r0, . . . , rm to divide into the other ones, and the different 
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choices for which generator will divide into the others produces the different charts. (Explicit 
description of the other charts and the glueing is left to the reader.) 

A blowup is a special example of a modification. The latter is a morphism f : Y � X 
of schemes which is proper, surjective, and birational (i.e., its restriction to an open dense 
subset of X is an isomorphism). In the case of a blowup defined by an ideal sheaf, we 
get an isomorphism over the complement of the closed set defined by the ideal. In fact, 
under certain circumstances, every modification can be written as a blowup; see Hartshorne 
Theorem II.7.17. The catch is that the ideal sheaf is not unique; for example, on Spec k[x, y], 
the ideals (x, y) and (x2, xy, y2) define the same blowup. 

4 Chow’s lemma 

One use of modifications is to turn proper schemes (over some base) into projective schemes. 

Theorem 2 (Chow’s lemma). Let f : X � S be a morphism of finite type. Assume that 
either S is noetherian, or S is quasicompact and X has finitely many irreducible components. 
Then there exists a quasiprojective S-scheme X ∗ and a projective surjective morphism f : 
X ∗ � X which restricts to an isomorphism over some open U → X such that f −1(U) �= U is 
dense in X ∗ . Moreover, if X is reduced/irreducible/integral, we can ensure that X ∗ is also. 

See EGA 2, Lemme 5.6.1, or for a weaker result, Hartshorne exercise II.4.10. 
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