
MIT OpenCourseWare 
http://ocw.mit.edu 

18.727 Topics in Algebraic Geometry: Algebraic Surfaces 
Spring 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


ALGEBRAIC SURFACES, LECTURE 2 

LECTURES: ABHINAV KUMAR 

Remark. In the definition of (L, M) we wrote M = OX (A − B) where A and B 
are irreducible curves. We can think of this as a moving lemma. 

1.	 Linear Equivalence, Algebraic Equivalence, numerical 
equivalence of divisors 

Two divisors C and D are linearly equivalent on X there is an f ∈ k(X)⇔ 
s.t. C = D + (f). This is the same as saying there is a sheaf isomorphism 
OX (C) ∼= OX (D), 1 �→ f . 

Two divisors C and D are algebraically equivalent if OX (C) is algebraically 
equivalent to OX (D). We say two line bundles L1 and L2 on X are algebraically 
equivalent if there is a connected scheme T , two closed points t1, t2 ∈ T and a 
line bundle L on X × T such that LX×{t1} 

∼= L1 =and LX×{t2} 
∼ L2, with the 

obvious abuse of notation. 
Alternately, two divisors C and D are alg. equivalent if there is a divisor E 

on X × T , flat on T , s.t. E| = C and E| = D. We say C ∼alg D.t1 t2 

We say C is numerically equivalent to D, C ≡ D, if C E = D E for every · · 
divisor E on X. 

We have an intersection pairing Div X × Div X → Z which factors through 
Pic X × Pic X → Z, which shows that linear equivalence = ⇒ num equivalence. 
In fact, lin equivalence = alg equivalence (map to P1 defined by (f)) and ⇒
alg equivalence = numerical equivalence (χ() is locally constant for a flat ⇒
morphism, T connected). 

Notation. Pic (X) is the space of divisors modulo linear equivalence, Pic τ (X) 
is the set of divisor classes numerically equivalent to 0, Pic 0(X) ⊂ Pic τ (X) ⊂
Pic (X) is the space of divisor classes algebraically equivalent to 0. Num(X) = 
Pic (X)/Pic τ (X) and NS(X) = Pic (X)/Pic 0(X). 

1.1. Adjunction Formula. Let C be a curve on X with ideal sheaf I. 

(1) O → I/I2 → ΩX/k ⊗OC → ΩC/k → 0 

with dual exact sequence 

(2)	 0 → TC → TX ⊗OC → NC/X = (I/I2)∗ → 0 
1 
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Taking ∧2 gives ωX ⊗OC = OX (−C)|C ⊗ ΩC or KC = (KX + C)|C so deg KC = 
2g(C) − 2 = C.(C + K) (genus formula). Note: C2 = deg (OX (C) ⊗ OC ) by 
definition. I/I2 is the conormal bundle, and is ∼ O(−C) ⊗ OC , while NC/X is= 
the normal bundle ∼= O(C) ⊗OC . 

Theorem 1 (Riemann-Roch). χ(L) = χ(OX ) + 1
2 (L

2 − L ωX ).· 

Proof. L−1 · L⊗ ω−1 = χ(OX ) − χ(L) − χ(ωX ⊗L−1) + χ(ωX ). By Serre duality, X 
χ(OX ) = χ(ωX ) and χ(ωX ⊗L−1) = χ(L). So we get that the RHS is 2(χ(OX ) −
χ(L)) and thus the desired formula. � 

As a consequence of the generalized Grothendieck-Riemann-Roch, we get 

Theorem 2 (Noether’s Formula). χ(OX ) = 1 (c1
2 +c2) = 1 (K2 +c2) where c1, c212 12 

are the Chern classes of TX , K is the class of ωX , c2 = b0 −b1 +b2 −b3 +b4 = e(X) 
is the Euler characteristic of X. See [Borel-Serre], [Grothendieck: Chern classes], 
[Igusa: Betti and Picard numbers], [SGA 4.5], [Hartshorne]. 

Remark. If H is ample on X, then for any curve C on X, we have C H > 0 
1 

· 
(equals 

n (degree of C in embedding by nH) for larger n).· 

1.2. Hodge Index Theorem. 

Lemma 1. Let D1, D2 be two divisors on X s.t. h0(X, D2) = 0� . Then h0(X, D1) ≤
h0(X, D1 + D2). 

a
Proof. Let a = 0 � ∈ H0(X, D2). Then H0(X, D1) → H0(X, D1) ⊗k H

0(X, D2) →
H0(X, D1 + D2) is injective. � 

Proposition 1. If D is a divisor on X with D2 > 0 and H is a hyperplane 
section of X, then exactly one of the following holds: (a) (D H) > 0 and· 
h0(nD) →∞ as n →∞. (b) (D · H) < 0 and h0(nD) →∞ as n → −∞. 

Proof. Since D2 > 0, as n → ±∞ we have 
1 1 

(3) h0(nD) + h0(K − nD) ≥ 
2 
n 2D2 − 

2 
n(D · K) + χ(OX ) →∞ 

We can’t have h0(nD) and h0(K − nD) both going to ∞ as n →∞ or n → −∞ 
(otherwise h0(nD) = 0 gives � h0(K − nD) ≤ h0(K), a contradiction). Similarly, 
h0(nD) can’t go to ∞ both as n →∞ and as n → −∞. Similarly for h0(K−nD). 
Finally, note that h0(nD) �= 0 implies (nD · H) > 0 and so D · H > 0. � 

Corollary 1. If D is a divisor on X and H is a hyperplane section on X s.t. 
(D · H) = 0 then D2 ≤ 0 and D2 = 0 ⇔ D ≡ 0. 

Proof. Only the last statement is left to be proven. If D �≡ 0 but D2 = 0, then ∃E 
on X s.t. D.E = 0. Let � E � = (H2)E − (E · H)H, and get D · E � = (H2)D · E = 0 �
and H E � = 0. Thus, replacing E with E �, we can assume H E = 0. Next, let · · 
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D� = nD + E, so D� H = 0 and D�2 = 2nD E + E2 . Taking n >> 0 if D E > 0· · · 
and n << 0 if D E < 0, we get D�2 > 0 and D� H = 0, contradicting the above · · 
proposition. � 

Theorem 3. (HIT): Let NumX = Pic X/Pic τ X. Then we get a pairing NumX×
NumX → Z. Let M = NumX ⊗Z R. This is a finite dimensional vector space 
over R of dimension ρ (the Picard number) and signature (1, ρ − 1). 

Proof. Embed this in �-adic cohomology H2(X, Q�(1)) which is finite dimen
sional, and C.D equals C ∪ D under 

(4) H2(X, Q�(1)) × H2(X, Q�(1)) → H4(X, Q�(2)) ∼= Q� 

The map NumX � C → [C] ∈ H2 is an injective map. The intersection numbers 
define a symmetric bilinear nondegenerate form on M(= NumX ⊗Z R). Let h 
be the class in M of a hyperplane section on X. We can complete to a basis for 
M , say h = H1, h2, . . . , hρ s.t. (h, hi) = 0 for i ≥ 2, (hi, hj ) = 0 for i =� j. By the 
above, ( ) has signature (1, ρ − 1) in this basis. Therefore, if E is any divisor on ·, ·
X s.t. E2 > 0, then for every divisor D on X s.t. D E = 0, we have D2 ≡ 0. �·

1.3. Nakai-Moishezon. Let X/k be a proper nonsingular surface over k. Then 
L is ample ⇔ for (L · L) > 0 and for every curve C on X, (L · OX (C)) > 0. 
Note: we define the intersection number of L ·M to be the coefficient of n1 · n2 

in χ(Ln1 ⊗Mn2 ) (check that this is bilinear, etc., and that it coincides with the 
previous definition). 

Proof. Sketch when X is projective. = is easy. For the converse, χ(Ln) →∞ ⇒ 
as n → ∞ (Riemann-Roch, or by defn). Replace L by Ln to assume L = 
OX (D), D effective. 

(5) 0 → Ln−1 → Ls0 n → Ln ⊗OD → 0 

Ln ⊗ OD = Ln|D is ample on D (since L · D = L2 > 0) so H1(Ln|D) = 0 for 
n >> 0. 

n(6) H0(Ln) → H0(L |D) → H1(Ln−1) → H1(Ln) → 0 

for n >> 0 = ⇒ h1(Ln) ≤ h1(Ln−1) so h1(Ln) stabilizes and the map H1(Ln−1) →
H1(Ln) is an isomorphism. So H0(L|D) → H0(Ln|D) is surjective for n >> 0. 
Taking global sections s1, . . . , sk generating Ln|D and pulling back to H0(Ln), 
we get generators s0, . . . , sk. Get f : X → Pk, f ∗(OPk (1)) ∼ Ln . f is a finite = 
morphism (or else ∃C ⊂ X with f(C) = � = ⇒ C · L = 0, a contradiction). 
OPk (1) is ample =⇒ Ln is ample =⇒ L is ample. � 
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1.4. Blowups. Let X be a smooth surface, p a point on X. The blowup X̃
π 

X→ 
at p is a smooth surface s.t. X̃ � π−1(p) X � {p} is an isomorphism and →
π−1(p) is a curve ∼ P1 (called the exceptional curve). We explicitly construct = 
this as follows: take local coordinates at p, i.e x, y ∈ mpOX,p defined in some 
neighborhood U of p. Shrink U if necessary so that p is the only point in U 
where x, y both vanish. Let Ũ ⊂ U × P1 be defined by xY − yX = 0. Ũ →
U, x, y, x : y x, y is an isomorphism on Ũ � (x = y = 0) to U � {p} and→ 

= P1 Patch/glue with X � {p} to get ˜ ˜the preimage of p is ∼ . X. Easy check: X 
is nonsingular, E = P1 is the projective space bundle over p corresponding to 
mp/mp

2 . The normal bundle NE/ X̃ is OE (−1). 
Note: this is a specific case of a more general fact (Hartshorne 8.24). For 

Y ⊂ X a closed subscheme with corresponding ideal sheaf I, blow up X along 
Y to get the projective bundle Y � Y given by P(I/I2), and overall blowup � 

→ 

(7) X̃ = Proj Id , OX̃(1) = Ĩ = π−1IO X̃

Ĩ/Ĩ2 = OX� (1) so NY �,X̃ = OY � (−1). 
If C is an irreducible curve on X passing through P with multiplicity m, then 

the closure of π−1(C � {p}) in X̃ is an irreducible curve C̃ called the strict 
transform of C. π∗C defined in the obvious way: think of C as a Cartier divisor, 
defined locally by some equation, and pull back up π# : OX → O X̃ , which will 
cut out π∗C on X̃. 

Lemma 2. π∗C = C̃ + mE. 

Proof. Assume C is cut out at p by some f , expand f as the completion in the 
local ring at p. � 


