18.727 Topics in Algebraic Geometry: Algebraic Surfaces Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 6

LECTURES: ABHINAV KUMAR

Corollary 1. Assume that all the closed fibers of the morphism $\pi : X \to B$ are isomorphic to \mathbb{P}^1 (i.e. π is smooth and the fibers have arithmetic genus 0; or say that $\pi : X \to B$ is geometrically ruled). Then there exists a locally free \mathcal{O}_B -module E of rank 2 and a B-isomorphism $u : X \to \mathbb{P}_B(E)$. If E and E' are two locally free \mathcal{O}_B -modules of rank 2 then \exists a B-isomorphism $v : \mathbb{P}(E) \to \mathbb{P}(E')$ if and only if \exists an invertible \mathcal{O}_B -module L s.t. $E' \cong E \otimes_{\mathcal{O}_B} L$.

Proof. The first part follows from the proof of the theorem above. E is constructed as $\mathcal{O}_X(D), D = \sigma(B)$ for a section σ . Geometrically, E is patching together $\pi^{-1}(U) \cong U \times \mathbb{P}^1$, so we get a locally free sheaf of rank 2. For the second part, if $E' \cong E \otimes L$, then $\mathbb{P}(E) \cong \mathbb{P}(E')$ is easy. Conversely, assume that \exists a B-isomorphism $v : \mathbb{P}(E) \to \mathbb{P}(E')$. Then by the proposition below (about $\operatorname{Pic}(\mathbb{P}(E))), v^*\mathcal{O}_{\mathbb{P}(E')}(1) \cong \pi^*(L) \otimes \mathcal{O}_{\mathbb{P}(E)}(S)$, where $s \in \mathbb{Z}, \pi : \mathbb{P}(E) \to B$ (resp. $\pi' : \mathbb{P}(E') \to B$) are the canonical projections. L is an invertible \mathcal{O}_B -module, and

(1)
$$E' \cong \pi'_* \mathcal{O}_{\mathbb{P}(E')}(1) \cong \pi_* v^* \mathcal{O}_{\mathbb{P}(E')}(1) \cong \pi_* (\pi^*(L) \otimes \mathcal{O}_{\mathbb{P}(E)}(S)) \\ \cong L \otimes \pi_* \mathcal{O}_{\mathbb{P}(E)}(S) \cong L \otimes \operatorname{Sym}^s E$$

Comparing ranks, we see that s = 1, so $E' \cong L \times E$.

Proposition 1. Let $f : \mathbb{P}_Z(E) \to Z$ be a projective bundle with Z an arbitrary variety, E a locally free \mathcal{O}_Z -module of finite rank. Then $\operatorname{Pic}(\mathbb{P}(E)) \cong \mathbb{Z}[\mathcal{O}_{\mathbb{P}(E)}(1)] \oplus f^*(\operatorname{Pic}(Z)).$

 \square

Proof. This follows from the base change theorem, e.g. ex II.7.9 in Hartshorne. We will see this explicitly for ruled surfaces later. \Box

Remark. Another proof of the the second part of the corollary: $\mathbb{P}(E)$ is a \mathbb{P}^1 bundle over the base B, and the set of isomorphism classes of such bundles can be identified with the set $H^1(B, G)$, where G is the sheaf of nonabelian groups defined by $G(U) = \operatorname{Aut}_U(U \times \mathbb{P}^1) = \{ \operatorname{morphisms of } U \text{ into } \operatorname{PGL}_2(k) \}$ Now, let $G = \operatorname{PGL}_2(\mathcal{O}_B)$: we have

(2)
$$1 \to \mathcal{O}_B^* \to \operatorname{GL}_2(\mathcal{O}_B) \to \operatorname{PGL}_2(\mathcal{O}_B) \to 1$$

giving the associated long exact sequence

$$(3) \qquad H^{1}(B, \mathcal{O}_{B}^{*}) \to H^{1}(B, \operatorname{GL}_{2}(\mathcal{O}_{B})) \to H^{1}(B, \operatorname{PGL}_{2}(\mathcal{O}_{B})) \to H^{1}(B, \mathcal{O}_{B}^{*})$$

The first object is Pic(B), the last is 0 since B is a curve, while the second and third are respectively the set of isomorphism classes of rank 2 vector bundles and the set of isomorphism classes of \mathbb{P}^1 -bundles.

Lemma 1. Let D be an effective divisor on a surface X, C an irreducible curves s.t. $C^2 \ge 0$. Then $D.C \ge 0$.

Proof. D = D' + nC, where D' does not contain C and $n \ge 0$. Then $D \cdot C = D' \cdot C + nC^2 \ge 0$.

Lemma 2. Let p be a surjective morphism from a surface to a smooth curve with connected fibers and $F = \sum n_i C_i$ a reducible fiber. Then $C_i^2 < 0$ for all i.

Proof. $n_i C_i^2 = C_i (F - \sum_{j \neq i} n_j C_j) = 0 - \sum_{j \neq i} n_j (C_i - C_j)$. $(C_i \cdot C_j) \ge 0$, with at least one being > 0 (because F is connected), so the sum is negative. \Box

Lemma 3. Let X be a minimal surface, B a smooth curve, $\pi : X \to B$ a morphism with generic fiber isomorphic to \mathbb{P}^1 . Then X is geometrically ruled by π .

Proof. Let F be a fiber of π : then $F^2 = 0 \implies F \cdot K = -2$ by the genus formula. If F is reducible, $F = \sum n_i C_i$: applying the genus formula and the above lemma, we find that $K \cdot C_i \ge -1$, with equality $\Leftrightarrow C_i^2 = -1(-2 \le 2g(C_i) - 2 = C_i^2 + C_i \cdot K \le -1 + K \cdot C_i)$. This would imply that C_i is an exceptional curve, contradicting the minimality of X. So $K \cdot C_i \ge 0 \implies K \cdot F = \sum n_i(K \cdot C_i) \ge 0$, contradicting $K \cdot F = -1$. So F must be irreducible. It cannot be a multiple, since $F = aF' \implies (F')^2 = 0, aF' \cdot K = F \cdot K = -1 \implies a = 2$ and $F' \cdot K = -1$ which is again impossible. F is therefore integral and isomorphic to \mathbb{P}^1 (arithmetic genus 0), and π is smooth on $F \implies \pi : X \to B$ is smooth. \Box

Theorem 1. Let B be a smooth, irrational (i.e. g > 0) curve. The minimal models of $B \times \mathbb{P}^1$ are exactly the geometrically ruled surfaces over B, i.e. the \mathbb{P}^1 -bundles $\mathbb{P}_B(E)$.

Proof. Let $\pi : X \to C$ be geometrically ruled. If E is an exceptional curve, then E cannot be a fiber of π since $E^2 = -1$. So $\pi(E) = B$, which is not possible since E is rational and B has higher genus. Thus, X is minimal.

Conversely, suppose X is minimal and $\phi : X \dashrightarrow B \times \mathbb{P}^1$ is birational. Let $q : B \times \mathbb{P}^1 \to B$ be the projection, and consider $q \circ \phi$. There is a diagram factoring this map through a sequence of blowups $X' \stackrel{\epsilon_n}{\to} \cdots \stackrel{\epsilon_1}{\to} X$ as a map $f : X' \to B$. Suppose n > 0, and let E be the exceptional curve for ϵ_n . Since B is not rational, f(E) must be a single point, so f factors as $f' \circ \epsilon_n$, contradicting the minimality of n. So n = 0, and $q \circ \phi$ is a morphism with rational generic fiber. The lemma above shows that X is geometrically ruled by $q \circ \phi$.

Let $X = \mathbb{P}_B(E)$ be a geometrically ruled surface over $B, \pi : X \to B$ the structure map. The bundle π^*E on X has a natural subbundle N. Over a point $x \in X$, consider the corresponding line $D \subset E_{\pi(X)}$, and let $N_X = D$. The bundle $\mathcal{O}_X(1)$ (the tautological bundle on X) is defined by

(4)
$$0 \to N \to \pi^* E \to \mathcal{O}_X(1) \to 0$$

Let Y be any variety, $f: Y \to B$ a morphism. If there is a morphism $g: Y \to \mathbb{P}(E)$ s.t. degree commutes, then we can associate a line bundle $L = g^* \mathcal{O}_X(1)$ and the surjective morphism $g^* u: g^* \pi^* E = f^* E \to L$. Conversely, given a line bundle L on Y and a surjective morphism $v: f^* E \to L$, we can define a B-morphism $g: Y \to \mathbb{P}(E)$ by associating to $y \in Y$ the line Ker $(v_y) \subset E_{f(y)}$. These two constructions are inverse to each other, and, in particular, giving a section $\sigma: B \to X = \mathbb{P}(E)$ of π is equivalent to giving a quotient line bundle of $E = \mathrm{id}^* E$.

Proposition 2. Let $X = \mathbb{P}_B(E)$ be a geometrically ruled surface, and let π : $X \to B$ be the structure map. Let n be the class of $\mathcal{O}_X(1)$ in $\operatorname{Pic}(X)$, and let f be the class of the fiber. Then (a) $\operatorname{Pic} X = \pi^* \operatorname{Pic} B \oplus \mathbb{Z}h$ and (b) $\operatorname{Num} X = \mathbb{Z}f + \mathbb{Z}h$.

Proof. For (a), let h be the class of $\mathcal{O}_X(1)$. It is clear that $h \cdot f = 1$. Now, let $D \in \operatorname{Pic} X$, $n = D \cdot f$, D' = D - nh so $D' \cdot f = 0$. It is enough to show that D' is the pullback under π^* of a divisor on B. Let $D_n = D' + nF$ for F a fiber, $D_n^2 = D^2$. Also, $D_n \cdot K = D' \cdot K + nF \cdot K = D' \cdot K - 2n$, and $h^0(K - D_n) = 0$ for n sufficiently large. Riemann-Roch for D_n gives $h^0(D_n) \geq \frac{1}{2}D_n(D_n - K) = O(n)$. Thus, $|D_n|$ is nonempty for large enough n. Let $E \in \mathbb{P}_n^1$. Since $E \cdot F = 0$, every component of E is vertical, so it is a fiber of π and thus the inverse image of a divisor on B. This implies that D' is as well, proving our claim. (b) follows from this and the fact that Num $B = \mathbb{Z}$ generated by the class of a point.

Lemma 4. Let E be a locally free sheaf of rank 2 on a curve B. Then there is an exact sequence $0 \to L \to E \to M \to 0$ with L and M line bundles on B.

Proof. We may twist E by a very ample line bundle H so that $E \otimes H$ is generated by global sections. If we can prove the statement for $E \otimes H$, tensoring by H^{-1} gives the statement for E. So let s_1, \ldots, s_k be global sections which generate E. We claim that there is an element in the span of these sections s.t. $s_b \notin m_b E_b$ for every $b \in B$. Consider the incidence correspondence $\Sigma \subset B \times \mathbb{P}^{k-1} =$ $\{(b,s)|s(b) = 0\}$. Σ is an irreducible variety of dimension k-3+1=k-2, and thus one cannot cover all of \mathbb{P}^{k-1} by projections of such correspondences. This gives us a sequence $O \to \mathcal{O}_X \to E \to E/s\mathcal{O}_X \to 0$ with $E/s\mathcal{O}_X$ locally free, implying the desired exact sequence.

Remark. The above generalizes to higher dimensions. Also, the same argument shows that, for every locally free sheaf E of rank $r \ge 2$ on a curve B, there is a sequence $0 \subset E_0 \subset \cdots \subset E_n = E$ of subsheaves s.t. E_i/E_{i-1} are invertible.