MIT OpenCourseWare
http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 13

LECTURES: ABHINAV KUMAR

1. Classification of Ruled Surfaces (contd.)

Recall from last time that we had $(K \cdot D)<0$ for some effective divisor D, and we wanted to show that X was ruled.

- Step 1: There is an ample H s.t. $(K \cdot H)<0$, so $|n K| \neq \varnothing$ for all $n \geq 1$.
- Step 2: If $\left(K^{2}\right)>0, X$ is rational and thus ruled.
- Step 3: Otherwise, for all n, there is an effective divisor D on X s.t. $|K+D|=\varnothing$ and $\operatorname{dim}|D| \geq n$.
- Step 4: If $|K+D|=\varnothing$ for D effective, then there is a natural, surjective map $\operatorname{Pic}_{X}^{0} \rightarrow \operatorname{Pic}_{D}^{0}$.
- Step 5: If D is an effective divisor s.t. $|K+D|=\varnothing$ and if $D=\sum n_{i} E_{i}$, then
(1) All the E_{i} are nonsingular, and $\sum p_{a}\left(E_{i}\right) \leq q=h^{1}\left(X, \mathcal{O}_{X}\right)$.
(2) $\left\{E_{i}\right\}$ is a configuration of curves with no loops, and E_{i} intersect transversely.
(3) If $n_{i} \geq 2$, then either
(a) E_{i} is rational,
(b) $\left(E_{i}\right)^{2}<0$, or
(c) E_{i} is an elliptic curve with $E_{i}^{2}=0$ and the normal bundle of E_{i} in X is nontrivial.

Proof. (1) Since $\left|K+E_{i}\right| \subset|K+D|=\varnothing$, we see that $\operatorname{Pic}_{X}^{0} \rightarrow \operatorname{Pic}{ }_{D}^{0}$ is surjective, and so $\operatorname{Pic}_{E_{i}}^{0}$ is an abelian variety and E_{i} is nonsingular: if it were singular, and \tilde{E} were the normalization of $E, \mathrm{Pic}_{E_{i}}^{0}$ would be an extension of $\operatorname{Pic}_{\tilde{E}}^{0}$ by a nontrivial affine subgroup, i.e. a combination of additive groups \mathbb{G}_{a} and/or multiplicative groups \mathbb{G}_{m}. See Serre's Algebraic Groups and Flass fields, Oort's "A construction of generalized Jacobian varieties by group extension".) Similarly, $\left|K+D^{\prime}\right| \subset|K+D|=\varnothing$, where $D^{\prime}=\sum E_{i}$, so Pic $_{D^{\prime}}^{0}$ is an abelian variety. Thus, any components E_{i} and E_{j} of D with $i \neq j$ and $E_{i} \cap E_{j} \neq \varnothing$ intersect transversely (else get subgroups isomorphic to \mathbb{G}_{m} inside $\mathrm{Pic}_{D^{\prime}}^{0}$). The exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{D^{\prime}} \rightarrow \prod_{1} \mathcal{O}_{E_{i}} \rightarrow \operatorname{cok} \rightarrow 0 \tag{1}
\end{equation*}
$$

gives $h^{1}\left(\mathcal{O}_{D^{\prime}}\right) \geq \sum h^{i}\left(\mathcal{O}_{E_{i}}\right)=\sum p_{a}\left(E_{i}\right)$ because cok is supported in dimension 0 . Since $\left|K+D^{\prime}\right|=\varnothing, H^{2}\left(\mathcal{O}_{X}\left(-D^{\prime}\right)\right)=0$, so $H^{1}\left(\mathcal{O}_{X}\right) \rightarrow H^{1}\left(\mathcal{O}_{D^{\prime}}\right)$ is surjective and $\sum p_{a}\left(E_{i}\right) \leq \operatorname{dim} H^{1}\left(\mathcal{O}_{X}\right)=q$.
(2) If D contains a loop, $\operatorname{Pic}(D)$ contains a subgroup isomorphic to \mathbb{G}_{m}, which is not possible since $\operatorname{Pic}_{D}^{0}$ is an abelian variety.
(3) If $n_{i} \geq 2$, then $\left|K+2 E_{i}\right| \subset|K+D|=\varnothing$ so $\operatorname{Pic}_{2 E_{i}}^{0}$ is an abelian variety. Then the natural map $\operatorname{Pic}_{2 E_{i}}^{0} \rightarrow \operatorname{Pic}_{E_{i}}^{0}$ is an isogeny of abelian varieties, as follows: consider the exact sequences (see lemma below)

$$
\begin{align*}
0 \rightarrow I=\mathcal{O}_{E_{i}}\left(-\left.E_{i}\right|_{E_{i}}\right) \rightarrow \mathcal{O}_{2 E_{i}} & \rightarrow \mathcal{O}_{E_{i}} \rightarrow 0 \\
0 & \rightarrow I \xrightarrow{\alpha} \mathcal{O}_{2 E_{i}}^{*} \tag{2}
\end{align*} \rightarrow \mathcal{O}_{E_{i}}^{*} \rightarrow 1
$$

($\left.I^{2}=0, \alpha(x)=1+x\right)$. The second sequence induces

$$
\begin{equation*}
0 \rightarrow H^{1}(I) \rightarrow \operatorname{Pic}\left(2 E_{i}\right) \rightarrow \operatorname{Pic}\left(E_{i}\right) \Longrightarrow 0 \rightarrow H^{1}(I) \rightarrow \operatorname{Pic}^{0}\left(2 E_{i}\right) \rightarrow \operatorname{Pic}^{0}\left(E_{i}\right) \tag{3}
\end{equation*}
$$

If $H^{1}(I)$ is nonzero, the abelian variety $\operatorname{Pic}_{2 E_{i}}^{0}$ would contain a copy of \mathbb{G}_{a} which is impossible. So $H^{1}(E)=0$. Then the cohomology of the first exact sequence gives $0=H^{1}(I) \rightarrow H^{1}\left(\mathcal{O}_{2 E_{i}}\right) \rightarrow H^{1}\left(\mathcal{O}_{E_{i}}\right) \rightarrow 0\left(H^{2}=0\right.$ since the sheaf I is supported on a curve). So the tangent map of $\operatorname{Pic}_{2 E_{i}}^{0} \rightarrow \operatorname{Pic}_{E_{i}}^{0}$ is an isomorphism and the map $\operatorname{Pic}_{2 E_{i}}^{0} \rightarrow \operatorname{Pic}_{E_{i}}^{0}$ is an isogeny. In particular, $H^{1}\left(\mathcal{O}_{E_{i}}\left(-\left.E_{i}\right|_{E_{i}}\right)\right)=0$. If $\left(E_{i}\right)^{2} \geq 0$ then since $\operatorname{deg}\left(\mathcal{O}_{E_{i}}\left(-\left.E_{i}\right|_{E_{i}}\right)\right)=-\left(E_{i}\right)^{2} \leq 0$. Using RR, we see that either E_{i} is a rational curve (in which case $\left(E_{i}\right)^{2}=0$ or 1) or an elliptic curve (in which case $\left(E_{i}\right)^{2}=0$, and $\mathcal{O}_{E_{i}}\left(-\left.E_{i}\right|_{E_{i}}\right)$ is not isomorphic to $\mathcal{O}_{E_{i}}$ and the normal bundle is nontrivial).

Lemma 1. If $D=D^{\prime}+D^{\prime \prime}$ are effective divisors on $X\left(D^{\prime}, D^{\prime \prime}>0\right)$ then there is an exact sequence $0 \rightarrow \mathcal{O}_{D^{\prime \prime}}\left(-D^{\prime}\right) \rightarrow \mathcal{O}_{D} \rightarrow \mathcal{O}_{D^{\prime}} \rightarrow 0$ where $\mathcal{O}_{D^{\prime \prime}}\left(-D^{\prime}\right)=$ $\mathcal{O}_{X}\left(-D^{\prime}\right) \otimes \mathcal{O}_{D^{\prime \prime}}$.

Proof. Tensoring $0 \rightarrow \mathcal{O}_{X}\left(-D^{\prime \prime}\right) \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{D^{\prime \prime}} \rightarrow 0$ by $\mathcal{O}_{X}\left(-D^{\prime}\right)$ gives $0 \rightarrow$ $\mathcal{O}_{X}(-D) \rightarrow \mathcal{O}_{X}\left(-D^{\prime}\right) \rightarrow \mathcal{O}_{D^{\prime \prime}}\left(-D^{\prime}\right) \rightarrow 0$. Now, $\mathcal{O}_{X}(-D) \subset \mathcal{O}_{X}\left(-D^{\prime}\right)$ and $\mathcal{O}_{D} \rightarrow \mathcal{O}_{D}^{\prime}$ is surjective.

Using the snake lemma proves the result.
We now conclude the proof of classification. Let X be a surface, x_{1}, \ldots, x_{n} distinct closed points on X, D a divisor s.t. $\operatorname{dim}|D| \geq 3 n$.

Lemma 2. There is an effective divisor $D^{\prime} \in|D|$ s.t. every x_{i} is on D^{\prime} as a multiple point.

Proof. As before, we have an exact sequence of abelian sheaves

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}(D) \otimes I_{1} \otimes \cdots \otimes I_{n} \rightarrow \mathcal{O}_{X}(D) \rightarrow \bigoplus k\left(x_{i}\right)^{3} \rightarrow 0 \tag{5}
\end{equation*}
$$

where I_{i} is the kernel of $\mathcal{O}_{X} \rightarrow \mathcal{O}_{X, x_{i}} / \mathfrak{m}_{X, x_{i}}^{2}$: this follows from the fact that $\operatorname{dim} \mathcal{O}_{X, x_{i}} / m_{X, x_{i}}^{2}=3$, so $\mathcal{O}_{X, x_{i}} / m_{x, x_{i}}^{2} \cong k\left(x_{i}\right)^{3}$ as a skyscraper abelian sheaf supported at x_{i}. Taking cohomology gives

$$
\begin{equation*}
0 \rightarrow H^{0}\left(\mathcal{O}_{X}(D) \otimes I_{1} \otimes \cdots \otimes I_{n}\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(D)\right) \rightarrow \bigoplus k\left(x_{i}^{3}\right) \rightarrow \cdots \tag{6}
\end{equation*}
$$

where the dimension of the second term is $\geq 3 n+1$ and that of the third term is $3 n$. Thus, we obtain a nonzero section of $\mathcal{O}_{X}(D) \otimes I_{1} \otimes \cdots \otimes I_{n}$: taking its divisor of zeros gives the desired divisor.

Now, if $q=h^{1}\left(X, \mathcal{O}_{X}\right)=0$, then since $p_{2}=0$, we get X rational and thus ruled. So we assume that $q>0$.
Proposition 1. Through every point $x \in X$ there is a nonsingular rational curve on X.

Proof. If not, then we claim that there are only finitely many smooth rational curves on X. Indeed, let $f: X \rightarrow B$ be obtained from the Albanese morphism $\alpha: X \rightarrow \operatorname{Alb}(X)$ by Stein factorization (so B is the normalization of $\alpha(X)$ in the rational function field $k(X)$). If there were infinitely many nonsingular rational curves, then each of them would be contained in a fiber of f (since their image in $\operatorname{Alb}(X)$ is a single point). So there are infinitely many points $b \in B$ s.t. $\operatorname{dim}\left(f^{-1}(b)=1\right.$, so B cannot be a surface and is instead a nonsingular curve. Since the general fiber of f is integral, and since infinitely many fibers contain at least one nonsingular rational curve, at least one of these closed fibers must be a smooth rational curve. Then the proof of Tsen's theorem tells us that all the fibers of f are smooth rational curves, contradicting the hypothesis. Therefore, there exist only finitely many rational curves on X.

Now fix a projective embedding $X \rightarrow \mathbb{P}^{n}$. For a fixed integer $d \geq 1$, there are only finitely many integral curves E on X with $\operatorname{deg}(E)=d$ and $H^{0}\left(N_{E}\right)=0$ where N_{E} is the normal bundle of E in X. [Since if $\mathcal{C}(d)$ is the Hilbert scheme of curves of degree d on $X, e \in \mathcal{C}(d)$ the closed point corresponding to E, then the tangent space to $\mathcal{C}(d)$ at e is $H^{0}\left(N_{E}\right)=0$ and thus e is isolated. Since the Hilbert scheme is projective, there are only finitely many isolated points]. In particular, there are only finitely many curves of degree d satisfying either
$\left(E^{2}\right)<0$ or E elliptic and N_{E} not isomorphic to \mathcal{O}_{E}. Let \mathcal{F} be the family of all nonsingular curves E on X that are either rational or of the above types. \mathcal{F} is countable. Assume that k is uncountable (postpone the countable case for the moment). A general hyperplane H on \mathbb{P}^{n} intersects X in a nonsingular connected curve C with $C \notin \mathcal{F}$ (Bertini, \mathcal{F} has only finitely many of degree $=\operatorname{deg}(X)$). $C \backslash \bigcup_{E \in \mathcal{F}}(C \cap E)$ is infinite, so $X \backslash \bigcup_{E \in \mathcal{F}} E$ is infinite.

Let x_{1}, \ldots, x_{q} be q distinct points in $X \backslash \bigcup E$. By the previous steps, there is an effective divisor D^{\prime} s.t. $\left(K \cdot D^{\prime}\right)<0,\left|K+D^{\prime}\right|=\varnothing, \operatorname{dim}\left|D^{\prime}\right| \geq 3 q$. Then by the lemma, \exists a divisor $D=\sum n_{i} E_{i}$ in $\left|D^{\prime}\right|$ s.t. x_{1}, \ldots, x_{q} are multiple points of D. If E_{i} is a component of D that passes through x_{j}, then $E_{i} \notin \mathcal{F}$ (since $\left.x_{j} \in X \backslash \bigcup E\right)$. So $n_{j} \geq 2$ is not possible, i.e. $n_{j}=1$. We also know that E_{i} is nonsingular. Since x_{j} is a multiple point of D_{j}, it follows that at least 2 components of D must pass through x_{j}. Since the intersection graph of $\left\{E_{i}\right\}$ has no loops (i.e. it's a tree), there must be at least $q+1$ such E_{i}. Also, $p_{a}\left(E_{i}\right) \geq 1$ since \mathcal{F} includes all nonsingular rational curves, $\sum p_{a}\left(E_{i}\right) \geq q+1$. This contradicts $\sum P_{a}\left(E_{i}\right) \leq q$.

Therefore \exists a nonsingular rational curve through any point of X. Let α : $X \rightarrow \operatorname{Alb}(X)$ be the Albanese morphism. It follows as above that for any rational curve C on $\alpha(C)$ is a point $\Longrightarrow \operatorname{dim} \alpha(X)=1$. Let $X \rightarrow B$ be the Stein factorization. The general fiber is integral, and the special fibers contain smooth rational curves \Longrightarrow argument above shows that $X \rightarrow B$ is a ruling. This proves the theorem when k is uncountable.

Now, if k is countable, let $k \hookrightarrow k^{\prime}$ be an extension with k^{\prime} algebraically closed and uncountable. Then $X^{\prime}=X \times_{k} k^{\prime}$ satisfies the same properties (e.g. \exists an effective divisor D^{\prime} s.t. $K_{X^{\prime}} \cdot D<0$), implying that X^{\prime} is ruled over B^{\prime}, obtained by Stein factorization for $\alpha: X^{\prime} \rightarrow \alpha\left(X^{\prime}\right)$ (α is the Albanese morphism). By functoriality, $B^{\prime}=B \times_{k} k^{\prime}$, and it is easy to check that X is ruled over B.

