MIT OpenCourseWare
http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 17

LECTURES: ABHINAV KUMAR

1. K3 Surfaces (contd.)

Remark. Note that K3 surfaces can only be elliptic over \mathbb{P}^{1} : on a K3 surface, however, one can have many different elliptic fibrations, though not every K3 surface has one.

2. Enriques Surfaces

Recall that such surfaces have $\kappa(X)=0, K_{X} \equiv 0, b_{2}=10, b_{1}=0, \chi\left(\mathcal{O}_{X}\right)=1$. A classical Enriques surface has $p_{g}=0, q=0, \Delta=0$, while a non-classical Enriques surface has $p_{g}=1, q=1, \Delta=2$ (which can only happen in characteristic 2). We will discuss only classical Enriques surfaces.

Proposition 1. For an Enriques surface, $\omega_{X} \not \not \mathcal{O}_{X}$, but $\omega_{X}^{2} \cong \mathcal{O}_{X}$.
Proof. Since $p_{g}=0, \omega_{X} \not \not \mathcal{O}_{X}$. By Riemann-Roch, $\chi\left(\mathcal{O}_{X}(-K)\right)=\chi\left(\mathcal{O}_{X}\right)+$ $\frac{1}{2}(-K)(-2 K)=\chi\left(\mathcal{O}_{X}\right)=1$, so $h^{0}\left(\mathcal{O}_{X}(-K)\right)+h^{0}\left(\mathcal{O}_{X}(2 K)\right) \geq 1$. Since $K_{X} \not 千$ $\mathcal{O}_{X} \Longrightarrow K_{X} \not 千 \mathcal{O}_{X}, h^{0}\left(\mathcal{O}_{X}(-K)\right)=0($ since $-K \equiv 0)$, and so $h^{0}\left(\mathcal{O}_{X}(2 K)\right) \geq 1$. Since $2 K \equiv 0,2 K=0$, i.e. $\omega_{X}^{2} \cong \mathcal{O}_{X}$. So the order of K in $\operatorname{Pic}(X)$ is 2. Note that $\operatorname{Pic}(X)=\mathrm{NS}(X)$, because $\operatorname{Pic}^{0}(X)=0$ since $q=0, \Delta=0$ for classical Enriques surfaces.

Proposition 2. $\operatorname{Pic}^{\tau}(X)=\mathbb{Z} / 2 \mathbb{Z}$, where the former object is the space of divisors numerically equivalent to zero modulo linear (or algebraic) equivalence, or similarly the torsion part of NS.

Proof. Let $L \equiv 0$. By Riemann-Roch, $\chi(L)=\chi\left(\mathcal{O}_{X}\right)+\frac{1}{2} L \cdot(L-K)=\chi\left(\mathcal{O}_{X}\right)=1$ Thus, $h^{0}(L) \neq 0$ or $h^{2}(L)=h^{0}(K-L) \neq 0$. But both L and $K-L$ are $\equiv 0$, so either $L \cong \mathcal{O}_{X}$ or $\omega \otimes L^{-1} \cong \mathcal{O}_{X}$, i.e. $L \cong \omega$.

Proposition 3. Let X be an Enriques surface. Suppose $\operatorname{char}(k) \neq 2$. Then \exists an étale covering X^{\prime} of degree 2 of X which is a K3 surface, and the fundamental group of X^{\prime} / X is $\mathbb{Z} / 2 \mathbb{Z}$.
Proof. K_{X} is a 2-torsion divisor class. Let $\left(f_{i j}\right) \in Z^{1}\left(\left\{U_{i}\right\}, \mathcal{O}_{X}^{*}\right)$ be a cocycle representing K. in $\operatorname{Pic}(X)=H^{1}\left(X, \mathcal{O}_{X}^{*}\right)$. Since $2 K \sim 0,\left(f_{i j}^{2}\right)$ is a coboundary,
so we can write is as $f_{i j}^{2}=\frac{g_{i}}{g_{j}}$ on $U_{i} \cap U_{j}, g_{i} \in \Gamma\left(U_{i}, \mathcal{O}_{X}^{*}\right)$. Now $\pi: X^{\prime} \rightarrow X$ defined locally by $z_{i}^{2}=g_{i}$ on U_{i} given by $\frac{z_{i}}{z_{j}}=f_{i j}$. This is étale since char $(k) \neq 2$. $\omega_{X^{\prime}}=\pi^{*}\left(\omega_{X}\right) \Longrightarrow \kappa\left(X^{\prime}\right)=0$ as well. Since $\chi\left(\mathcal{O}_{X^{\prime}}\right)=2 \chi\left(\mathcal{O}_{X}\right)=2, X^{\prime}$ is a K3 surface from the classification theorem.

Remark. Over \mathbb{C}, in terms of line bundles, take $X^{\prime}=\left\{s \in L \mid \alpha\left(S^{\otimes 2}\right)=1\right\}$, where $\omega_{X}=L=\mathcal{O}(K)$ is a line bundle equipped with an isomorphism $\alpha: L^{\otimes 2} \xrightarrow{\sim} \mathcal{O}_{X}$. The map $L \supset X^{\prime} \ni s \rightarrow(x, x) \in X^{\prime} \times_{X} L$ defines a nowhere vanishing section of $\pi^{*} L$ which is trivial, implying that $\pi^{*} L=K_{X^{\prime}}$ is trivial. This implies that $\chi\left(\mathcal{O}_{X^{\prime}}\right)=2$, and thus X^{\prime} is K3.

Proposition 4. Let X^{\prime} be a $K 3$ surface and i a fixed-point-free involution s.t. it gives rise to an étale connected covering $X^{\prime} \rightarrow X$. If $\operatorname{char}(K) \neq 2$, then X is an Enriques surface.

Proof. $\omega_{X^{\prime}}=\pi^{*}\left(\omega_{X}\right)$, and since $\omega_{X^{\prime}} \equiv \mathcal{O}_{X^{\prime}}, \omega_{X} \equiv 0, \kappa(X)=0$, and $\chi\left(\mathcal{O}_{X}\right)=$ $\frac{1}{2} \chi\left(\mathcal{O}_{X^{\prime}}\right)=1$. By classification, X is an Enriques surface.

Thus, Enriques surfaces are quotients of K3 surfaces by fixed-point free involutions.

Example. The smooth complete intersection of 3 quadrics in \mathbb{P}^{5} is a K3 surface. Let $f_{i}=Q_{i}\left(x_{0}, x_{1}, x_{2}\right)+Q_{i}^{\prime}\left(x_{3}, x_{4}, x_{5}\right)$ for $i=1,2,3$, where Q_{i}, Q_{i}^{\prime} are homogeneous quadratic forms; the f_{i} cut out X^{\prime}, a K3 surface. Now, let $\sigma: \mathbb{P}^{5} \rightarrow$ $\mathbb{P}^{5}, \sigma\left(x_{0}: \cdots: x_{5}\right)=\left(x_{0}: x_{1}: x_{2}:-x_{3}:-x_{4}:-x_{5}\right)$ be an involution. Note that $\sigma\left(X^{\prime}\right)=X^{\prime}$. Generically, the 3 conics $Q_{i}=0$ in \mathbb{P}^{2} (respectively the conics $Q_{i}^{\prime}=0$) have no points in common, implying that $\sigma^{\prime}=\sigma_{X^{\prime}}$ has no fixed points in X^{\prime}, giving us an Enriques surface as above.

Theorem 1. Every Enriques surface is elliptic (or quasielliptic).
Proof. Exercise.

3. Bielliptic surfaces

This is the fourth class of surfaces with $\kappa(X)=0: b_{2}=2, \chi\left(\mathcal{O}_{X}\right)=0, b_{1}=$ $2, K_{X} \equiv 0$. There are two cases:
(1) $p_{g}=0, q=1, \Delta=0$: the classical, bielliptic/hyperelliptic surface.
(2) $p_{g}=1, q=2, \Delta=2$, which only happens in positive characteristic.

In either case, $b_{1}=2 \Longrightarrow s=\frac{b_{2}}{2}=1=\operatorname{dim} \operatorname{Alb}(X)$, so the Albanese variety is an elliptic curve.

Theorem 2. The map $f: X \rightarrow \operatorname{Alb}(X)$ has all fibers either smooth elliptic curves, or all rational curves, each having one singular point which is an ordinary cusp. The latter case happens only in characteristic 2 or 3.

Proof. Let $B=\operatorname{Alb}(X), b \in B$ a closed point, $F=F_{b}=f^{-1}(b)$. Then $F^{2}=$ $0, F \cdot K=0 \Longrightarrow p_{a}(f)=1 \Longrightarrow f: X \rightarrow B$ is an elliptic or quasi-elliptic fibration (the latter only in characteristic 2 or 3). All the fibers of f are irreducible (if we had a reducible fiber $F=\sum a_{i} E_{i}$, then the classes of F, E_{i}, and H (the hyperplane section) would give 3 independent classes in NS (X), implying that $b_{2} \geq \rho \geq 3$ by the Igusa-Severi inequality, a contradiction). Similarly, one can show that there are no multiple fibers, implying that all fibers are integral. If the general fiber is smooth (or any closed fiber is smooth), then $f^{*} \omega, \omega \in F^{0}\left(B, \omega_{B}^{\prime}\right)$ is a regular 1 -form on X, vanishes exactly where f is not smooth, implying that it is a global section of $\Omega_{X / k}^{1}$ whose zero locus is either empty or of pure codimension 2. A result of Grothendieck shows that the degree of the zero locus is $c_{2}\left(\Omega_{X / k}^{1}\right)=c_{2}=2-2 b_{1}+b_{2}=0$, implying that $f^{*} \omega$ is everywhere nonzero and f is smooth.

Remark. If all fibers of the Albanese map are smooth, call it a hyperelliptic/bielliptic surface. If all fibers of the Albanese map are singular, call it a quasihyperelliptic/quasibielliptic surface.

Next, we find a second elliptic fibration.
Theorem 3. Let X be as above, $f: X \rightarrow B=\operatorname{Alb}(X)$ a hyperelliptic or quasihyperelliptic fibration. Then \exists another elliptic fibration $g: X \rightarrow \mathbb{P}^{1}$.

Proof. (Idea) Find an indecomposable curve C of canonical type s.t. $C \cdot F_{t}>0$ for all $t \in B$, where $F_{t}=f^{*}(t)$. First note the following.
Definition 1. Let X be a minimal surface and $D=\sum n_{i} E_{i}>0$ be an effective divisor on X. We say that D is a divisor (or curve) of canonical type if $K \cdot E_{i}=$ $D \cdot E_{i}=0$ for all $i=1, \cdots, r$. If D is also connected, and the g.c.d. of the integers n_{i} is 1 , then we say that D is an indecomposable divisor (or curve) of canonical type.
Theorem 4. Let X be a minimal surface with $K^{2}=0$ and $K \cdot C \geq 0$ for all curves C on X. If D is an indecomposable curve of canonical type on X, then \exists an elliptic or quasi-elliptic fibration $f: X \rightarrow B$ obtained from the Stein factorization of the morphism $\phi_{|n D|}: X \rightarrow \mathbb{P}\left(H^{0}\left(\mathcal{O}_{X}(n D)\right)^{\vee}\right)$ [dual, since the points of x are functionals on $H^{0}\left(\mathcal{O}_{X}(n D)\right)$) for some $n>0$.

We will prove this later, and for now, we return to the proof for hyperelliptic surfaces. If we can find such a C of canonical type, then we get an elliptic or quasielliptic fibration $g: X \rightarrow B^{\prime}$ s.t. $\left(F_{t}, G_{t^{\prime}}\right)>0$ for all $t \in B, t^{\prime} \in B^{\prime}$, where $G_{t}^{\prime}-g^{-1}\left(t^{\prime}\right)$. If g where quasielliptic, then the general fiber G_{t} would be a rational curve, implying that $f\left(G_{t^{\prime}}\right)$ is a point (since B is an elliptic curve) and $G_{t^{\prime}} \subset F_{t}$ for some t, contradicting $\left(F_{t}, G_{t^{\prime}}\right)>0$. So g is in fact an elliptic fibration. Similarly, it is not hard to see that the base must be \mathbb{P}^{1}. How do we find C ?

Let H be a hyperplane section, F_{0} a fiber of f. Let $D=a H+b F_{0}$ so that $D^{2}=0, D \cdot F_{t}>0\left(\right.$ e.g. $b=-H^{2}, a=2\left(H \cdot F_{0}\right)$). Then one can prove that, for some $t \in B, D_{t}=D+F_{t}-F_{0}$ has $\left|D_{t}\right| \neq \varnothing$.

Now we have two different elliptic fibrations "transversal" to each other.
Theorem 5. Let X, X^{\prime} be two minimal surfaces with $\kappa(X) \geq 0$ and $\kappa\left(X^{\prime}\right) \geq 0$, and let $\phi: X \rightarrow X^{\prime}$ be a birational map. Then ϕ is an isomorphism.

Proof. Let us show that ϕ is a morphism (the proof for ϕ^{-1} is the same). Resolve ϕ via a sequence of blowups $\pi_{i}: X_{i} \rightarrow X_{i-1}, X_{0}=X$ to obtain a morphism $f: X_{n} \rightarrow X^{\prime}, f=\phi \circ \pi_{1} \circ \cdots \circ \pi_{n}$ with n minimal. If $n=0$, we are done, so assume $n>0$. Let E be the exceptional curve of π_{n}. If $f(E)$ is a point, then we can factor through π_{n}, contradicting minimality. Thus $f(E)$ is a curve F. Now, $K_{X^{\prime}} \cdot F \leq K_{X_{n}} \cdot E=-1$ where the inequality was proved before for blowups. So there is a curve F with $K_{X^{\prime}} \cdot F<0$, implying that X^{\prime} is ruled and contradicting our hypothesis.

Now, assume that the characteristic of k is neither 2 nor 3, and let X have two fibrations $f: X \rightarrow B, g: X \rightarrow \mathbb{P}^{1}$ as above. Let $F_{b}=f^{-1}(b), F_{c}^{\prime}=g^{-1}(c)$. As before, we show that all the fibers of g are irreducible. The reduced fibers are elliptic curves, and the multiple fibers are multiples of elliptic curves. Let $X=\left\{c \in \mathbb{P}^{1} \mid F_{c}^{\prime}\right.$ is a multiple fiber of $\left.g\right\}$. This is a finite set. If $c \in \mathbb{P}^{1} \backslash S$, then $f_{c}=\left.f\right|_{F_{c}^{\prime}}: F_{c}^{\prime} \rightarrow B$ is an étale morphism (using Riemann-Hurwitz, and that the genus of F_{c}^{\prime} equals the genus of $\left.B, 1\right)$. f_{c} induces a homomorphism of algebraic groups $f_{c}^{*}: \operatorname{Pic}^{0}(B) \rightarrow \operatorname{Pic}^{0}\left(F_{c}^{\prime}\right)$ and $\operatorname{Pic}^{0}\left(F_{c}^{\prime}\right)$ acts canonically on $F_{c}^{\prime} \cdot L$ as follows. If L is a degree 0 line bundle and $x \in F_{c}^{\prime}$, then $(L, x) \mapsto y$, where $L \otimes \mathcal{O}_{F_{c}^{\prime}}(x) \cong \mathcal{O}_{F_{c}^{\prime}}(y)$. So we get an action of B on F_{c}^{\prime} for each $c \in \mathbb{P}^{1} \backslash S$. Since $\left\{f_{c}^{*}\right\}$ is an algebraic family of homomorphisms of algebraic groups, we get an action σ_{0} of B on $g^{-1}\left(\mathbb{P}^{1} \backslash S\right) \subset X$. Thus, every element $b \in B$ defines a rational map $X \rightarrow X$, which we can extend to a morphism to get $\sigma: B \times X \rightarrow X$.

