MIT OpenCourseWare
http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 9

LECTURES: ABHINAV KUMAR

1. Castelnuovo's Criterion for Rationality

Theorem 1. Any surface with $q=h^{1}\left(X, \mathcal{O}_{X}\right)=0$ and $p_{2}=h^{0}\left(X, \omega_{X}^{\otimes 2}\right)=0$ is rational.

Note. Every rational surface satisfies these: they are birational invariants which vanish for \mathbb{P}^{2}.

Reduction 1: Let X be a minimal surface with $q=p_{2}=0$. It is enough to show there is a smooth rational curve C on X with $C^{2} \geq 0$.

Proof. First, observe that $2 g(C)-2=-2=C \cdot(C+K)$ and $\chi\left(\mathcal{O}_{X}(C)\right)=$ $\chi\left(\mathcal{O}_{X}\right)+\frac{1}{2} C(C-K)$. Since $p_{2}=0, p_{1}=h^{0}(X, \omega)=h^{2}\left(X, \mathcal{O}_{X}\right)=0$ and $\chi\left(\mathcal{O}_{X}\right)=1$. Since $h^{2}(C)=h^{0}(K-C) \leq h^{0}(K)=0, h^{0}(C) \geq 1+\frac{1}{2} C(C-K)$, so $h^{0}(C) \geq 2+C^{2} \geq 2$. Choose a pencil inside this system containing C, i.e. a subspace of dimension 2 . The pencil has no fixed component (the only possibility is C, but C moves in the pencil): after blowing up finitely many base points, we get a morphism $\tilde{X} \rightarrow \mathbb{P}^{1}$ with a fiber isomorphic to $C \cong \mathbb{P}^{1}$. Therefore, by the Noether-Enriques theorem, \tilde{X} is ruled over \mathbb{P}^{1} and \tilde{X} is rational (as is X).

Reduction 2: Let X be a minimal surface with $q=p_{2}=0$. It is enough to show that \exists an effective divisor D on X s.t. $|K+D|=\varnothing$ and $K \cdot D<0$.

Proof. This implies that some irreducible component C of D satisfies $K \cdot C<0$. Clearly, $|K+C| \subset|K+D|$. Using Riemann-Roch for $K+C$ gives

$$
\begin{align*}
0 & =h^{0}(U+C)+h^{0}(-C)=h^{0}(K+C)+h^{2}(K+C) \\
& \geq 1+\frac{1}{2}(K+C) \cdot C=g(C) \tag{1}
\end{align*}
$$

We thus obtain a smooth, rational curve C on $X:-2=2 g-2=C(C+K)$ and $C \cdot K<0 \Longrightarrow C^{2} \geq-1$. Since X is minimal, $C^{2} \neq-1$, so $C^{2} \geq 0$ as desired.

We now prove our second statement. There are three cases:

Case $1\left(K^{2}=0\right)$: Riemann-Roch gives

$$
\begin{align*}
h^{0}(-K) & =h^{0}(-k)+h^{0}(2 K)=h^{0}(-K)+h^{2}(-K) \\
& \geq 1+\frac{1}{2} K \cdot 2 K=1+K^{2}=1 \tag{2}
\end{align*}
$$

so $|-K| \neq \varnothing$. Take a hyperplane section H of X. Then there is an $n \geq 0$ s.t. $|H+n K| \neq \varnothing$ but $|H+(n+1) K|=\varnothing$. Since $-K \sim$ an effective nonzero divisor, $H \cdot K<0$ and $H \cdot(H+n K)$ is eventually negative and $H+n K$ is not effective. Let $D \in|H+n K|:$ then $|D+K|=\varnothing$ and $K \cdot D=K(H+n K)=$ $K \cdot H<0$ since $-K$ is effective, H very ample.

Case $2\left(K^{2}<0\right)$: it is enough to find an effective divisor E on X s.t. $K \cdot E<0$. Then some component C of E will have $K \cdot C<0$. The genus formula gives $-2 \leq 2 g-2=C(C+K) \Longrightarrow C^{2} \geq-1 . C^{2}=-1$ is impossible since X is minimal, so $C^{2} \geq 0$. Now $(C+n K) \cdot C$ is negative for $n \gg 0$, so $C+n K$ is not effective for $n \gg 0$ by the useful lemma. So $\exists n$ s.t. $|C+n K| \neq \varnothing$ but $|C+(n+1) K|=\varnothing$. Choosing $D \in|C+n K|$ gives the desired divisor.

We now find the claimed E. Again, let H be a hyperplane section: if $K \cdot H<0$, we can take $E=H$; if $K \cdot H=0$, we can take $K+n H$ for $n \gg 0$; so assume $K \cdot H>0$. Let $\gamma=\frac{-K \cdot H}{K^{2}}>0$ so that $(H+\gamma K) \cdot K=0$. Also,

$$
\begin{equation*}
(H+\gamma K)^{2}>H^{2}+2 \gamma(H \cdot K)+\gamma^{2} K=H^{2}+\frac{(K \cdot H)^{2}}{\left(-K^{2}\right)}>0 \tag{3}
\end{equation*}
$$

So take β rational and slightly larger than γ to get

$$
\begin{equation*}
(H+\beta K) \cdot K<(H+\gamma K) \cdot K=0 \tag{4}
\end{equation*}
$$

(since $\left.K^{2}<0\right)$ and $(H+\beta K)^{2}>0$. Therefore, $(H+\beta K) \cdot H>0$. Write $\beta=\frac{s}{r}$. Then

$$
\begin{equation*}
(r H+s K)^{2}>0,(r H+s K) \cdot K<0,(r H+s K) \cdot H>0 \tag{5}
\end{equation*}
$$

by equivalent facts for β. Let $D=r H+s K$. For $m \gg 0$, by Riemann-Roch we get $h^{0}(m D)+h^{0}(K-m D) \geq \frac{1}{2} m D(m D-K)+1 \rightarrow \infty$. Moreover, $K-m D$ is not effect over for $m \gg 0$ since $(K-m D) \cdot H=(K \cdot H)-m(D \cdot H)$. Thus, $m D$ is effective for large m, and we can take $E \in|m D|$.

Case $3\left(K^{2}>0\right)$: Assume that there is no such D as in reduction 2, i.e. $K \cdot D \geq 0$ for every effective divisor D s.t. $|K+D|=\varnothing$. We will obtain a contradiction.

Lemma 1. If X is a minimal surface with $p_{2}=q=0, K^{2}>0$ and $K \cdot D \geq 0$ for every effective divisor D on X s.t. $|K+D|=\varnothing$, then
(1) $\operatorname{Pic}(X)$ is generated by $\omega_{X}=\mathcal{O}_{X}(K)$, and the anticanonical bundle $\mathcal{O}_{X}(-K)$ is ample. In particular, X doesn't have any nonsingular rational curves.
(2) Every divisor of $|-K|$ is an integral curve of arithmetic genus 1 .
(3) $\left(K^{2}\right) \leq 5, b_{2} \geq 5$. (Here, $b_{2}=h_{\text {ett }}^{2}\left(X, \mathbb{Q}_{\ell}\right)$ in general.

Proof. First, let us see that every element D of $|-K|$ is an irreducible curve. If not, let C be a component of D s.t. $K \cdot C<0$ (which we can find, since $K \cdot D=-K^{2}<0$). If $D=C+C^{\prime},|K+C|=|-D+C|=\left|-C^{\prime}\right|=\varnothing$ since C^{\prime} is effective. Also, $C \cdot K<0$, contradicting the hypothesis. So D is irreducible, and similarly D is not a multiple. Furthermore, $p_{a}(D)=\frac{1}{2} D(D+K)+1=1$, showing (2).

Next, we claim that the only effective divisor s.t. $|D+K|=\varnothing$ is the zero divisor. Assume not, i.e. $\exists D>0$ s.t. $|K+D|=\varnothing$. Let $x \in D$: then since $h^{0}(-K) \geq 1+K^{2} \geq 2$, there is a $C \in|-K|$ passing through $x . C$ is an integral curve, and cannot be a component of D since then

$$
\begin{equation*}
|K+D| \supset|K+C|=|0| \neq \varnothing \tag{6}
\end{equation*}
$$

So $C \cdot D>0$ since they meet at least in x. Then $K \cdot D=-C \cdot D<0$, contradicting the hypothesis.

As an aside, we claim that $p_{n}=0$ for all $n \geq 1$: we know that $p_{2}=0 \Longrightarrow$ $p_{1}=0$; if $3 K$ were effective then $2 K$ would be too since $-K$ is effective, which contradicts $p_{2}=0 \Longrightarrow p_{3}=0$ and by induction $p_{n}=0$ for all $n \geq 1$.

We claim that adjuction terminates: if D is any divisor on X, then there is an integer n_{D} s.t. $|D+n K|=\varnothing$ for $n \geq n_{D}$. To see this, note that $(D+n K) \cdot(-K)$ will eventually become negative. $-K$ is represented by an irreducible curve of positive self-intersection, so by the useful lemma $D+n K$ is not effective for $n \gg$ 0 . Now, let Δ be an arbitrary effective divisor. Then $\exists n \geq 0$ s.t. $|\Delta+n K| \neq 0$ but $|\Delta+(n+1) K|=\varnothing$. Take $D \in|\Delta+n K|$ effective. $|D+K|=\varnothing \Longrightarrow D=$ 0 from above. Since any divisor is a difference of effective divisors, $\operatorname{Pic}(X)$ is generated by K. If H is a hyperplane section on X, then $H \sim-n K$ with $k>0$, implying that $-K$ is ample. Let C be any integral curve on X : then $C \sim-m K$ for some $m \geq 1$. $p_{a}(C)=\frac{1}{2}(-m K)(-m K+K)+1=\frac{1}{2} m(m-1) K^{2}+1 \geq 1$ so there is no smooth rational curve on X, completing (1).

We are left to prove (3). Assume that $\left(K^{2}\right) \geq 6$. Then $h^{0}(-K) \geq 1+K^{2} \geq 7$. Fix points x and y on X : we claim that $\exists C \in|-K|$ with x and y singular points of C. This would be a contradiction, since $p_{a}(C)=1 \Longrightarrow p_{a}(\tilde{C})<0$ which is absurd. So $K^{2} \leq 5$. To see the existence of this C, let

$$
\begin{equation*}
I_{x}=\operatorname{Ker}\left(\mathcal{O}_{X} \rightarrow \mathcal{O}_{X, x} / \mathfrak{m}_{x}^{2}\right), I_{y}=\operatorname{Ker}\left(\mathcal{O}_{X} \rightarrow \mathcal{O}_{X, y} / \mathfrak{m}_{y}^{2}\right) \tag{7}
\end{equation*}
$$

Then we get, by the Chinese Remainder theorem,

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}(-K) \otimes I_{x} \otimes I_{y} \rightarrow \mathcal{O}_{X}(-K) \rightarrow k^{6} \rightarrow 0 \tag{8}
\end{equation*}
$$

since $\mathcal{O}_{X, x} / \mathfrak{m}_{x}^{2}, \mathcal{O}_{X, y} / \mathfrak{m}_{y}^{2}$ have dimension 3 over k. Taking the long exact sequence, we find that $h^{0}\left(\mathcal{O}_{X}(-K) \otimes I_{x} \otimes I_{y}\right) \neq 0$, and get a nonzero section of that sheaf.

It is a divisor of zero passing through x and y with multiplicity at least 2 , giving us the claimed curve.

Finally, by Noether's formula, $1=\chi\left(\mathcal{O}_{X}\right)=\frac{1}{12}\left(K^{2}+e(X)\right)$, where $e(X)=$ $2-2 b_{1}+b_{2} . b_{1}=2 q$ by Hodge theory over \mathbb{C} (in general, $B_{1} \leq 2 q$, but $q=$ $0 \Longrightarrow b_{1}=0$ as well), so $10=K^{2}+b_{2} \Longrightarrow b_{2} \geq 5$.

We now show that no surface has these properties. In characteristic 0 , the Lefschetz principle allows us to reduce to $k=\mathbb{C}$. Taking the cohomology of the exponential exact sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathcal{O}_{X}^{a n} \rightarrow\left(\mathcal{O}_{X}^{a n}\right)^{*} \rightarrow 1$ gives

$$
\begin{equation*}
H^{1}\left(\mathcal{O}_{X}^{a n}\right) \rightarrow H^{1}\left(\left(\mathcal{O}_{X}^{a n}\right)^{*}\right) \rightarrow H^{2}(X, \mathbb{Z}) \rightarrow H^{2}\left(\mathcal{O}_{X}^{a n}\right) \rightarrow \cdots \tag{9}
\end{equation*}
$$

By Serre's GAGA, $H^{i}(X, \mathcal{F}) \cong H^{i}\left(X^{a n}, \mathcal{F}^{a n}\right)$ for an \mathcal{O}_{X}-module \mathcal{F}. Since $q=$ $p_{g}=0, h^{1}\left(\mathcal{O}_{X}^{a n}\right)=h^{2}\left(\mathcal{O}_{X}^{a n}\right)=0$, and

$$
\begin{equation*}
H^{1}\left(\left(\mathcal{O}_{X}^{a n}\right)^{*}\right) \cong H^{1}\left(\mathcal{O}_{X}^{*}\right)=\operatorname{Pic} X \cong H^{2}(X, \mathbb{Z}) \tag{10}
\end{equation*}
$$

This implies that $b_{2}=\operatorname{rank} H^{2}(X, \mathbb{Z})=\operatorname{rank} \operatorname{Pic} X=1$ contradicting $b_{2} \geq 5$. For positive characteristic, we will sketch a proof: the first proof was given by Zariski, and the second using étale cohomology by Artin and by Kurke. Our proof will be by reduction to characteristic 0 .

