MIT OpenCourseWare
http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 4

LECTURES: ABHINAV KUMAR

We recall the theorem we stated and lemma we proved from last time:
Theorem 1. Let $f: X \rightarrow S$ be a birational morphism of surfaces s.t. f^{-1} is not defined at a point $p \in S$. Then factors as $f: X \xrightarrow{g} \tilde{S} \xrightarrow{\pi} S$ where g is a birational morphism and π is the blowup of S at p.

Lemma 1. Let S be an irreducible surface, possibly singular, and S^{\prime} a smooth surface with a birational morphism $f: S \rightarrow S^{\prime}$. Suppose f^{-1} is undefined at $p \in S$. Then $f^{-1}(p)$ is a curve on S.

Lemma 2. Let $\phi: S \rightarrow S^{\prime}$ be a birational map s.t. ϕ^{-1} is undefined at a point $p \in S^{\prime}$. Then there is a curve C on S s.t. $\phi(C)=\{p\}$.

Proof. ϕ corresponds to a morphism $f: U \rightarrow S^{\prime}$ where U is some open set in S. Let $\Gamma \subset U \times S^{\prime}$ be the graph of f, and let S_{1} denote its closure in $S \times S^{\prime} . S_{1}$ is irreducible but may be singular.

The projections q, q^{\prime} are birational morphisms and the diagonal morphism commutes. Since $\phi^{-1}(q)$ is not defined, $\left(q^{\prime}\right)^{-1}(p)$ is not defined either, so $\exists C_{1} \subset S$ an irreducible curve s.t. $q^{\prime}\left(C_{1}\right)=\{p\}$. Moreover, $q\left(C_{1}\right)=C$ is a curve in S : if not, since $S_{1} \subset S \times S^{\prime}, q\left(C_{1}\right)$ a point $\Longrightarrow C_{1} \subset\{x\} \times S^{\prime}$ for some $x \in S$; but such a C_{1} can only intersect the graph of f in $\{(x, f(x))\}$ so the closure of the graph of f can't contain the curve C_{1}. By construction, C contracts to $\{p\}$ under ϕ.
Proof of theorem. Let $g=\pi^{-1} \circ f$ be the rational map in question. We need to show that g is a morphism. Let $s=g^{-1}$, and suppose that g is undefined at a point $q \in X$.

Applying the second lemma, we obtain a curve $C \subset \tilde{S}$ s.t. $s(C)=\{q\}$. Then $\pi(C)=f(q)$ by composing $s(C)=\{q\}$ with f. So we must have $C=E$, the exceptional divisor for π, and $f(q)=p$. Let $\mathcal{O}_{x, q}$ be the local ring of X at q, and let \mathfrak{m}_{q} be its maximal ideal. We claim that there is a local coordinate y on S at p s.t. $f^{*} y \in \mathfrak{m}_{q}^{2}$. To see this, let (x, t) be a local system of coordinates at p. If $f^{*} t \in \mathfrak{m}_{q}^{2}$ then we are done. If not, i.e. $f^{*} t \notin \mathfrak{m}_{q}^{2}$, then $f^{*} t$ vanishes on $f^{-1}(p)$ with multiplicity 1 , so it defines a local equation for $f^{-1}(p)$ in $\mathcal{O}_{X, q}$. So $f^{*}(x)=u \cdot f^{*} t$ for some $u \in \mathcal{O}_{x, q}$. Let $y=x-u(q) t$; then

$$
\begin{equation*}
f^{*} y=f^{*} x-u(q) f^{*} t=u f^{*}(t)-u(q) f^{*}(t)=(u-u(q)) f^{*}(t) \in \mathfrak{m}_{q}^{2} \tag{3}
\end{equation*}
$$

Next, let e be any point on E where s is defined. Then we have $s^{*} f^{*} y=$ $(f \circ s)^{*} y=\pi^{*} y \in \mathfrak{m}_{e}^{2}$. This holds for all e outside a finite set. But $\pi^{*} y$ is a local coordinate at every point of E except one, by construction, giving the desired contradiction.

This proves the universal property of blowing up. Here is another:
Proposition 1. Every morphism from \tilde{S} to a variety X that contracts E to a point must factor through S.
Proof. We can reduce to X affine, then to $X=\mathbb{A}^{n}$, then to $X=\mathbb{A}^{1}$. Then f defines a function on $\tilde{S} \backslash E \cong S \backslash\{p\}$ which extends.

Theorem 2. Let $f: S \rightarrow S_{0}$ be a birational morphism of surfaces. Then $\exists a$ sequence of blowups $\pi_{k}: S_{k} \rightarrow S_{k-1}(k=1, \ldots, n)$ and an isomorphism $S \xrightarrow{\sim} S_{n}$ s.t. $f=\pi_{1} \circ \cdots \circ \pi_{n} \circ u$, i.e. f factors through blowups and an isomorphism.

Proof. If f^{-1} is a morphism, we're done. Otherwise, \exists a point p of S_{0} where f^{-1} is not defined. Then $f=\pi_{1} \circ f_{1}$, where π_{1} is the blowup of S_{0} at p. If f_{1}^{-1} is a morphism, we are done, otherwise we keep going. We need to show that this process terminates. Note that the rank of the Neron-Severi group $\mathrm{rk} N S\left(S_{k}\right)=1+\mathrm{rk} N S\left(S_{k-1}\right)$: since $\mathrm{rk}(S)$ is finite, this sequence must terminate. More simply, since f contracts only finitely many curves, it can only factor through finitely many distinct blowups.

Corollary 1. Any birational map $\phi: S \rightarrow S^{\prime}$ is dominated by a nonsingular surface \bar{S} with birational morphisms $q, q^{\prime}: \bar{S} \rightarrow S, S^{\prime}$ which are compositions of blow-up maps, i.e.

Proof. First resolve the indeterminacy of ϕ using \bar{S} and then note that q^{\prime} is a birational morphism, i.e. a composition of blowups by the above.

1. Minimal Surfaces

We say that a surface S_{1} dominates S_{2} if there is a birational morphism $S_{1} \rightarrow$ S_{2}. A surface S is minimal if it is minimal up to isomorphism in its birational equivalence class with respect to this ordering.

Proposition 2. Every surface dominates a minimal surface.
Proof. Let S be a surface. If S is not minimal, \exists a birational morphism $S \rightarrow S_{1}$ that is not an isomorphism, so $\operatorname{rk} N S(S)>\operatorname{rk} N S\left(S_{1}\right)$. If S_{1} is minimal, we are done: if not, continue in this fashion, which must terminate because rk $N S(S)$ is finite.

Note. We say that $E \subset S$ is exceptional if it is the exceptional curve of a blowup $\pi: S \rightarrow S^{\prime}$. Clearly an exceptional curve E is isomorphism to \mathbb{P}^{1} and satisfies $E^{2}=-1$ and $E \cdot K_{S}=-1($ since $-2=2 g-2=E \cdot(E+K)$.

Theorem 3 (Castelnuovo). Let S be a projective surface and $E \subset S$ a curve $\cong \mathbb{P}^{1}$ with $E^{2}=-1$. Then \exists a morphism $S \rightarrow S^{\prime}$ s.t. it is a blowup and E is the exceptional curve (classically called an "exceptional curve of the first kind").
Proof. We will find S^{\prime} as the image of a particular morphism from S to a projective space: informally, we need a "nearly ample" divisor which will contract E and nothing else. Let H be very ample on S s.t. $H^{1}\left(S, \mathcal{O}_{S}(H)\right)=0$ (take any hyperplane section \tilde{H}, then $H=n \tilde{H}$ will have zero higher cohomology by Serre's theorem). Let $k=H \cdot E>0$, and let $M=H+k E$. Note that $M \cdot E=(H+k E) \cdot E=k+k E^{2}=0$. This M will define the morphism $S \rightarrow \mathbb{P}\left(H^{0}\left(S, \mathcal{O}_{S}(M)\right)\right.$) (i.e. some $\left.\mathbb{P}^{n}\right)$. Now, $\left.\mathcal{O}_{S}(H)\right|_{E} \cong \mathcal{O}_{E}(k)$ since $E \cong \mathbb{P}^{1}$ and $\left.\operatorname{deg} \mathcal{O}_{S}(H)\right|_{E}=H \cdot E=k$ and on \mathbb{P}^{1}, line bundles are determined by degree. Thus, $\left.\mathcal{O}_{S}(M)\right|_{E} \cong \mathcal{O}_{E}$.

Now, consider the exact sequence

$$
\begin{equation*}
\left.O \rightarrow \mathcal{O}_{S}(H+(i-1) E) \rightarrow \mathcal{O}_{S}(H+i E) \rightarrow \mathcal{O}_{E}(k-i) \cong \mathcal{O}_{S}(H+i E)\right|_{E} \rightarrow 0 \tag{5}
\end{equation*}
$$

for $1 \leq i \leq k+1$. We know that $H^{1}\left(E, \mathcal{O}_{E}(k-i)\right)=0$, so we get

$$
\begin{align*}
0 \rightarrow H^{0}\left(S, \mathcal{O}_{S}(H+(i-1) E)\right) & \rightarrow H^{0}\left(S, \mathcal{O}_{S}(H+i E)\right) \tag{6}\\
H^{1}\left(S, \mathcal{O}_{S}(H+(i-1) E)\right) & \rightarrow H^{1}\left(S, \mathcal{O}_{S}(H+i E)\right)
\end{align*}
$$

Thus, the latter map is surjective for $i=1, \ldots, k+1$: for $i=0, H^{1}\left(S, \mathcal{O}_{S}(H)\right)=0$ so all those $H^{1}\left(S, \mathcal{O}_{S}(H+i E)\right)$ are zero.

Next, we claim that M is generated by global sections. Since M is locally free of rank 1: this just means that at any given point of S, not all elements of $H^{0}\left(S, \mathcal{O}_{S}(M)\right)$ vanish, i.e. this linear system has no base point. Since H is very ample, $M=H+k E$ certainly is generated by global sections away
from E. On the other hand, $H^{0}(S, M) \rightarrow H^{0}\left(S,\left.M\right|_{E}\right)$ is surjective because $H^{1}(S, H+(k-1) E)=0$. So it is enough to show that $\left.M\right|_{E}$ is generated by global sections on E. Now, $\left.M\right|_{E} \cong \mathcal{O}_{E}(k-k)=\mathcal{O}_{E}$ is generated by the global section 1. Therefore, lifting it to a section of $H^{0}(S, M)$ and using Nakayama's lemma, we see that M is generated by global sections at every point of E as well.

So M defines a morphism $S \xrightarrow{f^{\prime}} \mathbb{P}^{n}$ for some N. Let S^{\prime} be the image. Since $\left(f^{\prime}\right)^{*} \mathcal{O}(1)=M$ and $\left.\operatorname{deg} M\right|_{E}$ is 0 , we see that f^{\prime} maps E to a point p^{\prime}. On the other hand, since H is very ample, $H+k E$ separates points and tangent vectors away from E as well as separates points of E from points outside E. So f^{\prime} is an isomorphism from $S-E \rightarrow S^{\prime} \backslash\left\{p^{\prime}\right\}$.

Let S_{0} be the normalization of S^{\prime}. Since S is nonsingular, hence normal, the map f^{\prime} factors through S_{0} to give a map $f: S \rightarrow S_{0} . E$ irreducible $\Longrightarrow f(E)$ is a point p (the preimage of p^{\prime} is a finite number of points). We still have $f: S \backslash E \cong S_{0} \backslash\{p\}$. We are left to show that S_{0} is nonsingular. We show this using Grothendieck's theorem on formal functions: if $f: X \rightarrow Y$ is a proper map, \mathcal{F} a coherent sheaf on X, then

$$
\begin{equation*}
R^{i} f_{*}(\mathcal{F})_{y}^{\wedge} \xrightarrow{\sim} \underset{\leftrightarrows}{\lim } H^{i}\left(X_{n}, \mathcal{F}_{n}\right) \tag{7}
\end{equation*}
$$

where $X_{n}=X \times_{y} \operatorname{Spec} \mathcal{O}_{Y} / \mathfrak{m}_{y}^{n}$ is the thickened scheme-theoretic preimage of y. We'll apply it with $i=0, \mathcal{F}=\mathcal{O}_{S}, f: S \rightarrow S_{0}$. $f_{*} \mathcal{O}_{S}=\mathcal{O}_{S_{0}}$ since S_{0} is normal. Moreover, $\hat{\mathcal{O}_{p}}=\lim H^{0}\left(E_{n}, \mathcal{O}_{E_{n}}\right)$. Now, it is enough to show that $\hat{\mathcal{O}_{p}}$ is 2-dimensional $\cong k[[x, y]]$. Let's show for every n,

$$
\begin{equation*}
H^{0}\left(E_{n}, \mathcal{O}_{E_{n}}\right) \cong k[[x, y]] /(x, y)^{n} \cong k[[x, y]] /(x, y)^{n} \tag{8}
\end{equation*}
$$

For $n=1, H^{0}\left(E, \mathcal{O}_{E}\right)=k$. For $n>1$, we have

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{E}^{n} / \mathcal{I}_{E}^{n+1} \rightarrow \mathcal{O}_{E_{n+1}} \rightarrow \mathcal{O}_{E_{n}} \rightarrow 0 \tag{9}
\end{equation*}
$$

where $E \cong \mathbb{P}^{1} \Longrightarrow \mathcal{I}_{E} / \mathcal{I}_{E}^{2} \equiv \mathcal{O}_{\mathbb{P}^{1}}(1), \mathcal{I}_{E}^{n} / \mathcal{I}_{E}^{n+1} \cong \mathcal{O}_{\mathbb{P}^{1}}(n)$. Using the LES, we obtain

$$
\begin{equation*}
0 \rightarrow H^{0}\left(\mathcal{O}_{\mathbb{P}^{1}}(n)\right) \rightarrow H^{0}\left(\mathcal{O}_{E_{n+1}}\right) \rightarrow H^{0}\left(\mathcal{O}_{E_{n}}\right) \rightarrow 0 \tag{10}
\end{equation*}
$$

When $n=1, H^{0}\left(\mathcal{O}_{\mathbb{P}^{1}}(1)\right)$ is a 2-dimensional vector space. Taking a basis $x, y, H^{0}\left(\mathcal{O}_{E_{2}}\right)$ (which contains k) is seen to be $k[x, y] /(x, y)^{2}=k \oplus k x \oplus k y$. Now inducting, we find that $H^{0}\left(\mathcal{O}_{E_{n}}\right)$ is isomorphic to $k[x, y] /(x, y)^{n}$. Lift elements x, y to $H^{0}\left(\mathcal{O}_{E_{n+1}}\right)$, we find that $H^{0}\left(\mathcal{O}_{\mathbb{P}^{1}}(n)\right.$ is a vector space with basis $x^{n}, x^{n-1} y, \ldots, y^{n}$ (contained in the symmetric power of (x, y)). So we get $H^{0}\left(\mathcal{O}_{E_{n+1}}\right) \cong k[x, y] /(x, y)^{n+1}$. The truncations are compatible, so $\hat{\mathcal{O}}_{p} \cong$ $k[[x, y]] \Longrightarrow p$ is nonsingular.

