18.727 Topics in Algebraic Geometry: Algebraic Surfaces Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Homework 1, 18.727 Spring 2008

- 1. Do the blowups necessary to reslove the du Val singularities:
 - (a) $A_4: x^2 + y^2 + z^5 = 0$,
 - (b) $D_5: x^2 + y^2 z + z^4 = 0,$
 - (c) $E_6: x^2 + y^3 + z^4 = 0$,
 - (d) $E_7: x^2 + y^3 + yz^3 = 0$,
 - (e) $E_8: x^2 + y^3 + z^5 = 0.$
- 2. Show that every locally free sheaf of rank n on \mathbb{P}^1 is a isomorphic to a direct sum of n line bundles. (Hint: choose an invertible subsheaf of maximal degree.)
- 3. Prove the following proposition: Let $\pi : X \to B$ be a morphism from a (nonsingular projective) surface to a (nonsingular projective) curve, and let $D = \sum n_i E_i$ be a fiber of π . Then for every divisor $D' = \sum n'_i E_i$ with $n'_i \in \mathbb{Z}$ (i.e. supported on the fiber), we have $(D'^2) \leq 0$. If the fiber D is connected then $(D'^2) = 0$ if and only if $\exists a \in \mathbb{Q}$ such that D' = aD.