18.727 Topics in Algebraic Geometry: Algebraic Surfaces Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 10

LECTURES: ABHINAV KUMAR

Recall that we had left to show that there are no surfaces in characteristic p > 0 satisfying

- (1) Pic (X) is generated by $\omega_X = \mathcal{O}_X(K)$, and the anticanonical bundle is ample. In particular, X doesn't have any nonsingular rational curves.
- (2) Every divisor of |-K| is an integral curve of arithmetic genus 1.
- (3) $(K^2) \le 5, b_2 \ge 5.$

Lemma 1. Let X be as above. Then \exists a nonsingular curve $D \in |-K|$.

Proof. Suppose not. Since $p_a(D) = 1$, we may assume that every D in |-K| has exactly one singular point, a node or a cusp. Then dim $|-K| \ge K^2 \ge 1$. Let $L \subset |-K|$ be a one-dimensional linear subsystem. The fiber s of $\phi_L : X \dashrightarrow \mathbb{P}^1$ are exactly the curves in L, because L has no fixed components (all the elements of L are integral). Let Y be the set of all singular points on curves in L, and let x be a base point of L (if any). We claim that $x \notin Y$. This is because if $x \in Y$, then for $D \in L$ a curve singular at $x, \pi : \tilde{X} \to X$ the blowup of X at x, then \tilde{D} is a nonsingular rational curve and a fiber of $\tilde{\phi} = \phi \circ \pi : \tilde{X} \to \mathbb{P}^1$. After further (at most K^2) blowups, we get an X' s.t. $\phi' : X' \to \mathbb{P}^1$ is a morphism and one fiber of ϕ' is a smooth, rational curve. So X' is geometrically ruled over \mathbb{P}^1 , implying that X' is rational and so X is rational. This, however, is impossible by the classification of rational surfaces (Pic (X) is never $\mathbb{Z}\omega_X$), giving the desired contradiction.

So blowup the base points of ϕ so that $\tilde{\phi} : \tilde{X} \to \mathbb{P}^1$ is a quasi-elliptic fibration (by Tate, all singular points are cusps in characteristic 2 or 3, e.g. $y^2 = x^3 + t$). All the fibers are integral rational curves with one singular point, and the set of singularities \tilde{Y} of $\tilde{\phi}$ is a nonsingular irreducible curve with $\tilde{\phi}|_Y : \tilde{Y} \to \mathbb{P}^1$ a bijective, purely inseparable morphism. Thus, $\tilde{Y} \cong \mathbb{P}^1 \implies Y \cong \mathbb{P}^1$, contradicting the fact that there are no smooth rational curves on X.

Lemma 2. Let X be as above. Then $H^2(X, T_X) = 0$ for $T_X = (\Omega^1_{X/k})^{\vee}$ the tangent sheaf.

Proof. \exists a nonsingular elliptic curve $D \in |-K|$ by the above lemma. The short exact sequence

(1)
$$0 \to \mathcal{O}_X((n-1)D) \otimes T_X \to \mathcal{O}_X(nD) \otimes T_X \to \mathcal{O}_X(nD) \otimes T_X \otimes \mathcal{O}_D \to 0$$

gives the long exact sequence in cohomology

(2)
$$H^{1}(X, \mathcal{O}_{X}(nD) \otimes T_{X} \otimes \mathcal{O}_{D}) \to H^{2}(X, \mathcal{O}_{X}((n-1)D) \otimes T_{X})$$
$$\to H^{2}(D, \mathcal{O}_{X}(nD) \otimes T_{X}) = 0$$

for large n by Serre vanishing (since D is ample). By reverse induction, it is enough to show that $H^1(X, \mathcal{O}_X(nD) \otimes T_X \otimes \mathcal{O}_D) = 0$ for $n \ge 1$. This will show

(3)
$$H^{2}(\mathcal{O}_{X}((n-1)D) \otimes T_{X}) = 0 \implies H^{2}(\mathcal{O}_{X}((n-2)D) \otimes T_{X}) = 0$$
$$\implies H^{2}(\mathcal{O}_{X} \otimes T_{X}) = 0$$

Dualizing the conormal exact sequence $0 \to \mathcal{I}/\mathcal{I}^2 \to \Omega_X \otimes \mathcal{O}_D \to \Omega_D \to 0$, we get

(4)
$$0 \to \mathcal{O}_D \cong T_D \to T_X \otimes \mathcal{O}_D \to N = \mathcal{O}_X(D) \otimes \mathcal{O}_D \to 0$$

where we used that $T_D = \omega_D^{\vee} \cong \mathcal{O}_D$ since D is an elliptic curve. Taking cohomology gives

(5)
$$H^1(\mathcal{O}_X(nD) \otimes \mathcal{O}_D) \to H^1(\mathcal{O}_X(nD) \otimes T_X \otimes \mathcal{O}_D) \to H^1(\mathcal{O}_X(nD) \otimes N)$$

 $D^2 > 0$, so we get $H^1(\mathcal{O}_X(nD) \otimes \mathcal{O}_D) = 0 = H^1(\mathcal{O}_X(nD) \otimes N)$ as desired, since $\mathcal{O}_X(nD) \otimes \mathcal{O}_D$ and $\mathcal{O}_X(nD) \otimes N$ are sheaves of large positive degree on D for n >> 0.

We now return to the proof of the proposition for $p = \operatorname{char}(k) > 0$. Let A = W(k)be the Witt vectors of k. A is a complete DVR of characteristic 0, with maximal ideal \mathfrak{m} and residue field $A/\mathfrak{m} = k$. The idea is to lift X to characteristic 0 and use the result already proved. Note that $H^2(X, T_X) = 0$: in addition, X is projective and $H^2(X, \mathcal{O}_X) = 0$, so by SGA1, Theorem III, 7.3, there is a smooth projective morphism $f: U \to V = \operatorname{Spec}(A)$ which closed fiber isomorphic to X. Let X' be the general fiber. Then X' is a nonsingular projective surface over the fraction field K' of A (which is unfortunately not algebraically closed). The fibers of f are 2-dimensional, so $R^i f_* \mathcal{O}_U = 0$ for $i \geq 3$. The base change theorem gives

(6)
$$(R^2 f_* \mathcal{O}_U) \otimes_A A/\mathfrak{m} \to H^2(f^{-1}(\mathfrak{m}), \mathcal{O}_U/\mathfrak{m}\mathcal{O}_U) = H^2(X, \mathcal{O}_X) = 0$$

is an isomorphism. By Nakayama's lemma, we get that $R^2 f_* \mathcal{O}_U = 0$, and similarly for R^1 . Thus, $H^1(X', \mathcal{O}_{X'}) = H^2(X', \mathcal{O}_{X'}) = 0$. See Mumford's Abelian Varieties or Chapters on Algebraic Surfaces for more details.

Now, let K'' be an algebraic closure of K' and K'_i the family of finite extensions of K' inside K''. Let $X'' = X' \times_{K'} k'', X_i = X' \times_{K'} K'_i$. Let A'' be the integral closure of A inside K'', and $A_i = A'' \cap K''_i$. Let \mathfrak{m}'' be a maximal ideal of A'' lying over \mathfrak{m} and $B'' = A''_{\mathfrak{m}''}$ its localization. Similarly, let $\mathfrak{m}_i = \mathfrak{m}'' \cap A_i, B_i = (A_i)_{m_i}$ and set $\mathfrak{n}'' = \mathfrak{m}''B'', \mathfrak{n}_i = \mathfrak{m}_i B_i$. Since $K = A/\mathfrak{m}$ is algebraically closed, we see, $B''/\mathfrak{n}'' = B_i/\mathfrak{n}_i = K$.

Now let $V_i = \operatorname{Spec} B_i, U_i = U \otimes_A B_i, f_i = f \otimes_A B_i : U_i \to V_i.$

(7)
$$\begin{array}{c} X_i \longrightarrow U_i \longrightarrow U \longleftarrow X \\ \downarrow & f_i \downarrow & f \downarrow & \downarrow \\ \operatorname{Spec} K'_i \longrightarrow V_i \longrightarrow \operatorname{Spec} A \longleftarrow \operatorname{Spec} K \end{array}$$

Since $B_i/\mathfrak{n}_i = k$, the closed fiber of f_i is canonically isomorphic to X. The generic fiber of f_i is isomorphic to X_i and since $K_i \supset K$ is finite, B_i is a DVR and $\{V_i\}$ is an inductive system. By EGA and general nonsense, $\varinjlim \operatorname{Pic} X_i \to \operatorname{Pic} X''$ is an isomorphism.

Lemma 3. There is a group isomorphism $b : \text{Pic } X_i \to \text{Pic } X$ defined by the following: for L an invertible \mathcal{O}_{X_i} -module, \exists an invertible \mathcal{O}_{U_i} -module L_i s.t. $L_i|_{X_i} \cong L$, and we set $b([L]) = [L_i|_X]$.

Proof. Omitted.

Proof of theorem: So we get a canonical isomorphism between Pic X and Pic X'' which takes ω_X to $\omega_{X''}$. Since Pic $X = \mathbb{Z}\omega_X$, we see that Pic $X'' = \mathbb{Z}\omega_{X''}$ and $\omega_{X''}^{-1}$ is ample, giving us (1) for X''. Also, $\omega_{X''} \cdot \omega_{X''} = \omega_{X'} \cdot \omega_X$ using flatness and the definition of (·) by χ (), so $\omega_{X''} \cdot \omega_{X''} \leq 5$ and $b_2(X'') \geq 5$ by Noether's formula. Since q(X') = 0, q(X'') = 0. But X'' is over an algebraically closed field of characteristic 0, which as shown last time is impossible.

Definition 1. A surface X is unirational if there is a dominant morphism $Y \rightarrow X$ from a rational surface.

Corollary 1. In characteristic zero, a unirational surface is rational.

Note that this is not true in characteristic > 0, e.g. the Zariski surfaces $z^p = f(x, y)$.

Proof. Given $f: Y \to X$ where Y is rational, we have $q(Y) = p_2(Y) = 0$. f is separable, so it induces an injective map $H^0(X, \omega_X^{\otimes n}) \to H^0(Y, \omega_Y^{\otimes n})$. Thus, $p_2(X) = 0$ and similarly q(X) = 0. By the above, it is rational.

Remark. In Castelnuovo's theorem, it is not enough to take $q = p_g = 0$: counterexamples include the Godeaux surfaces, e.g. a quotient of $x^3 + y^3 + z^3 + w^3 = 0$ in \mathbb{P}^3 by $\mathbb{Z}/5\mathbb{Z}$ acting as $[w : x : y : z] \mapsto [w : \zeta_5 x : \zeta_5^2 y : \zeta_5^3 z]$, and Enriques surfaces (quotients of K3 surfaces by fixed point free involutions).

LECTURES: ABHINAV KUMAR

1. PICARD AND ALBANESE VARIETIES

Let X be a smooth variety, Pic X the Picard group of line bundles up to isomorphism (or divisors up to linear equivalence). Set Pic⁰(X) to be those algebraically equivalent to zero: we say that L_1 and L_2 are algebraically equivalent (i.e. $L_1 \approx L_2$) if \exists a connected scheme T, points $t_1, t_2 \in T$, and an invertible $\mathcal{O}_{X \times T}$ -module L s.t. $L|_{X \times \{t_1\}} \cong L_1$ and $L_{X \times \{t_2\}} \cong L_2$. For such $L_1, L_2, L_1 \otimes L_2^{-1}$ is algebraically equivalent to zero. The Picard functor from schemes over k to sets is that which maps a scheme T to the set Pic_X(T) of all T-isomorphism classes of invertible $\mathcal{O}_{X \times T}$ -modules, where L_1, L_2 are T-isomorphic if \exists and invertible \mathcal{O}_T -module M s.t. $L_1 \cong L_2 \otimes p_2^*(M)$. This is a contravariant functor: for $f: T' \to T$ a morphism of k-schemes, then

(8)
$$\operatorname{Pic}_X(f) : \operatorname{Pic}_X(T) \to \operatorname{Pic}_X(T'), \operatorname{Pic}_X(f)([L]) = [(id_X \times f)^*[L]]$$

 Pic_X has a subfunctor Pic_X^0 defined by

(9)
$$\operatorname{Pic}_{X}^{0}(T) = \{ L \in \operatorname{Pic}_{X}(T) | L_{t} = L|_{X \times \{t\}} \sim_{alg} \mathcal{O}_{X} \text{ for all } t \in T \}$$

Theorem 1. The functors Pic_X , Pic_X^0 are representable by schemes called $\operatorname{\underline{Pic}}_X$ and $\operatorname{\underline{Pic}}_X^0$ respectively.

This means that we have a natural equivalence $\operatorname{Pic}_X(T) = \operatorname{Hom}_{k-Sch}(T, \underline{\operatorname{Pic}}_X)$, and $T \to \underline{\operatorname{Pic}}_X$ corresponds uniquely to a line bundle on $X \times T$ up to Tisomorphism. The identity map $\underline{\operatorname{Pic}}_X \to \underline{\operatorname{Pic}}_X$ corresponds to a line bundle \mathcal{L} on $X \times \underline{\operatorname{Pic}}_X$ called the *universal bundle*: the map $f: T \to \underline{\operatorname{Pic}}_X$ corresponds to the line bundle $(\operatorname{id}_X \times f)^*(\mathcal{L})$ on $X \times T$. Similarly for $\underline{\operatorname{Pic}}_X^0$.