MIT OpenCourseWare
http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 7

LECTURES: ABHINAV KUMAR

1. Ruled Surfaces (contd.)

As before, we have a short exact sequence $0 \rightarrow L \rightarrow E \rightarrow M \rightarrow 0$ for any vector bundle of rank 2 on a curve B. Let $\operatorname{deg}(E)=\operatorname{deg}\left(\wedge^{2} E\right)=\operatorname{deg} L \operatorname{deg} M$, $h^{i}(E)=\operatorname{dim} H^{i}(B, E)$. We can twist E by some line bundle so that $h^{0}(B, E) \neq 0$ but for any line bundle M on C with $\operatorname{deg}(M)<0, h^{0}(E \otimes M)=0$. Such and E is called normalized. The number $e=-\operatorname{deg}(E)$ is called the invariant of the ruled surface $X=\mathbb{P}(E)$. There is a section $\sigma: B \rightarrow X$ with image B_{0} s.t. $\mathcal{O}_{\lambda}\left(B_{0}\right)=\mathcal{O}_{X}(1)$.

Proof. Let $s \in H^{0}(E)$ be a nonzero section. This gives a map $0 \rightarrow \mathcal{O}_{B} \xrightarrow{s} E \rightarrow$ $E / s \mathcal{O}_{B}=L \rightarrow 0$. We claim that L is an invertible sheaf on B. If not, then L must have torsion. Let $F \subset E$ be the inverse image of the torsion subsheaf of L. F is torsion free of rank 1 on C. By assumption, $\mathcal{O}_{B} \subsetneq F$, so $\operatorname{deg} F>0$. But then $H^{0}\left(E \otimes F^{-1}\right) \neq 0$ and $\operatorname{deg}\left(F^{-1}\right)<0$ contradicting that E is normalized. Thus, L must have been invertible. The universal property then gives us a section $\sigma_{0}: B \rightarrow X$ with image B_{0}. Then it is easy to check that $\mathcal{O}_{X}\left(B_{0}\right) \cong \mathcal{O}_{X}(1)$.

Lemma 1. Let X be a ruled surface over a curve B of genus g, determined by a normalized E of rank 2. Then
(a) if E decomposes, then $E \cong \mathcal{O}_{B} \oplus L$ for some L with $\operatorname{deg} L \leq 0$ so $e=$ $-\operatorname{deg} E=-\operatorname{deg} L \geq 0$, and
(b) if E is indecomposable, then $-2 g \leq e \leq 2 g-2$.

Corollary 1. Every E of rank 2 on \mathbb{P}^{1} decomposes (i.e. no case (b)).
Thus, a \mathbb{P}^{1}-bundle over \mathbb{P}^{1} can be written as $\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-n)\right) \cong \mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus\right.$ $\mathcal{O}_{\mathbb{P}^{1}}(n)$). In fact, by a theorem of Grothendieck, every locally free sheaf on \mathbb{P}^{1} is decomposable.

Proof. (a) If E decomposes, then $E=L \oplus M$, where L and M are line bundles on B. Then we must have $\operatorname{deg} L, \operatorname{deg} M \leq 0$. (Otherwise, $E \otimes L^{-1}$ or $E \otimes M^{-1}$ would have global sections, contradicting the fact that E is normalized.) Also, $H^{0}(E)=H^{0}(M) \oplus H^{0}(L)$, so that L or M has global sections and therefore must be \mathcal{O}_{B}, since its degree is positive.
(b) We have $0 \rightarrow \mathcal{O}_{B} \rightarrow E \rightarrow L \rightarrow 0$. This is a nontrivial extension, so it corresponds to a nontrivial element of $\operatorname{Ext}^{1}\left(L, \mathcal{O}_{B}\right)=H^{1}\left(B, L^{-1}\right)$. So

$$
\begin{align*}
H^{1}\left(B, L^{-1}\right) & =H^{0}\left(B, L+K_{B}\right) \neq 0 \Longrightarrow \operatorname{deg}\left(L+K_{B}\right) \geq 0 \\
& \Longrightarrow e=-\operatorname{deg} E=-\operatorname{deg} L=\operatorname{deg} L^{-1} \leq 2 g-2 \tag{1}
\end{align*}
$$

On the other hand, $H^{0}(E \otimes M)=0$ for all M with $\operatorname{deg} M<0$. Take an M with $\operatorname{deg} M=-1$. Then we get

$$
\begin{equation*}
0=H^{0}(E \otimes M) \rightarrow H^{0}(L \otimes M) \rightarrow H^{1}(M) \rightarrow \cdots \tag{2}
\end{equation*}
$$

implying that $h^{0}(L \otimes M) \leq h^{1}(M)$. Now, since $\operatorname{deg} M<0, h^{0}(M)=0$. By Riemann-Roch, $h^{1}(M)=g$ and $h^{0}(L \otimes M) \geq \operatorname{deg} L-1+1-g=\operatorname{deg} L-g \Longrightarrow$ $\operatorname{deg} L \leq 2 g \Longrightarrow e \geq-2 g$ as desired.
1.1. Invariants. Let $\mathbb{P}_{B}(E)=X \rightarrow B$ be a ruled surface.

Proposition 1. For h the class of $\mathcal{O}_{X}(1)$,
(1) $h^{2}=\operatorname{deg}(E)=-e$.
(2) $K \sim-2 h+\pi^{*}\left(K_{B}+\left[\wedge^{2} E\right]\right), K \equiv-2 h+(2 g-2+\operatorname{deg}(E)) f$.
(3) $K^{2}=8(1-g)$.
(4) $q=h^{1}\left(X, \mathcal{O}_{X}\right)=g, p_{g}=h^{2}\left(X, \mathcal{O}_{X}\right)=0$ and $p_{n}=h^{0}\left(X, \omega_{X}^{\otimes n}\right)=0$ for all $n>0$.

Proof. (1) Let E^{\prime} be a vector bundle on a surface s.t. there exists line bundles L, M satisfying $0 \rightarrow L \rightarrow E^{\prime} \rightarrow M \rightarrow 0$. Then

$$
\begin{align*}
L \cdot M=L^{-1} \cdot M^{-1} & =\chi\left(\mathcal{O}_{X}\right)-\chi(L)-\chi(M)+\chi(L \otimes M) \\
& =\chi\left(\mathcal{O}_{X}\right)-\chi\left(E^{\prime}\right)+\chi\left(\wedge^{2} E^{\prime}\right) \tag{3}
\end{align*}
$$

so $L \cdot M$ only depends on E^{\prime}, call it $c_{2}\left(E^{\prime}\right)$. This is actually the second Chern class: the total Chern classes of L and M are $(1+L)$ and $(1+M)$ respectively. Apply this to $\pi^{*} E$ with $0 \rightarrow \pi^{*} L \rightarrow \pi^{*} E \rightarrow \pi^{*} M \rightarrow 0$. We get $c_{2}\left(\pi^{*} E\right)=$ $\pi^{*} L \cdot \pi^{*} M=0$ (multiple of the fiber). We also have $0 \rightarrow N \rightarrow \pi^{*} E \rightarrow \mathcal{O}_{X}(1) \rightarrow 0$ (corresponding to the section), implying that $\mathcal{O}_{X}(1) \cdot N=0 \Longrightarrow h \cdot N=0$. Moreover, $\pi^{*} \wedge^{2} E \cong N \otimes \mathcal{O}_{X}(1)$. $N \sim-h+\pi^{*}\left[\wedge^{2} E\right]$. Thus,

$$
\begin{equation*}
0=h N=-h^{2}+h \pi^{*}\left[\wedge^{2} E\right]=\operatorname{deg} E-h^{2} \tag{4}
\end{equation*}
$$

and $h^{2}=\operatorname{deg} E$.
(2) Let $K_{X} \sim a h+\pi^{*} b$ for $b \in \operatorname{Pic} B$. By adjunction for a fiber f, we have $-2=2 g-2=f \cdot(f+K)=f \cdot\left(a h+\pi^{*} b\right)=a$, so $\omega_{X} \sim \mathcal{O}_{X}\left(-2 B_{0}+\pi^{*} b\right)$. Next, using the adjunction formula for B_{0} (section corresponding to $\mathcal{O}_{X}(1)$) gives

$$
\begin{equation*}
\omega_{B}=\omega_{X} \otimes \mathcal{O}_{X}\left(B_{0}\right) \otimes \mathcal{O}_{B_{0}} \cong \mathcal{O}_{X}\left(-B_{0}+\pi^{*} b\right) \otimes \mathcal{O}_{B_{0}} \tag{5}
\end{equation*}
$$

Identifying B_{0} with B using π, we get $K_{B}=-\left[\wedge^{2} E\right]+b \Longrightarrow b=K_{B}+\left[\wedge^{2} E\right]$ via

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{B} \rightarrow E \rightarrow E / \mathcal{O}_{B} \rightarrow 0 \tag{6}
\end{equation*}
$$

and $\wedge^{2} E=E / \mathcal{O}_{B}=\pi^{*}\left(\mathcal{O}_{X}(1)\right)=\left.\mathcal{O}_{X}\left(B_{0}\right)\right|_{B_{0}}$. Thus, $K \sim-2 h+\pi^{*}\left(K_{B}+\left[\bigwedge^{2} E\right]\right)$ and $K \equiv-2 h+(2 g-2+\operatorname{deg} E) f$ as desired.
(3) $K^{2}=4 h^{2}-4(h \cdot f)(2 g-2+\operatorname{deg} E)=8(1-g)$ since $h \cdot f=1$ and $h^{2}=\operatorname{deg} E$.
(4) q, p_{g}, p_{n} are birational invariants, so we can assume $X=B \times \mathbb{P}^{1}$. Then $H^{0}\left(X, \Omega_{X}^{1}\right)=H^{0}\left(B, \omega_{B}\right) \oplus H^{0}\left(\mathbb{P}^{1}, \omega_{\mathbb{P}^{1}}\right)$ and $q=g$ (since the latter term vanishes). This shows that $h^{10}=g \Longrightarrow h^{01}=g$ as long as we work over \mathbb{C}, implying that $H^{0}\left(X, \Omega_{X}\right)=1$. More generally, we use Noether's formula: $\chi\left(\mathcal{O}_{X}\right)=\frac{1}{12}\left(K^{2}+c_{2}\right)$, where $c_{2}(X)=c_{2}(B) \cdot c_{2}\left(\mathbb{P}^{2}\right)=(2-2 g) 2=4-4 g$, implying that $\chi\left(\mathcal{O}_{X}=1-g\right.$ and $h^{1}\left(\mathcal{O}_{X}\right)=g$ since $h^{2}\left(\mathcal{O}_{X}\right)=h^{0}\left(\omega_{X}\right)=0$. Moreover,

$$
\begin{equation*}
H^{0}\left(X, \omega_{X}^{\otimes n}\right)=H^{0}\left(B, \omega_{B}^{\otimes n}\right) \otimes H^{0}\left(\mathbb{P}^{1}, \omega_{\mathbb{P}^{1}}^{\otimes n}\right)=0 \tag{7}
\end{equation*}
$$

as stated.
Remark. For more results on vector bundles of rank 2, see Hartshorne, Beauville, etc. Here are some results: for B an elliptic curve, vectors bundles of rank 2 are either

- decomposable
- isomorphic to $E \otimes L$ for E a nontrivial extension of \mathcal{O}_{B} by \mathcal{O}_{B}, i.e. a nonzero element of $H^{1}\left(B \mathcal{O}_{B}\right) \cong k$
- isomorphic to $E \otimes L$ for E a nontrivial extension of $\mathcal{O}_{B}(p)$ by \mathcal{O}_{B}, i.e. a nonzero element of $\operatorname{Ext}^{1}\left(\mathcal{O}_{B}(p), \mathcal{O}_{B}\right)=H^{1}\left(B, \mathcal{O}_{B}(-p)\right) \cong k$ by RiemannRoch.

For $g \geq 2$, there are $3 g-3$ moduli. More precisely, one looks at semi-stable vector bundles of rank $2: \mathcal{E}$ is semi-stable if for every quotient locally-free sheaf $\mathcal{E} \rightarrow \mathcal{F} \rightarrow 0$, we have $\frac{\operatorname{deg} \mathcal{F}}{\operatorname{rk} \mathcal{F}} \geq \frac{\operatorname{deg} \mathcal{E}}{\mathrm{rk} \mathcal{E}}$.
1.2. Elementary Transformations. Let $\pi: X \rightarrow B$ be a given geometrically ruled surface. Let $p \in X$ and let E be the fiber of π containing p. Let $f: \tilde{X} \rightarrow X$ be the blowup of X at p. Then since $F^{2}=0$, the proper transform \tilde{F} satisfies $\tilde{F}^{2}=-1$. So it is an exceptional curve of the first kind, so we can blow it down to get $\pi^{\prime}: X^{\prime} \rightarrow B$ another geometrically ruled surface.

Now, let $X=\mathbb{P}_{B}(E)$ for E a rank 2 vector bundle on B. The point $p \in X$ corresponds to a surjection $u_{p}: E \rightarrow k(p)$ to the skyscraper sheaf at p (by the universal property). Ker $u_{p}=E^{\prime}$, a vector bundle of rank 2 , so set $X^{\prime}=\mathbb{P}_{B}\left(E^{\prime}\right)$. Such an $X \rightarrow X^{\prime}$ is an elementary transformation, and corresponds to $E^{\prime} \rightarrow E$.

Problem. Let X be a minimal ruled surface over a curve B of genus >0. Then X is obtained from $B \times \mathbb{P}^{1}$ by a finite sequence of elementary transformations.

2. Rational Surfaces

Rational surfaces are surfaces birational to \mathbb{P}^{2} or to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. We've already shown that any minimal model must be geometrically ruled over \mathbb{P}^{1}. So let's check which $\mathbb{P}_{\mathbb{P}^{1}}(E)$ are minimal. We showed that E can be twisted so that it becomes $\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n), n \geq 0$. Its projectivization is called the n-th Hirzebruch surface \mathbb{F}_{n}. As usual, let h be the class of $\mathcal{O}_{\mathbb{F}_{n}}(1)$ in Pic \mathbb{F}_{n}, f the class of a fiber.
Proposition 2. (a) Pic $\mathbb{F}_{n}=\mathbb{Z} h \oplus \mathbb{Z} f, f^{2}=0, f h=1, h^{2}=n$,
(b) if $n>0$, there is a unique irreducible curve B on \mathbb{F}_{n} with negative self intersection, and b is its closure in Pic \mathbb{F}_{n}, then $b=h-n f, b^{2}=-n$, and
(c) \mathbb{F}_{n} and \mathbb{F}_{m} are not isomorphic unless $m=n, \mathbb{F}_{n}$ is minimal except when $n=1$, and \mathbb{F}_{1} is isomorphic to \mathbb{P}^{2} blown up at a point.
Proof. (a) follows from the previous results, noting that $h^{2}=\operatorname{deg}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right)$. For (b), let s be the section of $\pi: \mathbb{F}_{n} \rightarrow \mathbb{P}^{1}$ corresponding to $E=\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n) \rightarrow$ $\mathcal{O}_{\mathbb{P}^{1}}$. Let $B=s\left(\mathbb{P}^{1}\right)$ and b its class. Then $b=\ell h+m f$ for $\ell, m \in \mathbb{Z}$. Since $b \cdot f=1$, $\ell=1, b=h+n f$.

$$
\begin{equation*}
s^{*} \mathcal{O}_{\mathbb{F}_{n}}(1)=\mathcal{O}_{\mathbb{P}^{1}} \Longrightarrow h \cdot b=\operatorname{deg}_{\mathbb{P}^{1}}\left(\mathcal{O}_{\mathbb{P}^{1}}\right)=0 \tag{8}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
0=h(h+m f)=h^{2}+m \Longrightarrow m=-h^{2}=-n \Longrightarrow b=h-n f \tag{9}
\end{equation*}
$$

and $b^{2}=(h-n f)^{2}=h^{2}-2 n(h \cdot f)+n^{2} f^{2}=n-2 n+0=-n$. We need to show it's the only irreducible curve with negative self-intersection. Let C be some irreducible curve $\neq B$. Write $[C]=\alpha h+\beta f$. Then $C \cdot f \geq 0$ by the useful lemma, since $f^{2}=0$ is nonnegative, implying that $\alpha \geq 0$ and $C \cdot b \geq 0 \Longrightarrow \beta \geq 0$ since $b \cdot f=1$ and $b \cdot h=0$. Thus, $[C]^{2}=\alpha^{2} n+2 \alpha \beta \geq 0$. The induced form on Pic $\mathbb{F}_{n}=\mathfrak{X} f+\mathbb{Z} b$ can be written as $\left(\begin{array}{cc}0 & 1 \\ 1 & -n\end{array}\right)$.

For (c), it follows from the existence of the special curve of self-intersection $-n$ on \mathbb{F}_{n} that $\mathbb{F}_{n} \neq \mathbb{F}_{m}$ if $n \neq m$. Note that $\mathbb{F}_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}$, and any $C=\alpha h_{1}+\beta h_{2}$ so all curves on \mathbb{F}_{0} have non-negative self-intersection. There are no -1 curves on \mathbb{F}_{n} for $n \neq 1$, so \mathbb{F}_{n} is minimal for $n \neq 1$. For \mathbb{F}_{1}, let S be the blowup of \mathbb{P}^{2} at $0, E$ the exceptional divisor. Projection away from 0 defines a morphism $\pi: S \rightarrow \mathbb{P}^{1}$ which gives S as a geometrically ruled surface on \mathbb{P}^{1}. $E^{2}=-1$ implies $S \cong \mathbb{F}_{1}$, so \mathbb{F}_{1} is not minimal, and is isomorphic to \mathbb{P}^{2} blown up at a point.

Note. An elementary transformation of \mathbb{F}_{n} corresponding to a point on a special curve gives \mathbb{F}_{n+1}, while one corresponding to a point not on the special curve gives \mathbb{F}_{n-1}.

