18.727 Topics in Algebraic Geometry: Algebraic Surfaces Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 2

LECTURES: ABHINAV KUMAR

Remark. In the definition of (L, M) we wrote $M = O_X(A - B)$ where A and B are irreducible curves. We can think of this as a moving lemma.

1. LINEAR EQUIVALENCE, ALGEBRAIC EQUIVALENCE, NUMERICAL EQUIVALENCE OF DIVISORS

Two divisors C and D are linearly equivalent on $X \Leftrightarrow$ there is an $f \in k(X)$ s.t. C = D + (f). This is the same as saying there is a sheaf isomorphism $O_X(C) \cong O_X(D), 1 \mapsto f$.

Two divisors C and D are algebraically equivalent if $O_X(C)$ is algebraically equivalent to $O_X(D)$. We say two line bundles L_1 and L_2 on X are algebraically equivalent if there is a connected scheme T, two closed points $t_1, t_2 \in T$ and a line bundle L on $X \times T$ such that $L_{X \times \{t_1\}} \cong L_1$ and $L_{X \times \{t_2\}} \cong L_2$, with the obvious abuse of notation.

Alternately, two divisors C and D are alg. equivalent if there is a divisor E on $X \times T$, flat on T, s.t. $E|_{t_1} = C$ and $E|_{t_2} = D$. We say $C \sim_{alg} D$.

We say C is numerically equivalent to D, $C \equiv D$, if $C \cdot E = D \cdot E$ for every divisor E on X.

We have an intersection pairing $\text{Div } X \times \text{Div } X \to \mathbb{Z}$ which factors through Pic $X \times \text{Pic } X \to \mathbb{Z}$, which shows that linear equivalence \implies num equivalence. In fact, lin equivalence \implies alg equivalence (map to \mathbb{P}^1 defined by (f)) and alg equivalence \implies numerical equivalence $(\chi()$ is locally constant for a flat morphism, T connected).

Notation. Pic (X) is the space of divisors modulo linear equivalence, Pic^{τ}(X) is the set of divisor classes numerically equivalent to 0, Pic⁰ $(X) \subset$ Pic^{τ} $(X) \subset$ Pic (X) is the space of divisor classes algebraically equivalent to 0. Num(X) = Pic (X)/Pic^{τ}(X) and NS(X) = Pic (X)/Pic⁰(X).

1.1. Adjunction Formula. Let C be a curve on X with ideal sheaf \mathcal{I} .

(1)
$$O \to \mathcal{I}/\mathcal{I}^2 \to \Omega_{X/k} \otimes \mathcal{O}_C \to \Omega_{C/k} \to 0$$

with dual exact sequence

(2)
$$0 \to T_C \to T_X \otimes \mathcal{O}_C \to \mathcal{N}_{C/X} = (\mathcal{I}/\mathcal{I}^2)^* \to 0$$

Taking \wedge^2 gives $\omega_X \otimes \mathcal{O}_C = \mathcal{O}_X(-C)|_C \otimes \Omega_C$ or $K_C = (K_X + C)|_C$ so deg $K_C = 2g(C) - 2 = C.(C + K)$ (genus formula). Note: $C^2 = \deg(\mathcal{O}_X(C) \otimes \mathcal{O}_C)$ by definition. $\mathcal{I}/\mathcal{I}^2$ is the conormal bundle, and is $\cong \mathcal{O}(-C) \otimes \mathcal{O}_C$, while $\mathcal{N}_{C/X}$ is the normal bundle $\cong \mathcal{O}(C) \otimes \mathcal{O}_C$.

Theorem 1 (Riemann-Roch). $\chi(\mathcal{L}) = \chi(\mathcal{O}_X) + \frac{1}{2}(L^2 - L \cdot \omega_X).$

Proof. $\mathcal{L}^{-1} \cdot \mathcal{L} \otimes \omega_X^{-1} = \chi(\mathcal{O}_X) - \chi(\mathcal{L}) - \chi(\omega_X \otimes \mathcal{L}^{-1}) + \chi(\omega_X)$. By Serre duality, $\chi(\mathcal{O}_X) = \chi(\omega_X)$ and $\chi(\omega_X \otimes \mathcal{L}^{-1}) = \chi(\mathcal{L})$. So we get that the RHS is $2(\chi(\mathcal{O}_X) - \chi(\mathcal{L}))$ and thus the desired formula.

As a consequence of the generalized Grothendieck-Riemann-Roch, we get

Theorem 2 (Noether's Formula). $\chi(\mathcal{O}_X) = \frac{1}{12}(c_1^2 + c_2) = \frac{1}{12}(K^2 + c_2)$ where c_1, c_2 are the Chern classes of T_X , K is the class of ω_X , $c_2 = b_0 - b_1 + b_2 - b_3 + b_4 = e(X)$ is the Euler characteristic of X. See [Borel-Serre], [Grothendieck: Chern classes], [Igusa: Betti and Picard numbers], [SGA 4.5], [Hartshorne].

Remark. If H is ample on X, then for any curve C on X, we have $C \cdot H > 0$ (equals $\frac{1}{n} \cdot (\text{degree of } C \text{ in embedding by } nH)$ for larger n).

1.2. Hodge Index Theorem.

Lemma 1. Let D_1, D_2 be two divisors on X s.t. $h^0(X, D_2) \neq 0$. Then $h^0(X, D_1) \leq h^0(X, D_1 + D_2)$.

Proof. Let $a \neq 0 \in H^0(X, D_2)$. Then $H^0(X, D_1) \xrightarrow{a} H^0(X, D_1) \otimes_k H^0(X, D_2) \rightarrow H_0(X, D_1 + D_2)$ is injective. \Box

Proposition 1. If D is a divisor on X with $D^2 > 0$ and H is a hyperplane section of X, then exactly one of the following holds: (a) $(D \cdot H) > 0$ and $h^0(nD) \to \infty$ as $n \to \infty$. (b) $(D \cdot H) < 0$ and $h^0(nD) \to \infty$ as $n \to -\infty$.

Proof. Since $D^2 > 0$, as $n \to \pm \infty$ we have

(3)
$$h^{0}(nD) + h^{0}(K - nD) \ge \frac{1}{2}n^{2}D^{2} - \frac{1}{2}n(D \cdot K) + \chi(\mathcal{O}_{X}) \to \infty$$

We can't have $h^0(nD)$ and $h^0(K-nD)$ both going to ∞ as $n \to \infty$ or $n \to -\infty$ (otherwise $h^0(nD) \neq 0$ gives $h^0(K-nD) \leq h^0(K)$, a contradiction). Similarly, $h^0(nD)$ can't go to ∞ both as $n \to \infty$ and as $n \to -\infty$. Similarly for $h^0(K-nD)$. Finally, note that $h^0(nD) \neq 0$ implies $(nD \cdot H) > 0$ and so $D \cdot H > 0$.

Corollary 1. If D is a divisor on X and H is a hyperplane section on X s.t. $(D \cdot H) = 0$ then $D^2 \leq 0$ and $D^2 = 0 \Leftrightarrow D \equiv 0$.

Proof. Only the last statement is left to be proven. If $D \neq 0$ but $D^2 = 0$, then $\exists E$ on X s.t. $D.E \neq 0$. Let $E' = (H^2)E - (E \cdot H)H$, and get $D \cdot E' = (H^2)D \cdot E \neq 0$ and $H \cdot E' = 0$. Thus, replacing E with E', we can assume $H \cdot E = 0$. Next, let

 $\mathbf{2}$

D' = nD + E, so $D' \cdot H = 0$ and $D'^2 = 2nD \cdot E + E^2$. Taking n >> 0 if $D \cdot E > 0$ and n << 0 if $D \cdot E < 0$, we get $D'^2 > 0$ and $D' \cdot H = 0$, contradicting the above proposition.

Theorem 3. (*HIT*): Let Num $X = \text{Pic } X/\text{Pic }^{\tau}X$. Then we get a pairing Num $X \times$ Num $X \to \mathbb{Z}$. Let $M = \text{Num}X \otimes_{\mathbb{Z}} \mathbb{R}$. This is a finite dimensional vector space over \mathbb{R} of dimension ρ (the Picard number) and signature $(1, \rho - 1)$.

Proof. Embed this in ℓ -adic cohomology $H^2(X, \mathbb{Q}_{\ell}(1))$ which is finite dimensional, and C.D equals $C \cup D$ under

(4)
$$H^2(X, \mathbb{Q}_\ell(1)) \times H^2(X, \mathbb{Q}_\ell(1)) \to H^4(X, \mathbb{Q}_\ell(2)) \cong \mathbb{Q}_\ell$$

The map $\operatorname{Num} X \ni C \to [C] \in H^2$ is an injective map. The intersection numbers define a symmetric bilinear nondegenerate form on $M(=\operatorname{Num} X \otimes_{\mathbb{Z}} \mathbb{R})$. Let hbe the class in M of a hyperplane section on X. We can complete to a basis for M, say $h = H_1, h_2, \ldots, h_{\rho}$ s.t. $(h, h_i) = 0$ for $i \ge 2, (h_i, h_j) = 0$ for $i \ne j$. By the above, (\cdot, \cdot) has signature $(1, \rho - 1)$ in this basis. Therefore, if E is any divisor on X s.t. $E^2 > 0$, then for every divisor D on X s.t. $D \cdot E = 0$, we have $D^2 \equiv 0$. \Box

1.3. Nakai-Moishezon. Let X/k be a proper nonsingular surface over k. Then \mathcal{L} is ample \Leftrightarrow for $(\mathcal{L} \cdot \mathcal{L}) > 0$ and for every curve C on X, $(\mathcal{L} \cdot \mathcal{O}_X(C)) > 0$. Note: we define the intersection number of $\mathcal{L} \cdot \mathcal{M}$ to be the coefficient of $n_1 \cdot n_2$ in $\chi(\mathcal{L}^{n_1} \otimes \mathcal{M}^{n_2})$ (check that this is bilinear, etc., and that it coincides with the previous definition).

Proof. Sketch when X is projective. \implies is easy. For the converse, $\chi(\mathcal{L}^n) \to \infty$ as $n \to \infty$ (Riemann-Roch, or by defn). Replace \mathcal{L} by \mathcal{L}^n to assume $\mathcal{L} = \mathcal{O}_X(D), D$ effective.

(5)
$$0 \to \mathcal{L}^{n-1} \xrightarrow{s_0} \mathcal{L}^n \to \mathcal{L}^n \otimes \mathcal{O}_D \to 0$$

 $\mathcal{L}^n \otimes \mathcal{O}_D = \mathcal{L}^n|_D$ is ample on D (since $\mathcal{L} \cdot D = \mathcal{L}^2 > 0$) so $H^1(\mathcal{L}^n|_D) = 0$ for n >> 0.

(6)
$$H^0(\mathcal{L}^n) \to H^0(\mathcal{L}^n|D) \to H^1(\mathcal{L}^{n-1}) \to H^1(\mathcal{L}^n) \to 0$$

for $n >> 0 \implies h^1(\mathcal{L}^n) \le h^1(\mathcal{L}^{n-1})$ so $h^1(\mathcal{L}^n)$ stabilizes and the map $H^1(\mathcal{L}^{n-1}) \to H^1(\mathcal{L}^n)$ is an isomorphism. So $H^0(\mathcal{L}|_D) \to H^0(\mathcal{L}^n|_D)$ is surjective for n >> 0. Taking global sections $\overline{s_1}, \ldots, \overline{s_k}$ generating $\mathcal{L}^n|_D$ and pulling back to $H^0(\mathcal{L}^n)$, we get generators s_0, \ldots, s_k . Get $f: X \to \mathbb{P}^k, f^*(\mathcal{O}_{\mathbb{P}^k}(1)) \cong \mathcal{L}^n$. f is a finite morphism (or else $\exists C \subset X$ with $f(C) = \star \implies C \cdot \mathcal{L} = 0$, a contradiction). $\mathcal{O}_{\mathbb{P}^k}(1)$ is ample $\implies \mathcal{L}^n$ is ample $\implies \mathcal{L}$ is ample. \square 1.4. Blowups. Let X be a smooth surface, p a point on X. The blowup $\tilde{X} \xrightarrow{\pi} X$ at p is a smooth surface s.t. $\tilde{X} \smallsetminus \pi^{-1}(p) \to X \smallsetminus \{p\}$ is an isomorphism and $\pi^{-1}(p)$ is a curve $\cong \mathbb{P}^1$ (called the exceptional curve). We explicitly construct this as follows: take local coordinates at p, i.e $x, y \in \mathfrak{m}_p \mathcal{O}_{X,p}$ defined in some neighborhood U of p. Shrink U if necessary so that p is the only point in U where x, y both vanish. Let $\tilde{U} \subset U \times \mathbb{P}^1$ be defined by xY - yX = 0. $\tilde{U} \to$ $U, x, y, x : y \to x, y$ is an isomorphism on $\tilde{U} \smallsetminus (x = y = 0)$ to $U \smallsetminus \{p\}$ and the preimage of p is $\cong \mathbb{P}^1$. Patch/glue with $X \smallsetminus \{p\}$ to get \tilde{X} . Easy check: \tilde{X} is nonsingular, $E = \mathbb{P}^1$ is the projective space bundle over p corresponding to $\mathfrak{m}_p/\mathfrak{m}_p^2$. The normal bundle $N_{E/\tilde{X}}$ is $\mathcal{O}_E(-1)$.

Note: this is a specific case of a more general fact (Hartshorne 8.24). For $Y \subset X$ a closed subscheme with corresponding ideal sheaf \mathcal{I} , blow up X along Y to get the projective bundle $Y' \to Y$ given by $\mathbb{P}(\mathcal{I}/\mathcal{I}^2)$, and overall blowup

 $\tilde{\mathcal{I}}/\tilde{\mathcal{I}}^2 = \mathcal{O}_{X'}(1) \text{ so } N_{Y',\tilde{X}} = \mathcal{O}_{Y'}(-1).$

If C is an irreducible curve on X passing through P with multiplicity m, then the closure of $\pi^{-1}(C \setminus \{p\})$ in \tilde{X} is an irreducible curve \tilde{C} called the strict transform of C. π^*C defined in the obvious way: think of C as a Cartier divisor, defined locally by some equation, and pull back up $\pi^{\#} : \mathcal{O}_X \to \mathcal{O}_{\tilde{X}}$, which will cut out π^*C on \tilde{X} .

Lemma 2. $\pi^*C = \tilde{C} + mE$.

Proof. Assume C is cut out at p by some f, expand f as the completion in the local ring at p.