18.727 Topics in Algebraic Geometry: Algebraic Surfaces Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 9

LECTURES: ABHINAV KUMAR

1. CASTELNUOVO'S CRITERION FOR RATIONALITY

Theorem 1. Any surface with $q = h^1(X, \mathcal{O}_X) = 0$ and $p_2 = h^0(X, \omega_X^{\otimes 2}) = 0$ is rational.

Note. Every rational surface satisfies these: they are birational invariants which vanish for \mathbb{P}^2 .

Reduction 1: Let X be a minimal surface with $q = p_2 = 0$. It is enough to show there is a smooth rational curve C on X with $C^2 \ge 0$.

Proof. First, observe that $2g(C) - 2 = -2 = C \cdot (C + K)$ and $\chi(\mathcal{O}_X(C)) = \chi(\mathcal{O}_X) + \frac{1}{2}C(C - K)$. Since $p_2 = 0$, $p_1 = h^0(X, \omega) = h^2(X, \mathcal{O}_X) = 0$ and $\chi(\mathcal{O}_X) = 1$. Since $h^2(C) = h^0(K - C) \leq h^0(K) = 0$, $h^0(C) \geq 1 + \frac{1}{2}C(C - K)$, so $h^0(C) \geq 2 + C^2 \geq 2$. Choose a pencil inside this system containing C, i.e. a subspace of dimension 2. The pencil has no fixed component (the only possibility is C, but C moves in the pencil): after blowing up finitely many base points, we get a morphism $\tilde{X} \to \mathbb{P}^1$ with a fiber isomorphic to $C \cong \mathbb{P}^1$. Therefore, by the Noether-Enriques theorem, \tilde{X} is ruled over \mathbb{P}^1 and \tilde{X} is rational (as is X).

Reduction 2: Let X be a minimal surface with $q = p_2 = 0$. It is enough to show that \exists an effective divisor D on X s.t. $|K + D| = \emptyset$ and $K \cdot D < 0$.

Proof. This implies that some irreducible component C of D satisfies $K \cdot C < 0$. Clearly, $|K + C| \subset |K + D|$. Using Riemann-Roch for K + C gives

(1)

$$0 = h^{0}(U+C) + h^{0}(-C) = h^{0}(K+C) + h^{2}(K+C)$$

$$\geq 1 + \frac{1}{2}(K+C) \cdot C = g(C)$$

We thus obtain a smooth, rational curve C on X: -2 = 2g - 2 = C(C + K)and $C \cdot K < 0 \implies C^2 \ge -1$. Since X is minimal, $C^2 \ne -1$, so $C^2 \ge 0$ as desired.

We now prove our second statement. There are three cases:

Case 1 ($K^2 = 0$): Riemann-Roch gives

(2)
$$h^{0}(-K) = h^{0}(-k) + h^{0}(2K) = h^{0}(-K) + h^{2}(-K)$$
$$\geq 1 + \frac{1}{2}K \cdot 2K = 1 + K^{2} = 1$$

so $|-K| \neq \emptyset$. Take a hyperplane section H of X. Then there is an $n \geq 0$ s.t. $|H + nK| \neq \emptyset$ but $|H + (n+1)K| = \emptyset$. Since $-K \sim$ an effective nonzero divisor, $H \cdot K < 0$ and $H \cdot (H + nK)$ is eventually negative and H + nK is not effective. Let $D \in |H + nK|$: then $|D + K| = \emptyset$ and $K \cdot D = K(H + nK) =$ $K \cdot H < 0$ since -K is effective, H very ample.

Case 2 $(K^2 < 0)$: it is enough to find an effective divisor E on X s.t. $K \cdot E < 0$. Then some component C of E will have $K \cdot C < 0$. The genus formula gives $-2 \leq 2g - 2 = C(C + K) \implies C^2 \geq -1$. $C^2 = -1$ is impossible since X is minimal, so $C^2 \geq 0$. Now $(C + nK) \cdot C$ is negative for n >> 0, so C + nK is not effective for n >> 0 by the useful lemma. So $\exists n$ s.t. $|C + nK| \neq \emptyset$ but $|C + (n+1)K| = \emptyset$. Choosing $D \in |C + nK|$ gives the desired divisor.

We now find the claimed E. Again, let H be a hyperplane section: if $K \cdot H < 0$, we can take E = H; if $K \cdot H = 0$, we can take K + nH for n >> 0; so assume $K \cdot H > 0$. Let $\gamma = \frac{-K \cdot H}{K^2} > 0$ so that $(H + \gamma K) \cdot K = 0$. Also,

(3)
$$(H + \gamma K)^2 > H^2 + 2\gamma (H \cdot K) + \gamma^2 K = H^2 + \frac{(K \cdot H)^2}{(-K^2)} > 0$$

So take β rational and slightly larger than γ to get

(4)
$$(H + \beta K) \cdot K < (H + \gamma K) \cdot K = 0$$

(since $K^2 < 0$) and $(H + \beta K)^2 > 0$. Therefore, $(H + \beta K) \cdot H > 0$. Write $\beta = \frac{s}{r}$. Then

(5)
$$(rH + sK)^2 > 0, (rH + sK) \cdot K < 0, (rH + sK) \cdot H > 0$$

by equivalent facts for β . Let D = rH + sK. For $m \gg 0$, by Riemann-Roch we get $h^0(mD) + h^0(K - mD) \ge \frac{1}{2}mD(mD - K) + 1 \to \infty$. Moreover, K - mDis not effect over for $m \gg 0$ since $(K - mD) \cdot H = (K \cdot H) - m(D \cdot H)$. Thus, mD is effective for large m, and we can take $E \in |mD|$.

Case 3 $(K^2 > 0)$: Assume that there is no such D as in reduction 2, i.e. $K \cdot D \ge 0$ for every effective divisor D s.t. $|K + D| = \emptyset$. We will obtain a contradiction.

Lemma 1. If X is a minimal surface with $p_2 = q = 0, K^2 > 0$ and $K \cdot D \ge 0$ for every effective divisor D on X s.t. $|K + D| = \emptyset$, then

(1) Pic (X) is generated by $\omega_X = \mathcal{O}_X(K)$, and the anticanonical bundle $\mathcal{O}_X(-K)$ is ample. In particular, X doesn't have any nonsingular rational curves.

- (2) Every divisor of |-K| is an integral curve of arithmetic genus 1.
- (3) $(K^2) \leq 5, b_2 \geq 5$. (Here, $b_2 = h_{\acute{e}t}^2(X, \mathbb{Q}_\ell)$ in general.

Proof. First, let us see that every element D of |-K| is an irreducible curve. If not, let C be a component of D s.t. $K \cdot C < 0$ (which we can find, since $K \cdot D = -K^2 < 0$). If D = C + C', $|K + C| = |-D + C| = |-C'| = \emptyset$ since C' is effective. Also, $C \cdot K < 0$, contradicting the hypothesis. So D is irreducible, and similarly D is not a multiple. Furthermore, $p_a(D) = \frac{1}{2}D(D + K) + 1 = 1$, showing (2).

Next, we claim that the only effective divisor s.t. $|D + K| = \emptyset$ is the zero divisor. Assume not, i.e. $\exists D > 0$ s.t. $|K + D| = \emptyset$. Let $x \in D$: then since $h^0(-K) \ge 1 + K^2 \ge 2$, there is a $C \in |-K|$ passing through x. C is an integral curve, and cannot be a component of D since then

(6)
$$|K+D| \supset |K+C| = |0| \neq \emptyset$$

So $C \cdot D > 0$ since they meet at least in x. Then $K \cdot D = -C \cdot D < 0$, contradicting the hypothesis.

As an aside, we claim that $p_n = 0$ for all $n \ge 1$: we know that $p_2 = 0 \implies p_1 = 0$; if 3K were effective then 2K would be too since -K is effective, which contradicts $p_2 = 0 \implies p_3 = 0$ and by induction $p_n = 0$ for all $n \ge 1$.

We claim that adjuction terminates: if D is any divisor on X, then there is an integer n_D s.t. $|D + nK| = \emptyset$ for $n \ge n_D$. To see this, note that $(D+nK) \cdot (-K)$ will eventually become negative. -K is represented by an irreducible curve of positive self-intersection, so by the useful lemma D+nK is not effective for n >> 0. Now, let Δ be an arbitrary effective divisor. Then $\exists n \ge 0$ s.t. $|\Delta + nK| \ne 0$ but $|\Delta + (n+1)K| = \emptyset$. Take $D \in |\Delta + nK|$ effective. $|D + K| = \emptyset \implies D = 0$ from above. Since any divisor is a difference of effective divisors, Pic (X) is generated by K. If H is a hyperplane section on X, then $H \sim -nK$ with k > 0, implying that -K is ample. Let C be any integral curve on X: then $C \sim -mK$ for some $m \ge 1$. $p_a(C) = \frac{1}{2}(-mK)(-mK+K) + 1 = \frac{1}{2}m(m-1)K^2 + 1 \ge 1$ so there is no smooth rational curve on X, completing (1).

We are left to prove (3). Assume that $(K^2) \ge 6$. Then $h^0(-K) \ge 1 + K^2 \ge 7$. Fix points x and y on X: we claim that $\exists C \in |-K|$ with x and y singular points of C. This would be a contradiction, since $p_a(C) = 1 \implies p_a(\tilde{C}) < 0$ which is absurd. So $K^2 \le 5$. To see the existence of this C, let

(7)
$$I_x = \operatorname{Ker} \left(\mathcal{O}_X \to \mathcal{O}_{X,x}/\mathfrak{m}_x^2 \right), I_y = \operatorname{Ker} \left(\mathcal{O}_X \to \mathcal{O}_{X,y}/\mathfrak{m}_y^2 \right)$$

Then we get, by the Chinese Remainder theorem,

(8)
$$0 \to \mathcal{O}_X(-K) \otimes I_x \otimes I_y \to \mathcal{O}_X(-K) \to k^6 \to 0$$

since $\mathcal{O}_{X,x}/\mathfrak{m}_x^2$, $\mathcal{O}_{X,y}/\mathfrak{m}_y^2$ have dimension 3 over k. Taking the long exact sequence, we find that $h^0(\mathcal{O}_X(-K) \otimes I_x \otimes I_y) \neq 0$, and get a nonzero section of that sheaf.

It is a divisor of zero passing through x and y with multiplicity at least 2, giving us the claimed curve.

Finally, by Noether's formula, $1 = \chi(\mathcal{O}_X) = \frac{1}{12}(K^2 + e(X))$, where $e(X) = 2 - 2b_1 + b_2$. $b_1 = 2q$ by Hodge theory over \mathbb{C} (in general, $B_1 \leq 2q$, but $q = 0 \implies b_1 = 0$ as well), so $10 = K^2 + b_2 \implies b_2 \geq 5$.

We now show that no surface has these properties. In characteristic 0, the Lefschetz principle allows us to reduce to $k = \mathbb{C}$. Taking the cohomology of the exponential exact sequence $0 \to \mathbb{Z} \to \mathcal{O}_X^{an} \to (\mathcal{O}_X^{an})^* \to 1$ gives

(9)
$$H^1(\mathcal{O}_X^{an}) \to H^1((\mathcal{O}_X^{an})^*) \to H^2(X,\mathbb{Z}) \to H^2(\mathcal{O}_X^{an}) \to \cdots$$

By Serre's GAGA, $H^i(X, \mathcal{F}) \cong H^i(X^{an}, \mathcal{F}^{an})$ for an \mathcal{O}_X -module \mathcal{F} . Since $q = p_g = 0, h^1(\mathcal{O}_X^{an}) = h^2(\mathcal{O}_X^{an}) = 0$, and

(10)
$$H^1((\mathcal{O}_X^{an})^*) \cong H^1(\mathcal{O}_X^*) = \operatorname{Pic} X \cong H^2(X, \mathbb{Z})$$

This implies that $b_2 = \operatorname{rank} H^2(X, \mathbb{Z}) = \operatorname{rank} \operatorname{Pic} X = 1$ contradicting $b_2 \geq 5$. For positive characteristic, we will sketch a proof: the first proof was given by Zariski, and the second using étale cohomology by Artin and by Kurke. Our proof will be by reduction to characteristic 0.