MIT OpenCourseWare
http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 3

LECTURES: ABHINAV KUMAR

1. Birational maps Continued

Recall that the blowup of X at p is locally given by choosing $x, y \in \mathfrak{m}_{p}$, letting U be a sufficiently small Zariski neighborhood of p (on which x and y are regular functions that vanish simultaneously only at the point p), and defining \tilde{U} by $x Y-y X=0$ in $U \times \mathbb{P}^{1}$. If, for some $q \in U, q \neq p, x(q) \neq 0$, then $Y=\frac{y}{x} X$ and similarly if $y \notin \mathfrak{m}_{q}$. So we obtain an isomorphism $\tilde{U} \rightarrow U$ at q, and $\tilde{U} \xrightarrow{\pi} U$ fails to be an isomorphism only at p, where $\pi^{-1}(p)=\mathbb{P}^{1}$ is the exceptional divisor E. Note that the blowup \tilde{X} does not depend on the choice of x, y.

Proposition 1. If C is a curve passing through $p \in X$ with multiplicity m,

$$
\begin{equation*}
\pi^{*} C=\tilde{C}+m E \tag{1}
\end{equation*}
$$

Proof. Choose local coordinates x, y in a neighborhood of p s.t. $y=0$ is not tangent to any branch of C at p. Then in $\hat{O}_{x, p}$ we can expand the equation of C in a power series

$$
\begin{equation*}
f=f_{m}(x, y)+f_{m+1}(x, y)+\cdots \tag{2}
\end{equation*}
$$

with $f_{m}(1,0) \neq 0$ and each f_{k} a homogeneous polynomial of degree k. In a neighborhood of $(p, \infty=[1: 0]) \in \tilde{U} \subset U \times \mathbb{P}^{1}$, we have local coordinates x and $t=\frac{y}{x}$ and $\left.\pi^{*} f=f(x, t x)=x^{m} f_{m}(1, t)+x^{m+1} f_{m+1}(1, t)+\cdots\right)$, giving the desired formula.

Theorem 1. We have maps $\pi^{*}: \operatorname{Pic} X \rightarrow \operatorname{Pic} \tilde{X}$ and $\mathbb{Z} \rightarrow \operatorname{Pic} \tilde{X}, 1 \mapsto E$ giving rise to an isomorphism $\operatorname{Pic} \tilde{X} \cong \operatorname{Pic} X \oplus \mathbb{Z}$. If $C, D \in \operatorname{Pic} X,\left(\pi^{*} C\right) \cdot\left(\pi^{*} D\right)=C \cdot D$, while $\left(\pi^{*} C\right) \cdot E=0$ and $E \cdot E=-1$. We further have that $K_{\tilde{X}}=\pi^{*} K_{X}+E$, so $K_{\tilde{X}}^{2}=\left(\pi^{*} K_{X}\right)^{2}-1$.
Proof. Note that $\operatorname{Pic} X \cong \operatorname{Pic}(X \backslash\{p\}) \cong \operatorname{Pic}(\tilde{X} \backslash E)$ and we have $\mathbb{Z} \rightarrow \operatorname{Pic} \tilde{X} \rightarrow$ $\operatorname{Pic}(\tilde{X} \backslash E) \rightarrow 0$. The first map is injective because $E^{2}=-1$, and π^{*} splits the sequence to give the desired isomorphism. For the intersection formulae, move C, D so that they meet transversely and do not pass through p. Because π^{*} is an isomorphism $\tilde{X} \backslash E \rightarrow X \backslash\{p\}$, we get an equality of intersection numbers
as desired. Moreover, since C (possibly after moving) does not pass through $p,\left(\pi^{*} C\right) \cdot E=0$. Next, taking a curve passing through p with multiplicity 1 , its strict transform meets E transversely at one point which corresponds to the tangent direction of $p \in C$, i.e. $\tilde{C} \cdot E=1$ and $\tilde{C}=\pi^{*} C-E$. Since $\left.\left(\pi^{*} C\right) \cdot E\right)=0$, we get $1=\tilde{C} \cdot E=\left(\pi^{*} C-E\right) \cdot E=-E^{2}$ as desired. Finally, to show the desired result about canonical divisors, we use the adjunction formula $-2=2(0)-2=E\left(E+K_{\tilde{X}}\right)=-1+E \cdot K_{\tilde{X}} \Longrightarrow E \cdot K_{\tilde{X}}=-1$. By the previous proposition, $K_{\tilde{X}}=\pi^{*} K_{X}+n E \Longrightarrow n=1$ (by taking intersection with E).

Note that we can see this latter fact more directly. Letting $\omega=d x \wedge d y$ be the top differential in local coordinates at p, then $\pi^{*} \omega=d x \wedge d(x t)=x d x \wedge d t \Longrightarrow$ $\pi^{*} K_{X}+E=K_{\tilde{X}}$.

1.1. Invariants of Blowing Up.

Theorem 2. $\pi_{*} \mathcal{O}_{\tilde{X}}=\mathcal{O}_{X}$ and $R^{i} \pi_{*} \mathcal{O}_{\tilde{X}}=0$ for $i>0$, so the two structure sheaves have the same cohomology.

Proof. π is an isomorphism away from $E, \pi: \tilde{X} \backslash E \rightarrow X \backslash\{p\}$, so it is clear that $\mathcal{O}_{X} \rightarrow \pi_{*} \mathcal{O}_{\tilde{X}}$ is an isomorphism except possibly at p, and $R^{i} \pi_{*} \mathcal{O}_{\tilde{X}}$ can only be supported at p. By the theorem on formal functions, the completion at p of this sheaf is $\widehat{R^{i} \pi_{*} \mathcal{O}_{\tilde{X}}}=\lim _{\rightleftarrows} H^{i}\left(E_{n}, \mathcal{O}_{E_{n}}\right)$, where E_{n} is the closed subscheme defined on \tilde{X} by $\mathcal{I}^{n}, \mathcal{I}$ the ideal sheaf of E. We obtain an exact sequence $0 \rightarrow$ $\mathcal{I}^{n} / \mathcal{I}^{n+1} \rightarrow \mathcal{O}_{E_{n+1}} \rightarrow \mathcal{O}_{E_{n}} \rightarrow 0$ with $\mathcal{I} / \mathcal{I}^{2} \cong \mathcal{O}_{E}(1) \Longrightarrow \mathcal{I}^{n} / \mathcal{I}^{n+1} \cong \mathcal{O}_{E}(n)$. Since $E \cong \mathbb{P}^{1}$, we have $H^{i}\left(E, \mathcal{O}_{E}(n)\right)=0$ for $n, i>0$. Using the long exact sequence in cohomology, we find that $H^{i}\left(E_{n}, \mathcal{O}_{E_{n}}\right)=0$ for all $i>0, n \geq 1$, so the above inverse limit vanishes. $R^{i} \pi_{*} \mathcal{O}_{\tilde{X}}$ is concentrated at p and thus equals its own completion, giving the desired vanishing of higher direct image sheaves. Also, $\pi_{*} \mathcal{O}_{\tilde{X}}=\pi_{*} \mathcal{O}_{X}$ follows from the fact that X is normal and π is birational (trivial case of Zariski's main theorem). The final statement follows from the spectral sequence associated to H^{i} and $R^{i} \pi_{*}$.

This implies that the irregularity $q_{X}=h^{1}\left(X, \mathcal{O}_{X}\right)=q_{\tilde{X}}$ and geometric genus $p_{g}(X)=h^{2}\left(X, \mathcal{O}_{X}\right)=p_{g}(\tilde{X})$ are invariant under blowup.

2. Rational maps

Let X, Y be varieties, X irreducible.
Definition 1. A rational map $X \rightarrow Y$ is a morphism ϕ from an open subset U of X to Y. Note that if two morphisms $U_{1}, U_{2} \rightarrow Y$ agree on some $V \subset U \cap U_{2}$, they agree on $U_{1} \cap U_{2}$, and thus each rational map has a unique maximal domain U. We say that ϕ is defined at $x \in X$ if $x \in U$.

Proposition 2. If X is nonsingular, Y projective, then $X \backslash U$ has codimension 2 or larger.

Proof. If ϕ is not defined on some irreducible curve C, then $\mathcal{O}_{C, X}$ gives us a valuation $v_{C}: k(X) \rightarrow \mathbb{Z}$. Let ϕ be given by $\left(f_{0}: \cdots: f_{n}\right)$ with $f_{i} \in K(X)$ s.t. at least one f_{j} has a pole along C. Take the f_{i} s.t. $v\left(f_{i}\right)$ is the smallest, and divide by it. Then ϕ is defined on the generic point of C, a contradiction.

In particular, if X is a smooth surface and Y is projective, a rational map is defined on all but finitely many points F (those lying on the set of zeroes and poles of ϕ). If C is an irreducible curve on X, ϕ is defined on $C \backslash(C \cap F)$, and we can set $\phi(C)=\overline{\phi(C \backslash(C \cap F))}$ (and similarly $\phi(X)=\overline{\phi(X \backslash F)}$). Restriction gives us an isomorphism between $\operatorname{Pic}(X)$ and $\operatorname{Pic}(X \backslash F)$, so we can talk about the inverse image of a divisor D (or line bundle, or linear system) under ϕ.

3. Linear Systems

For a divisor $D,|D|$ is the set of effective divisors linearly equivalent to D, i.e. $\mathbb{P}\left(H^{0}\left(X, \mathcal{O}_{X}(D)\right)^{\vee}\right)$. A hyperplane in this projective space pulls back to give a divisor equivalent to D. For $f \in H^{0}\left(\mathcal{O}_{X}(D)\right)$, let D^{\prime} be the divisor of zeroes of f. A complete linear system is such a space $\mathbb{P}\left(H^{0}\left(X, \mathcal{O}_{X}(D)\right)^{\vee}\right)$, while a linear system P is simply a linear subspace of such a system. One dimensional linear systems are called pencils. A component C of P is called fixed if every divisor of P contains C, i.e. all the elements of the corresponding subspace of $H^{0}\left(X, \mathcal{O}_{X}(D)\right)^{\vee}$ vanish along C. The fixed part of P is the biggest divisor F which is contained in every element of P, so that $|D-F|$ for $D \in P$ has no fixed part. A point p of X is a base point of P if every divisor of P contains p. If p has no fixed part, then it has finitely many base points (at most $\left(D^{2}\right)$).

4. Properties of Birational Maps between Surfaces

(1) Elimination of indeterminacy
(2) Universal property of blowing up
(3) Factoring birational morphisms
(4) Minimal surfaces
(5) Castelnuovo's contraction theorem

Theorem 3. Let $\phi: S \rightarrow X$ be a rational map from a surface to a projective variety. Then \exists a surface S^{\prime}, a morphism $\eta: S^{\prime} \rightarrow S$ which is the composition of a finite number of blowups, and a morphism $f: S^{\prime} \rightarrow X$ s.t. f and $\phi \circ \eta$ coincide.

Proof. We may as well assume that $X=\mathbb{P}^{n}$ and $\phi(S)$ is not contained in any hyperplane of \mathbb{P}^{n}. So ϕ corresponds to a linear system $P \subset|D|$ of dimension m with no fixed component. If P has no base points, ϕ is an isomorphism and we are done. Otherwise, let p be such a base point, and consider the corresponding blowup $\pi: X_{1} \rightarrow S$. The exceptional curve E occurs in the fixed part of $\pi^{*} P \subset\left|\pi^{*} D\right|$ with some multiplicity $k \geq 1$ (i.e. the smallest multiplicity of
curves in P passing through p). Then $P_{1} \subset\left|\pi^{*} D-k E\right|$ obtained by subtracting $k E$ from elements of $\pi^{*} P$ has no fixed component, and defines a rational map $\phi_{1}: X_{1} \longrightarrow \mathbb{P}^{m}$ which coincides with $\phi \circ \pi$. If ϕ_{1} is a morphism, we are done; otherwise, repeat the process. We obtain a sequence of divisors $D_{n}=\pi_{n}^{*} D_{n-1}-$ $k_{n} E_{n} \Longrightarrow 0 \leq D_{n}^{2}=D_{n-1}^{2}-k^{2}<D_{n-1}^{2}$, which must terminate.
Theorem 4. Let $f: X \rightarrow S$ be a birational morphism of surfaces s.t. f^{-1} is not defined at a point $p \in S$. Then factors as $f: X \xrightarrow{g} \tilde{S} \xrightarrow{\pi} S$ where g is a birational morphism and π is the blowup of S at p.

Lemma 1. Let S be an irreducible surface, possibly singular, and $S^{\prime \prime}$ a smooth surface with a birational morphism $f: S \rightarrow S^{\prime}$. Suppose f^{-1} is undefined at $p \in S$. Then $f^{-1}(p)$ is a curve on S.

Proof. We may assume that S is affine, with $f^{-1}(p)$ nonempty, so there is an embedding $j: S \rightarrow \mathbb{A}^{n}$. Now, $j \circ f^{-1}: S \rightarrow \mathbb{A}^{n}$ is given by rational functions $g_{1}, g_{2}, \ldots, g_{n}$ and at least one of them is undefined at p, say $g_{1} \notin \mathcal{O}_{S^{\prime}, p}$. Let $g_{1}=\frac{u}{v}$, where $u, v \in \mathcal{O}_{S^{\prime}, p}$ are coprime and $v(p)=0$. Let D be defined on S by $f^{*} v=0$. On S we have $f^{*} u=\left(f^{*} v\right) x_{1}$ (where x_{1} is the first coordinate function on $S \subset \mathbb{A}^{n}$) (because it is true under $\left.\left(f^{-1}\right)^{*}\right):\left(f^{-1}\right)^{*} f^{*} u=\left(f^{-1}\right)^{*} f^{*} v \cdot\left(f^{-1}\right)^{*} x_{1}$, $k(S)=k\left(S^{\prime}\right)$. So $f^{*} u=f^{*} v=0$ on D, and $D=f^{-1}(Z)$ where Z is the subset of S^{\prime} defined by $u=v=0$. This is a finite set since u, v are coprime. Shrinking S^{\prime} if necessary, we can assume $Z=\{p\}$, and $D=f^{-1}(p)$ as desired.

