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18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) 
Homological algebra (updated 8 Apr 09) 

We now enter the second part of the course, in which we use cohomological methods to 
gain further insight into the theory of schemes. To start with, let us recall some of the basics 
of homological algebra. The original reference for derived functors is the book Homological 
Algebra of Cartan and Eilenberg, and for cohomological functors is Grothendieck’s article 
Sur quelques points d’algèbre homologique; however, any good modern book on homolog
ical algebra (e.g., Weibel, An Introduction to Homological Algebra) should suffice. (It is 
worth keeping in mind Lang’s suggested exercise in homological algebra: take any book on 
homological algebra, read the statements of the theorems, and prove them all yourself.) 

1 Abelian categories 

We saw once before the notion of an abelian category. This is a category C in which each 
homset has the structure of an abelian group in a manner compatible with composition, 
with some additional restrictions designed to make things well-behaved. Let’s recall some 
of these. First of all, there must exist biproducts, i.e., for any nonnegative integer n and 
any objects X1, . . . , Xn in C, there must exist an object Y and morphisms ιi : Xi → Y and 
πi : Y → Xi for i = 1, . . . , n such that Y is the product of the Xi (using the πi) and the 
coproduct of the Xi (using the ιi), and

�
i

n 

=1 ιi ◦ πi = 1. 
Also, each morphism must have a kernel and a cokernel. A kernel of the morphism 

f : X → Y to be a limit of the diagram 

X 0 ������� ��
��

��
�� 

Y 

We write Ker(f) for the domain of a kernel. Similarly, a cokernel of f is a colimit of 

X 

��
��

��
�� �������� 

Y 0 

We write Coker(f) for the codomain of a cokernel. 
Finally, we insist that every monomorphsm be the kernel of its cokernel, and every 

epimorphism be the cokernel of its kernel. 
Examples: 

1. Ab, the category of abelian groups. 

2. ModR, the category of modules over a ring. We can drop our running commutativity 
hypothesis if we choose to work with, say, left modules. 
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3. The category of sheaves on a fixed topological space with values in another abelian 
category. 

I recommend just thinking about the case of abelian groups. The Freyd-Mitchell embedding 
theorem implies that most things you prove about an abelian category can be deduced from 
the case of abelian groups, where you can use “diagram-chasing” arguments. 

2 Complexes and exact sequences 

Throughout this section, all objects are in a particular abelian category C. 
A sequence of morphisms 

→ Ci−1 d
i−1 

→ Ci+1 → Ci di 

· · · → · · · 

is a complex if the composition of any two of the arrows is zero, i.e., di ◦ di−1 = 0 for all 
i. Note that I number the objects so that the arrows point in the increasing direction; 
this is called a cohomological grading. If I numbered things the other way, I would have a 
homological grading. I will mostly talk about the cohomological grading because that is what 
is most convenient for algebraic geometry. (In a homological grading, you usually write with 
subscripts instead of superscripts, i.e., di : Ci → Ci−1.) 

The i-th cohomology of a complex C ·, denoted hi(C ·), is defined as 

hi(C · ) = 
ker(di) 

. 
im(di−1) 

·We say that C is exact if hi(C ·) = 0 for all i. 
A morphism of complexes f · : C · → D· is a commutative diagram 

· · · �� Ci−1 di−1 
�� Ci di 

�� Ci+1 �� · · · 

f i−1 f i f i+1 

· · · 
��

�� Di−1 di−1 ��
�� Di di ��

�� Di+1 �� · · · 

With this definition, we obtain a category of complexes with values in C; this is again an 
abelian category (exercise). 

Any morphism f · : C · → D· induces maps 

f i : hi(C ·) → hi(D·) 

for each i. We say f is a quasi-isomorphism (or quasiisomorphism, but I’ll spare you the 
doubled vowel) if each f i is an isomorphism; for example, this occurs if f is homotopic to 
the zero map in the following sense. Given two maps f · , g · : C · → D· , we say that f and g 
are homotopic if there exist a sequence of maps 

ki : Ci → Di−1 
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such that 
ki+1 ◦ di + di−1 ◦ ki = f − g; 

this is obviously an equivalence relation. It is an exercise to show that this implies that f 
and g induce the same maps hi(C ·) → hi(D·). (The collection of maps ki are called a chain 
homotopy between f and g.) Important: the fact that a morphism is a quasi-isomorphism is 
not stable under applying functors, but the fact that two morphisms are homotopic is stable 
under applying functors because it is arrow-theoretic. (This should remind you of the fact 
that a sequence being exact is not stable under applying functors, but it being a complex is 
stable.) 

The homology functors don’t quite capture as much information as possible, just as 
passing from a filtered object to its associated graded object loses information. A better 
construction is that of the derived category of complexes with values in C; in this construction, 
one formally inverts all quasi-isomorphisms. This is not completely straightforward, and I 
won’t talk about it more just now. 

3 The long exact sequence in cohomology 

Let 
0 → C · → D· → E· → 0 

be a short exact sequence of complexes, i.e., a diagram 

. . . . . . . . . 

0


0


�� �� ��
�� Ci−1 

di−1 

��

�� Di−1 

di−1 

��

�� Ei−1 

di−1 

��
�� Ci 

di 

��

�� Di 

di 

��

�� Ei 

di 

��
�� Ci+1 

��

�� Di+1 

��

�� Ei+1 

��

0 

0 

00


. . . . . . . . . 

in which the rows are exact, and the columns are complexes. As was shown in a previous 
exercise, this leads to a long exact sequence 

δi−1 

· · · → hi−1(C ·) → hi−1(D·) → hi−1(E·) → hi(C ·) → hi(D·) → hi(E·) → · · · 

in which the maps h·(C ·) → h·(D·) and h·(D·) → hi−1(E·) are the obvious induced ones, 
and the maps δi are the connecting homomorphisms. (Recall the definition of δi: given an 
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element x in Ei−1 representing a class in hi−1(E·), use exactness in the row to lift x to 
y ∈ Di−1 . Then the image of di−1(y) in Ei equals di−1(x) = 0, so di−1(y) lifts to z ∈ Ci . 
The image of di(z) in Di+1 equals di(di−1(y)) = 0, so z represents a class in hi(C ·). The fact 
that this class is well-defined independent of choices, and that the resulting map δi makes 
the long sequence exact, were part of the earlier exercise.) 

4 Cohomological functors 

Let F : C1 → C2 be an additive covariant functor between abelian categories. Recall that F 
is left exact if for any exact sequence 

0 → A1 → A2 → A3 

the sequence 
0 → F (A1) → F (A2) → F (A3) 

is exact. The functor is right exact if for any exact sequence 

A1 → A2 → A3 → 0 

the sequence 
F (A1) → F (A2) → F (A3) → 0 

is exact. The functor is exact if it is both left exact and right exact; equivalently, for any 
exact sequence 

0 → A1 → A2 → A3 → 0 

the sequence 
0 → F (A1) → F (A2) → F (A3) → 0 

is exact. This implies that F preserves exact sequences of any length. 
Many interesting functors in mathematics are left or right exact but not exact. For 

example, for C an abelian category and X an object, the functor Hom(X, ·) carrying Y to 
Hom(X, Y ) is left exact. (We saw this previously for ModR but it holds in general.) We 
would like to be able to quantify the failure of a functor to be exact; our ability to do this is 
aided by the presence of objects on which the functor behaves well. For instance, in ModR, 
the functor X ⊗R · behaves badly on a general exact sequence. However, if 

0 → Y1 → Y2 → Y3 → 0 

is a short exact sequence in which Y3 is a flat R-module, then it can be shown that 

0 → X ⊗ Y1 → X ⊗ Y2 → X ⊗ Y3 → 0 

is again exact. For instance, this holds if Y3 is a free R-module. 
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Assume now that F is a left exact functor. The idea now is to replace the single bad 
object X first with the complex 0 → X → 0 → · · · , then with a quasi-isomorphic complex 

0 → X0 → X1 → · · · 

of good objects. If we can lift short exact sequences of maps to short exact sequences of these 
resolving complexes, we can then use the long exact sequence in cohomology to quantify the 
failure of right exactness. Namely, our short exact sequence 

0 → A → B → C → 0 

will be replaced by a short exact sequence of complexes 

0 → A· → B· → C · → 0. 

If we have chosen the good objects well, then 

0 → F (A·) → F (B·) → F (C ·) → 0 

will still form a short exact sequence of complexes, and its long exact sequence in homology 

δ0 

0 → h0(F (A·)) → h0(F (B·)) → h0(F (C ·)) → h1(F (A·)) · · · 

will tell us something useful. What we really want is that h0(F (A·)) = A and so forth, so 
that this long exact sequence fills in the gap left at the right end of the exact sequence 

0 → F (A) → F (B) → F (C). 

To quantify this notion, we define a cohomological functor (or δ-functor ) between abelian 
categories C1 and C2 to be a sequence of functors 

T i : C1 → C2 (i = 0, 1, . . . ) 

plus for each short exact sequence 0 → A → B → C → 0 in C1 a morphism δi : T i(C) → 

T i+1(A) functorial in the sequence (I’ll let you draw the diagram), such that the sequence 

δ0 δ1 

0 → T 0(A) → T 0(B) → T 0(C) → T 1(A) → T 1(B) → T 1(C) → T 2(A) → · · · 

is exact. A cohomological functor is universal if given any other cohomological functor U and 
a natural transformation f 0 : T 0 → U0, there is a unique sequence of natural transformations 
f i : T i → U i starting with f 0 which commute with the δi . Given T 0, any two extensions of 
it to a universal cohomological functor are naturally isomorphic. 

This notion does not become useful without a criterion for checking whether a cohomo
logical functor is universal. Here is one. A functor F : C1 → C2 between abelian categories 
is effaceable if for any A ∈ C1, there is a monomorphism u : A → B with F (u) = 0. I like 
to think of this in the following way. Most of the time, we deal with functors which are 
kind of “monotonic”, in the sense that under some appropriate hypothesis, the bigger the 
input object into the functor, the bigger the output object. Effaceable functors are quite the 
opposite! 
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·Theorem (Grothendieck). Let T : C1 → C2 be a cohomological functor such that T i is 
effaceable for each i > 0. Then T is universal.


Proof. Here’s how to construct the natural transformation from T i to U i . Given an object

A and an index i > 0 such that we know the existence and uniqueness of the natural

transformation for indices less than i, choose a monomorphism u : A → B with T i(u) = 0.

Then form the long exact sequence 0 → A → B → C → 0, apply both cohomological

functors, and use the equality u = 0 to truncate the upper one:


T i−1(A) T i−1(B) T i−1(C) T i(A)
δi−1 

0 

? 

U i−1(A) �� U i−1(B) �� U i−1(C)
δi−1 

�� U i(A) 

An easy diagram chase shows that there is a unique arrow T i(A) → U i(A) making the 
diagram commute. It remains to check that: 

• the arrow T i(A) → U i(A) does not depend on the choice of u; 

• these arrows form a natural transformation. 

We leave these verifications as an exercise. 

A typical case is when each object A ∈ C1 admits a monomorphism u : A → B in which B 
is acyclic for T , that is, T i(B) = 0 for i > 0. These objects are good in the sense considered 
above. 

Theorem (Acyclic resolution theorem). Let T · : C1 → C2 be a universal cohomological 
functor. Given J ∈ C1, suppose 0 → A0 → A1 → · · · is a complex in C1 with each A· acyclic, 

∼h0(A·) = J , and hi(A·) = 0 for i > 0. (That is, this complex is an acyclic resolution of J .) 
∼Then for each i ≥ 0, there is an isomorphism T i(h0(A·)) = hi(T 0(A·)) which is functorial in 

the input data. 

5 Derived functors 

We are now ready to make some universal cohomological functors. Unfortunately, we are in 
a bit of a jam: we would like to define them using acyclic resolutions, but the definition of 
an acyclic object depends on the definition of the cohomological functor. We get out of this 
vicious circle by identifying some objects which are always acyclic. 

An object X in an abelian category C is injective if the functor Hom(·, X) : Cop → Ab is 
exact. Since this functor is already left exact, it is enough to require something weaker: if 
0 → Y → Z is a monomorphism, then for any morphism Y → X we can find some morphism 
Z → X fitting into the diagram: 

0 �� Y �� Z 

�� ��
�

�

� 

X 
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For instance, in Ab, an object X is injective if and only if it is divisible, i.e., the multiplication
by-n maps for each positive integer n are all surjective. You might be more familiar with the 
dual notion: an object X in an abelian category C is projective if the functor Hom(X, ·) : 
C → Ab is exact. In ModR, any free module is projective; in fact, a module is projective if 
and only if it is a direct summand of a free module. 

Lemma. Any short exact sequence 

0 → I → B → C → 0 

with I injective is split, i.e., there exists an arrow C → B such that C → B → C is an 
isomorphism. 

Proof. Apply the definition of injectivity to the monomorphism I → B and the arrow I → I 
to get a map B → I such that I → B → I is the identity. Then the kernel of B → I will be 
isomorphic to C. 

We once again hit a distinction between non-arrow-theoretic and arrow-theoretic condi
tions; while the property of being a short exact sequence is not preserved under an arbitrary 
additive functor, the property of being split short exact is. That is because a splitting of 
0 → A → B → C → 0 specifies a pair of endomorphisms e1, e2 : B → B whose sum is B, 
namely B → A → B and B → C → B, and conversely these endomorphisms determine the 
sequence. 

Proposition. Let T · be a cohomological functor such that T i is effaceable for i > 0 (so in 
particular it is universal). Then for any injective object I, T i(I) = 0 for i > 0. 

Proof. Choose a monomorphism u : I → B with T i(u) = 0, then form the short exact 
sequence 

0 → I → B → C → 0. 

Since this sequence splits, the resulting sequences 

0 → T j(I) → T j(B) → T j(C) → 0 

are exact for all j. Consequently, the connecting homomorphism δi−1 : T i−1(C) → T i(I) is 
zero. On the other hand, the morphism T j(I) → T j(B) is just T j(u), which is also zero. So 

δi−1 T i(u)
the exactness of the sequence T i−1(C) → T i(I) → T i(B) forces T i(I) = 0. 

This more or less forces us into the following definition. We say that the category C has 
enough injectives if for any object X there exists a monomorphism X → I with I injective. 
Then any universal cohomological functor can be computed using injective resolutions. On 
the other hand, given an object X, we can always find an injective resolution; better yet, 
given any morphism X → Y and an injective resolution of X, we can find an injective 
resolution of Y and a morphism inducing X → Y on cohomology. This suggests that we 
define the right derived functors of a left exact functor F by saying for any object X, if I · is 
an injective resolution of X, put 

RiF (X) = hi(F (I ·)). 
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Theorem. Assume that C has enough injectives. Then the previous definition gives a well-
defined cohomological functor, which is effaceable and hence universal. 

The effaceability is obvious from the fact that injectives are acyclic under this definition 
(if X is injective, use 0 → X → 0 → · · · as the injective resolution). The hard part, or 
rather the easy but tedious part, is to check that what you are writing down is really a 
well-defined cohomological functor in the first place. This is so tedious I won’t even make 
you do it as an exercise; rather, I’ve just asked you to list which compatibilities need to be 
checked in the first place, which is already a nontrivial effort. 

6 Examples 

Here are some possibly familiar examples of derived functors. Some of these admit reasonable 
explicit computations; see exercises. 

For X ∈ ModR, X ⊗· is a right exact covariant functor from ModR to ModR, hence a left 
exact covariant functor from ModR 

op to ModR 
op . The derived functors are called Tori(X, ·). 

Proposition. For X ∈ ModR, the following are equivalent. 

(a) X is flat. 

(b) Tori(X, Y ) = 0 for any i > 0 and any Y ∈ ModR. 

(c) Tor1(X, Y ) = 0 for any Y ∈ ModR. 

Proof. Given (a), the functor X ⊗ · is exact, so its derived functors are zero, proving (b). 
Given (b), (c) is trivial. Given (c), for any short exact sequence 0 → A → B → C → 0, we 
get a long exact sequence 

0 → X ⊗ A → X ⊗ B → X ⊗ C → Tor1(X, A) = 0 

so X ⊗ A is exact, proving (a). 

This is of course a totally general argument: if F is a left exact covariant functor, then 
F is exact iff RiF = 0 identically for all i > 0 iff R1F = 0 identically. 

Given that the tensor product is symmetric, one would like to identify Tori(X, Y ) with 
Tori(Y, X). However, the definition of Tor is asymmetric, so this takes a bit of thinking 
(which I’ll do using the dual language of projective resolutions and homology and lower 
indices, but you can switch back if you like). Before starting, note that at least the fact that 
Tori(X, Y ) is functorial in X (not just in Y ) is clear from the universal property of universal 
cohomological functors. 
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Let P· and Q· be projective resolutions of X and Y , respectively. Then we have a double 
complex 

. . . 
. . . 

. . . 

· · · 
�� �� ��

��

�� �� ��

�� �� ��

�� �� ��

P1 ⊗ Q1 
�� P1 ⊗ Q0 

�� P1 ⊗ Y �� 0 

· · · �� P0 ⊗ Q1 
�� P0 ⊗ Q0 

�� P0 ⊗ Y �� 0 

· · · �� X ⊗ Q1 
�� X ⊗ Q0 

�� X ⊗ Y �� 0 

0 0 0 

in which the homology of the bottom row computes Tori(X, Y ), the homology of the right 
column computes Torj(Y, X), and the other rows and columns are exact. 

∼It is now a diagram chase to check that we have canonical isomorphisms Tori(Y, X) = 
Tori(X, Y ). For instance, say I start with a class in Tor1(X, Y ) represented by x ∈ X ⊗Q1. 
Lift x to P0 ⊗Q1, then push to P0 ⊗Q0. The result maps to 0 in X ⊗Q0, so lifts to P1 ⊗Q0; 
push to P1 ⊗Y to get a class in Tor1(Y, X). (This is really an example of a spectral sequence; 
more on those a bit later.) 

Corollary. Let 0 → A1 → A2 → A3 → 0 be an exact sequence of R-modules with A3 flat. 
Then for any R-module M , 0 → M ⊗ A1 → M ⊗ A2 → M ⊗ A3 → 0 is again exact. 

Proof. We have a long exact sequence 

Tor1(M, A1) → M ⊗ A1 → M ⊗ A2 → M ⊗ A3 → 0 

but the left term can be identified with Tor1(A1, M), which vanishes because A1 is flat. 

The example of Tor is particularly important in algebraic geometry because of Serre’s 
intersection multiplicity formula. Let X be a regular excellent scheme, let Y, Z be two 
integral closed subschemes defined by the ideal sheaves I,J , and let x be the generic point 
of a component of Y ∩ Z. The näıve intersection multiplicity of Y and Z at x is 

OY ∩Z,x = OX,x/(IJ )x, 

and this gives the correct answer when dim(X) = 2, dim(Y ) = dim(Z) = 1 (meaning the 
answer that makes Bézout’s theorem work) but not in general. Serre found that the “right” 
multiplicity is 

(−1)i lengthOX,x 
Tori (OX,x/Ix,OX,x/Jx).OZ,x 

i 
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It was an open question for a long time to give a “geometric” interpretation of the Tor 
contributions in this formula; such an interpretation was recently provided by Jacob Lurie 
using derived algebraic geometry. (Roughly speaking, one replaces rings by certain topo
logical rings before applying Spec; the intersection multiplicity then appears as the Euler 
characteristic of the “derived schematic intersection”.) 

A similar example occurs using the bifunctor Hom, except that it is really a bifunctor 
from Cop → C. (Here C can be any abelian category, not just ModR.) Anyway, the right 
derived functors of Hom(X, ·) are called Exti(X, ·), and they also occur as derived functors 
of Hom(·, Y ) by the double complex argument (with arrows appropriately reversed). 

One more important example: if G is a group (considered with the discrete topology, if 
you must), let Z[G] be the group algebra of G with coefficients in Z, i.e., additively the direct 
sum ⊕g∈GZ[g] with Z-linear multiplication characterized by [g][h] = [gh]. Then the covariant 
functor ·G : Mod

Z[G] → Mod
Z computing G-invariants is left exact; its derived functors are 

called group cohomology and denoted H ·(G, M). The covariant functor · G : Mod
Z[G] → Mod

Z 

computing G-coinvariants (i.e., M maps to the quotient of M by g(m)−m for all g ∈ G and 
m ∈ M) is right exact; its derived functors are called group homology and denoted H·(G, M). 
These are actually special cases of the previous example, namely 

H ·(G, M) = Exti (Z, M), H·(G, M) = Tor 
Mod

Z[G] (Z, M).Mod
Z[G] i 

(More generally, one could replace Z with an arbitrary ring.) 
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