MIT OpenCourseWare
http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 2

LECTURES: ABHINAV KUMAR

Remark. In the definition of (L, M) we wrote $M=O_{X}(A-B)$ where A and B are irreducible curves. We can think of this as a moving lemma.

1. Linear Equivalence, Algebraic Equivalence, numerical EQUIVALENCE OF DIVISORS

Two divisors C and D are linearly equivalent on $X \Leftrightarrow$ there is an $f \in k(X)$ s.t. $C=D+(f)$. This is the same as saying there is a sheaf isomorphism $O_{X}(C) \cong O_{X}(D), 1 \mapsto f$.

Two divisors C and D are algebraically equivalent if $O_{X}(C)$ is algebraically equivalent to $O_{X}(D)$. We say two line bundles L_{1} and L_{2} on X are algebraically equivalent if there is a connected scheme T, two closed points $t_{1}, t_{2} \in T$ and a line bundle L on $X \times T$ such that $L_{X \times\left\{t_{1}\right\}} \cong L_{1}$ and $L_{X \times\left\{t_{2}\right\}} \cong L_{2}$, with the obvious abuse of notation.

Alternately, two divisors C and D are alg. equivalent if there is a divisor E on $X \times T$, flat on T, s.t. $\left.E\right|_{t_{1}}=C$ and $\left.E\right|_{t_{2}}=D$. We say $C \sim_{\text {alg }} D$.

We say C is numerically equivalent to $D, C \equiv D$, if $C \cdot E=D \cdot E$ for every divisor E on X.

We have an intersection pairing $\operatorname{Div} X \times \operatorname{Div} X \rightarrow \mathbb{Z}$ which factors through $\operatorname{Pic} X \times \operatorname{Pic} X \rightarrow \mathbb{Z}$, which shows that linear equivalence \Longrightarrow num equivalence. In fact, lin equivalence \Longrightarrow alg equivalence (map to \mathbb{P}^{1} defined by (f)) and alg equivalence \Longrightarrow numerical equivalence $(\chi()$ is locally constant for a flat morphism, T connected).

Notation. $\operatorname{Pic}(X)$ is the space of divisors modulo linear equivalence, $\operatorname{Pic}^{\tau}(X)$ is the set of divisor classes numerically equivalent to $0, \operatorname{Pic}^{0}(X) \subset \operatorname{Pic}^{\tau}(X) \subset$ $\operatorname{Pic}(X)$ is the space of divisor classes algebraically equivalent to $0 . \operatorname{Num}(X)=$ $\operatorname{Pic}(X) / \operatorname{Pic}^{\tau}(X)$ and $N S(X)=\operatorname{Pic}(X) / \operatorname{Pic}^{0}(X)$.
1.1. Adjunction Formula. Let C be a curve on X with ideal sheaf \mathcal{I}.

$$
\begin{equation*}
O \rightarrow \mathcal{I} / \mathcal{I}^{2} \rightarrow \Omega_{X / k} \otimes \mathcal{O}_{C} \rightarrow \Omega_{C / k} \rightarrow 0 \tag{1}
\end{equation*}
$$

with dual exact sequence

$$
\begin{equation*}
0 \rightarrow T_{C} \rightarrow T_{X} \otimes \mathcal{O}_{C} \rightarrow \mathcal{N}_{C / X}=\left(\mathcal{I} / \mathcal{I}^{2}\right)^{*} \rightarrow 0 \tag{2}
\end{equation*}
$$

Taking \wedge^{2} gives $\omega_{X} \otimes \mathcal{O}_{C}=\left.\mathcal{O}_{X}(-C)\right|_{C} \otimes \Omega_{C}$ or $K_{C}=\left.\left(K_{X}+C\right)\right|_{C}$ so $\operatorname{deg} K_{C}=$ $2 g(C)-2=C .(C+K)$ (genus formula). Note: $C^{2}=\operatorname{deg}\left(\mathcal{O}_{X}(C) \otimes \mathcal{O}_{C}\right)$ by definition. $\mathcal{I} / \mathcal{I}^{2}$ is the conormal bundle, and is $\cong \mathcal{O}(-C) \otimes \mathcal{O}_{C}$, while $\mathcal{N}_{C / X}$ is the normal bundle $\cong \mathcal{O}(C) \otimes \mathcal{O}_{C}$.

Theorem 1 (Riemann-Roch). $\chi(\mathcal{L})=\chi\left(\mathcal{O}_{X}\right)+\frac{1}{2}\left(L^{2}-L \cdot \omega_{X}\right)$.
Proof. $\mathcal{L}^{-1} \cdot \mathcal{L} \otimes \omega_{X}^{-1}=\chi\left(\mathcal{O}_{X}\right)-\chi(\mathcal{L})-\chi\left(\omega_{X} \otimes \mathcal{L}^{-1}\right)+\chi\left(\omega_{X}\right)$. By Serre duality, $\chi\left(\mathcal{O}_{X}\right)=\chi\left(\omega_{X}\right)$ and $\chi\left(\omega_{X} \otimes \mathcal{L}^{-1}\right)=\chi(\mathcal{L})$. So we get that the RHS is $2\left(\chi\left(\mathcal{O}_{X}\right)-\right.$ $\chi(\mathcal{L}))$ and thus the desired formula.

As a consequence of the generalized Grothendieck-Riemann-Roch, we get
Theorem 2 (Noether's Formula). $\chi\left(\mathcal{O}_{X}\right)=\frac{1}{12}\left(c_{1}^{2}+c_{2}\right)=\frac{1}{12}\left(K^{2}+c_{2}\right)$ where c_{1}, c_{2} are the Chern classes of T_{X}, K is the class of $\omega_{X}, c_{2}=b_{0}-b_{1}+b_{2}-b_{3}+b_{4}=e(X)$ is the Euler characteristic of X. See [Borel-Serre], [Grothendieck: Chern classes], [Igusa: Betti and Picard numbers], [SGA 4.5], [Hartshorne].

Remark. If H is ample on X, then for any curve C on X, we have $C \cdot H>0$ (equals $\frac{1}{n} \cdot($ degree of C in embedding by $n H)$ for larger n).

1.2. Hodge Index Theorem.

Lemma 1. Let D_{1}, D_{2} be two divisors on X s.t. $h^{0}\left(X, D_{2}\right) \neq 0$. Then $h^{0}\left(X, D_{1}\right) \leq$ $h^{0}\left(X, D_{1}+D_{2}\right)$.

Proof. Let $a \neq 0 \in H^{0}\left(X, D_{2}\right)$. Then $H^{0}\left(X, D_{1}\right) \xrightarrow{a} H^{0}\left(X, D_{1}\right) \otimes_{k} H^{0}\left(X, D_{2}\right) \rightarrow$ $H_{0}\left(X, D_{1}+D_{2}\right)$ is injective.

Proposition 1. If D is a divisor on X with $D^{2}>0$ and H is a hyperplane section of X, then exactly one of the following holds: (a) $(D \cdot H)>0$ and $h^{0}(n D) \rightarrow \infty$ as $n \rightarrow \infty$. (b) $(D \cdot H)<0$ and $h^{0}(n D) \rightarrow \infty$ as $n \rightarrow-\infty$.

Proof. Since $D^{2}>0$, as $n \rightarrow \pm \infty$ we have

$$
\begin{equation*}
h^{0}(n D)+h^{0}(K-n D) \geq \frac{1}{2} n^{2} D^{2}-\frac{1}{2} n(D \cdot K)+\chi\left(\mathcal{O}_{X}\right) \rightarrow \infty \tag{3}
\end{equation*}
$$

We can't have $h^{0}(n D)$ and $h^{0}(K-n D)$ both going to ∞ as $n \rightarrow \infty$ or $n \rightarrow-\infty$ (otherwise $h^{0}(n D) \neq 0$ gives $h^{0}(K-n D) \leq h^{0}(K)$, a contradiction). Similarly, $h^{0}(n D)$ can't go to ∞ both as $n \rightarrow \infty$ and as $n \rightarrow-\infty$. Similarly for $h^{0}(K-n D)$. Finally, note that $h^{0}(n D) \neq 0$ implies $(n D \cdot H)>0$ and so $D \cdot H>0$.

Corollary 1. If D is a divisor on X and H is a hyperplane section on X s.t. $(D \cdot H)=0$ then $D^{2} \leq 0$ and $D^{2}=0 \Leftrightarrow D \equiv 0$.

Proof. Only the last statement is left to be proven. If $D \not \equiv 0$ but $D^{2}=0$, then $\exists E$ on X s.t. $D . E \neq 0$. Let $E^{\prime}=\left(H^{2}\right) E-(E \cdot H) H$, and get $D \cdot E^{\prime}=\left(H^{2}\right) D \cdot E \neq 0$ and $H \cdot E^{\prime}=0$. Thus, replacing E with E^{\prime}, we can assume $H \cdot E=0$. Next, let
$D^{\prime}=n D+E$, so $D^{\prime} \cdot H=0$ and $D^{\prime 2}=2 n D \cdot E+E^{2}$. Taking $n \gg 0$ if $D \cdot E>0$ and $n \ll 0$ if $D \cdot E<0$, we get $D^{\prime 2}>0$ and $D^{\prime} \cdot H=0$, contradicting the above proposition.

Theorem 3. (HIT): Let $\operatorname{Num} X=\operatorname{Pic} X / \operatorname{Pic}^{\tau} X$. Then we get a pairing $\operatorname{Num} X \times$ $N u m X \rightarrow \mathbb{Z}$. Let $M=\operatorname{Num} X \otimes_{\mathbb{Z}} \mathbb{R}$. This is a finite dimensional vector space over \mathbb{R} of dimension ρ (the Picard number) and signature ($1, \rho-1$).

Proof. Embed this in ℓ-adic cohomology $H^{2}\left(X, \mathbb{Q}_{\ell}(1)\right)$ which is finite dimensional, and $C . D$ equals $C \cup D$ under

$$
\begin{equation*}
H^{2}\left(X, \mathbb{Q}_{\ell}(1)\right) \times H^{2}\left(X, \mathbb{Q}_{\ell}(1)\right) \rightarrow H^{4}\left(X, \mathbb{Q}_{\ell}(2)\right) \cong \mathbb{Q}_{\ell} \tag{4}
\end{equation*}
$$

The map Num $X \ni C \rightarrow[C] \in H^{2}$ is an injective map. The intersection numbers define a symmetric bilinear nondegenerate form on $M\left(=\operatorname{Num} X \otimes_{\mathbb{Z}} \mathbb{R}\right)$. Let h be the class in M of a hyperplane section on X. We can complete to a basis for M, say $h=H_{1}, h_{2}, \ldots, h_{\rho}$ s.t. $\left(h, h_{i}\right)=0$ for $i \geq 2,\left(h_{i}, h_{j}\right)=0$ for $i \neq j$. By the above, (\cdot, \cdot) has signature $(1, \rho-1)$ in this basis. Therefore, if E is any divisor on X s.t. $E^{2}>0$, then for every divisor D on X s.t. $D \cdot E=0$, we have $D^{2} \equiv 0$.
1.3. Nakai-Moishezon. Let X / k be a proper nonsingular surface over k. Then \mathcal{L} is ample \Leftrightarrow for $(\mathcal{L} \cdot \mathcal{L})>0$ and for every curve C on $X,\left(\mathcal{L} \cdot \mathcal{O}_{X}(C)\right)>0$. Note: we define the intersection number of $\mathcal{L} \cdot \mathcal{M}$ to be the coefficient of $n_{1} \cdot n_{2}$ in $\chi\left(\mathcal{L}^{n_{1}} \otimes \mathcal{M}^{n_{2}}\right)$ (check that this is bilinear, etc., and that it coincides with the previous definition).

Proof. Sketch when X is projective. \Longrightarrow is easy. For the converse, $\chi\left(\mathcal{L}^{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$ (Riemann-Roch, or by defn). Replace \mathcal{L} by \mathcal{L}^{n} to assume $\mathcal{L}=$ $\mathcal{O}_{X}(D), D$ effective.

$$
\begin{equation*}
0 \rightarrow \mathcal{L}^{n-1} \xrightarrow{s_{0}} \mathcal{L}^{n} \rightarrow \mathcal{L}^{n} \otimes \mathcal{O}_{D} \rightarrow 0 \tag{5}
\end{equation*}
$$

$\mathcal{L}^{n} \otimes \mathcal{O}_{D}=\left.\mathcal{L}^{n}\right|_{D}$ is ample on $D\left(\right.$ since $\left.\mathcal{L} \cdot D=\mathcal{L}^{2}>0\right)$ so $H^{1}\left(\left.\mathcal{L}^{n}\right|_{D}\right)=0$ for $n \gg 0$.

$$
\begin{equation*}
H^{0}\left(\mathcal{L}^{n}\right) \rightarrow H^{0}\left(\mathcal{L}^{n} \mid D\right) \rightarrow H^{1}\left(\mathcal{L}^{n-1}\right) \rightarrow H^{1}\left(\mathcal{L}^{n}\right) \rightarrow 0 \tag{6}
\end{equation*}
$$

for $n \gg 0 \Longrightarrow h^{1}\left(\mathcal{L}^{n}\right) \leq h^{1}\left(\mathcal{L}^{n-1}\right)$ so $h^{1}\left(\mathcal{L}^{n}\right)$ stabilizes and the map $H^{1}\left(\mathcal{L}^{n-1}\right) \rightarrow$ $H^{1}\left(\mathcal{L}^{n}\right)$ is an isomorphism. So $H^{0}\left(\left.\mathcal{L}\right|_{D}\right) \rightarrow H^{0}\left(\left.\mathcal{L}^{n}\right|_{D}\right)$ is surjective for $n \gg 0$. Taking global sections $\overline{s_{1}}, \ldots, \overline{s_{k}}$ generating $\left.\mathcal{L}^{n}\right|_{D}$ and pulling back to $H^{0}\left(\mathcal{L}^{n}\right)$, we get generators s_{0}, \ldots, s_{k}. Get $f: X \rightarrow \mathbb{P}^{k}, f^{*}\left(\mathcal{O}_{\mathbb{P}^{k}}(1)\right) \cong \mathcal{L}^{n}$. f is a finite morphism (or else $\exists C \subset X$ with $f(C)=\star \Longrightarrow C \cdot \mathcal{L}=0$, a contradiction). $\mathcal{O}_{\mathbb{P}^{k}}(1)$ is ample $\Longrightarrow \mathcal{L}^{n}$ is ample $\Longrightarrow \mathcal{L}$ is ample.
1.4. Blowups. Let X be a smooth surface, p a point on X. The blowup $\tilde{X} \xrightarrow{\pi} X$ at p is a smooth surface s.t. $\tilde{X} \backslash \pi^{-1}(p) \rightarrow X \backslash\{p\}$ is an isomorphism and $\pi^{-1}(p)$ is a curve $\cong \mathbb{P}^{1}$ (called the exceptional curve). We explicitly construct this as follows: take local coordinates at p, i.e $x, y \in \mathfrak{m}_{p} \mathcal{O}_{X, p}$ defined in some neighborhood U of p. Shrink U if necessary so that p is the only point in U where x, y both vanish. Let $\tilde{U} \subset U \times \mathbb{P}^{1}$ be defined by $x Y-y X=0 . \tilde{U} \rightarrow$ $U, x, y, x: y \rightarrow x, y$ is an isomorphism on $\tilde{U} \backslash(x=y=0)$ to $U \backslash\{p\}$ and the preimage of p is $\cong \mathbb{P}^{1}$. Patch/glue with $X \backslash\{p\}$ to get \tilde{X}. Easy check: \tilde{X} is nonsingular, $E=\mathbb{P}^{1}$ is the projective space bundle over p corresponding to $\mathfrak{m}_{p} / \mathfrak{m}_{p}^{2}$. The normal bundle $N_{E / \tilde{X}}$ is $\mathcal{O}_{E}(-1)$.

Note: this is a specific case of a more general fact (Hartshorne 8.24). For $Y \subset X$ a closed subscheme with corresponding ideal sheaf \mathcal{I}, blow up X along Y to get the projective bundle $Y^{\prime} \rightarrow Y$ given by $\mathbb{P}\left(\mathcal{I} / \mathcal{I}^{2}\right)$, and overall blowup

$$
\begin{equation*}
\tilde{X}=\operatorname{Proj} \bigoplus \mathcal{I}^{d}, \mathcal{O}_{\tilde{X}}(1)=\tilde{\mathcal{I}}=\pi^{-1} \mathcal{I} \mathcal{O}_{\tilde{X}} \tag{7}
\end{equation*}
$$

$\tilde{\mathcal{I}} / \tilde{\mathcal{I}}^{2}=\mathcal{O}_{X^{\prime}}(1)$ so $N_{Y^{\prime}, \tilde{X}}=\mathcal{O}_{Y^{\prime}}(-1)$.
If C is an irreducible curve on X passing through P with multiplicity m, then the closure of $\pi^{-1}(C \backslash\{p\})$ in \tilde{X} is an irreducible curve \tilde{C} called the strict transform of $C . \pi^{*} C$ defined in the obvious way: think of C as a Cartier divisor, defined locally by some equation, and pull back up $\pi^{\#}: \mathcal{O}_{X} \rightarrow \mathcal{O}_{\tilde{X}}$, which will cut out $\pi^{*} C$ on \tilde{X}.

Lemma 2. $\pi^{*} C=\tilde{C}+m E$.
Proof. Assume C is cut out at p by some f, expand f as the completion in the local ring at p.

