18.727 Topics in Algebraic Geometry: Algebraic Surfaces Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 7

LECTURES: ABHINAV KUMAR

1. RULED SURFACES (CONTD.)

As before, we have a short exact sequence $0 \to L \to E \to M \to 0$ for any vector bundle of rank 2 on a curve *B*. Let deg $(E) = \text{deg}(\wedge^2 E) = \text{deg}L\text{deg}M$, $h^i(E) = \dim H^i(B, E)$. We can twist *E* by some line bundle so that $h^0(B, E) \neq 0$ but for any line bundle *M* on *C* with deg (M) < 0, $h^0(E \otimes M) = 0$. Such and *E* is called normalized. The number e = -deg(E) is called the invariant of the ruled surface $X = \mathbb{P}(E)$. There is a section $\sigma : B \to X$ with image B_0 s.t. $\mathcal{O}_{\lambda}(B_0) = \mathcal{O}_X(1)$.

Proof. Let $s \in H^0(E)$ be a nonzero section. This gives a map $0 \to \mathcal{O}_B \xrightarrow{s} E \to E/s\mathcal{O}_B = L \to 0$. We claim that L is an invertible sheaf on B. If not, then L must have torsion. Let $F \subset E$ be the inverse image of the torsion subsheaf of L. F is torsion free of rank 1 on C. By assumption, $\mathcal{O}_B \subsetneq F$, so deg F > 0. But then $H^0(E \otimes F^{-1}) \neq 0$ and deg $(F^{-1}) < 0$ contradicting that E is normalized. Thus, L must have been invertible. The universal property then gives us a section $\sigma_0: B \to X$ with image B_0 . Then it is easy to check that $\mathcal{O}_X(B_0) \cong \mathcal{O}_X(1)$. \Box

Lemma 1. Let X be a ruled surface over a curve B of genus g, determined by a normalized E of rank 2. Then

- (a) if E decomposes, then $E \cong \mathcal{O}_B \oplus L$ for some L with deg $L \leq 0$ so $e = -\deg E = -\deg L \geq 0$, and
- (b) if E is indecomposable, then $-2g \le e \le 2g 2$.

Corollary 1. Every E of rank 2 on \mathbb{P}^1 decomposes (i.e. no case (b)).

Thus, a \mathbb{P}^1 -bundle over \mathbb{P}^1 can be written as $\mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-n)) \cong \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n))$. In fact, by a theorem of Grothendieck, every locally free sheaf on \mathbb{P}^1 is decomposable.

Proof. (a) If E decomposes, then $E = L \oplus M$, where L and M are line bundles on B. Then we must have deg L, deg $M \leq 0$. (Otherwise, $E \otimes L^{-1}$ or $E \otimes M^{-1}$ would have global sections, contradicting the fact that E is normalized.) Also, $H^0(E) = H^0(M) \oplus H^0(L)$, so that L or M has global sections and therefore must be \mathcal{O}_B , since its degree is positive. (b) We have $0 \to \mathcal{O}_B \to E \to L \to 0$. This is a nontrivial extension, so it corresponds to a nontrivial element of $\operatorname{Ext}^1(L, \mathcal{O}_B) = H^1(B, L^{-1})$. So

(1)
$$H^{1}(B, L^{-1}) = H^{0}(B, L + K_{B}) \neq 0 \implies \deg(L + K_{B}) \geq 0$$
$$\implies e = -\deg E = -\deg L = \deg L^{-1} \leq 2g - 2$$

On the other hand, $H^0(E \otimes M) = 0$ for all M with deg M < 0. Take an M with deg M = -1. Then we get

(2)
$$0 = H^0(E \otimes M) \to H^0(L \otimes M) \to H^1(M) \to \cdots$$

implying that $h^0(L \otimes M) \leq h^1(M)$. Now, since deg $M < 0, h^0(M) = 0$. By Riemann-Roch, $h^1(M) = g$ and $h^0(L \otimes M) \geq \deg L - 1 + 1 - g = \deg L - g \implies \deg L \leq 2g \implies e \geq -2g$ as desired. \Box

1.1. Invariants. Let $\mathbb{P}_B(E) = X \to B$ be a ruled surface.

Proposition 1. For h the class of $\mathcal{O}_X(1)$,

(1) $h^2 = \deg(E) = -e.$ (2) $K \sim -2h + \pi^*(K_B + [\wedge^2 E]), K \equiv -2h + (2g - 2 + \deg(E))f.$ (3) $K^2 = 8(1 - g).$ (4) $q = h^1(X, \mathcal{O}_X) = g, p_g = h^2(X, \mathcal{O}_X) = 0$ and $p_n = h^0(X, \omega_X^{\otimes n}) = 0$ for all n > 0.

Proof. (1) Let E' be a vector bundle on a surface s.t. there exists line bundles L, M satisfying $0 \to L \to E' \to M \to 0$. Then

(3)
$$L \cdot M = L^{-1} \cdot M^{-1} = \chi(\mathcal{O}_X) - \chi(L) - \chi(M) + \chi(L \otimes M)$$
$$= \chi(\mathcal{O}_X) - \chi(E') + \chi(\wedge^2 E')$$

so $L \cdot M$ only depends on E', call it $c_2(E')$. This is actually the second Chern class: the total Chern classes of L and M are (1 + L) and (1 + M) respectively. Apply this to π^*E with $0 \to \pi^*L \to \pi^*E \to \pi^*M \to 0$. We get $c_2(\pi^*E) = \pi^*L\cdot\pi^*M = 0$ (multiple of the fiber). We also have $0 \to N \to \pi^*E \to \mathcal{O}_X(1) \to 0$ (corresponding to the section), implying that $\mathcal{O}_X(1) \cdot N = 0 \implies h \cdot N = 0$. Moreover, $\pi^* \wedge^2 E \cong N \otimes \mathcal{O}_X(1)$. $N \sim -h + \pi^*[\wedge^2 E]$. Thus,

(4)
$$0 = hN = -h^2 + h\pi^*[\wedge^2 E] = \deg E - h^2$$

and $h^2 = \deg E$.

(2) Let $K_X \sim ah + \pi^* b$ for $b \in \text{Pic } B$. By adjunction for a fiber f, we have $-2 = 2g - 2 = f \cdot (f + K) = f \cdot (ah + \pi^* b) = a$, so $\omega_X \sim \mathcal{O}_X(-2B_0 + \pi^* b)$. Next, using the adjunction formula for B_0 (section corresponding to $\mathcal{O}_X(1)$) gives

(5)
$$\omega_B = \omega_X \otimes \mathcal{O}_X(B_0) \otimes \mathcal{O}_{B_0} \cong \mathcal{O}_X(-B_0 + \pi^* b) \otimes \mathcal{O}_{B_0}$$

Identifying B_0 with B using π , we get $K_B = -[\wedge^2 E] + b \implies b = K_B + [\wedge^2 E]$ via

(6)
$$0 \to \mathcal{O}_B \to E \to E/\mathcal{O}_B \to 0$$

and $\wedge^2 E = E/\mathcal{O}_B = \pi^*(\mathcal{O}_X(1)) = \mathcal{O}_X(B_0)|_{B_0}$. Thus, $K \sim -2h + \pi^*(K_B + [\bigwedge^2 E])$ and $K \equiv -2h + (2g - 2 + \deg E)f$ as desired.

(3) $K^2 = 4h^2 - 4(h \cdot f)(2g - 2 + \deg E) = 8(1 - g)$ since $h \cdot f = 1$ and $h^2 = \deg E$. (4) q, p_g, p_n are birational invariants, so we can assume $X = B \times \mathbb{P}^1$. Then $H^0(X, \Omega_X^1) = H^0(B, \omega_B) \oplus H^0(\mathbb{P}^1, \omega_{\mathbb{P}^1})$ and q = g (since the latter term vanishes). This shows that $h^{10} = g \implies h^{01} = g$ as long as we work over \mathbb{C} , implying that $H^0(X, \Omega_X) = 1$. More generally, we use Noether's formula: $\chi(\mathcal{O}_X) = \frac{1}{12}(K^2 + c_2)$, where $c_2(X) = c_2(B) \cdot c_2(\mathbb{P}^2) = (2 - 2g)2 = 4 - 4g$, implying that $\chi(\mathcal{O}_X = 1 - g)$ and $h^1(\mathcal{O}_X) = g$ since $h^2(\mathcal{O}_X) = h^0(\omega_X) = 0$. Moreover,

(7)
$$H^{0}(X, \omega_{X}^{\otimes n}) = H^{0}(B, \omega_{B}^{\otimes n}) \otimes H^{0}(\mathbb{P}^{1}, \omega_{\mathbb{P}^{1}}^{\otimes n}) = 0$$

as stated.

Remark. For more results on vector bundles of rank 2, see Hartshorne, Beauville, etc. Here are some results: for B an elliptic curve, vectors bundles of rank 2 are either

- decomposable
- isomorphic to $E \otimes L$ for E a nontrivial extension of \mathcal{O}_B by \mathcal{O}_B , i.e. a nonzero element of $H^1(B\mathcal{O}_B) \cong k$
- isomorphic to $E \otimes L$ for E a nontrivial extension of $\mathcal{O}_B(p)$ by \mathcal{O}_B , i.e. a nonzero element of $\operatorname{Ext}^1(\mathcal{O}_B(p), \mathcal{O}_B) = H^1(B, \mathcal{O}_B(-p)) \cong k$ by Riemann-Roch.

For $g \geq 2$, there are 3g - 3 moduli. More precisely, one looks at semi-stable vector bundles of rank 2: \mathcal{E} is semi-stable if for every quotient locally-free sheaf $\mathcal{E} \to \mathcal{F} \to 0$, we have $\frac{\deg \mathcal{F}}{\operatorname{rk} \mathcal{F}} \geq \frac{\deg \mathcal{E}}{\operatorname{rk} \mathcal{E}}$.

1.2. Elementary Transformations. Let $\pi : X \to B$ be a given geometrically ruled surface. Let $p \in X$ and let E be the fiber of π containing p. Let $f : \tilde{X} \to X$ be the blowup of X at p. Then since $F^2 = 0$, the proper transform \tilde{F} satisfies $\tilde{F}^2 = -1$. So it is an exceptional curve of the first kind, so we can blow it down to get $\pi' : X' \to B$ another geometrically ruled surface.

Now, let $X = \mathbb{P}_B(E)$ for E a rank 2 vector bundle on B. The point $p \in X$ corresponds to a surjection $u_p : E \to k(p)$ to the skyscraper sheaf at p (by the universal property). Ker $u_p = E'$, a vector bundle of rank 2, so set $X' = \mathbb{P}_B(E')$. Such an $X \dashrightarrow X'$ is an elementary transformation, and corresponds to $E' \to E$.

Problem. Let X be a minimal ruled surface over a curve B of genus > 0. Then X is obtained from $B \times \mathbb{P}^1$ by a finite sequence of elementary transformations.

LECTURES: ABHINAV KUMAR

2. RATIONAL SURFACES

Rational surfaces are surfaces birational to \mathbb{P}^2 or to $\mathbb{P}^1 \times \mathbb{P}^1$. We've already shown that any minimal model must be geometrically ruled over \mathbb{P}^1 . So let's check which $\mathbb{P}_{\mathbb{P}^1}(E)$ are minimal. We showed that E can be twisted so that it becomes $\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n)$, $n \geq 0$. Its projectivization is called the *n*-th *Hirzebruch* surface \mathbb{F}_n . As usual, let h be the class of $\mathcal{O}_{\mathbb{F}_n}(1)$ in Pic \mathbb{F}_n , f the class of a fiber.

Proposition 2. (a) Pic $\mathbb{F}_n = \mathbb{Z}h \oplus \mathbb{Z}f, f^2 = 0, fh = 1, h^2 = n$,

- (b) if n > 0, there is a unique irreducible curve B on \mathbb{F}_n with negative self intersection, and b is its closure in Pic \mathbb{F}_n , then $b = h nf, b^2 = -n$, and
- (c) \mathbb{F}_n and \mathbb{F}_m are not isomorphic unless m = n, \mathbb{F}_n is minimal except when n = 1, and \mathbb{F}_1 is isomorphic to \mathbb{P}^2 blown up at a point.

Proof. (a) follows from the previous results, noting that $h^2 = \deg (\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n))$. For (b), let s be the section of $\pi : \mathbb{F}_n \to \mathbb{P}^1$ corresponding to $E = \mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n) \to \mathcal{O}_{\mathbb{P}^1}$. Let $B = s(\mathbb{P}^1)$ and b its class. Then $b = \ell h + mf$ for $\ell, m \in \mathbb{Z}$. Since $b \cdot f = 1$, $\ell = 1, b = h + nf$.

(8)
$$s^* \mathcal{O}_{\mathbb{F}_n}(1) = \mathcal{O}_{\mathbb{P}^1} \implies h \cdot b = \deg_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1}) = 0$$

Thus,

(9)
$$0 = h(h + mf) = h^2 + m \implies m = -h^2 = -n \implies b = h - nf$$

and $b^2 = (h - nf)^2 = h^2 - 2n(h \cdot f) + n^2 f^2 = n - 2n + 0 = -n$. We need to show it's the only irreducible curve with negative self-intersection. Let *C* be some irreducible curve $\neq B$. Write $[C] = \alpha h + \beta f$. Then $C \cdot f \ge 0$ by the useful lemma, since $f^2 = 0$ is nonnegative, implying that $\alpha \ge 0$ and $C \cdot b \ge 0 \implies \beta \ge 0$ since $b \cdot f = 1$ and $b \cdot h = 0$. Thus, $[C]^2 = \alpha^2 n + 2\alpha\beta \ge 0$. The induced form on Pic $\mathbb{F}_n = \mathfrak{X}f + \mathbb{Z}b$ can be written as $\begin{pmatrix} 0 & 1 \\ 1 & -n \end{pmatrix}$.

For (c), it follows from the existence of the special curve of self-intersection -non \mathbb{F}_n that $\mathbb{F}_n \neq \mathbb{F}_m$ if $n \neq m$. Note that $\mathbb{F}_0 = \mathbb{P}^1 \times \mathbb{P}^1$, and any $C = \alpha h_1 + \beta h_2$ so all curves on \mathbb{F}_0 have non-negative self-intersection. There are no -1 curves on \mathbb{F}_n for $n \neq 1$, so \mathbb{F}_n is minimal for $n \neq 1$. For \mathbb{F}_1 , let S be the blowup of \mathbb{P}^2 at 0, E the exceptional divisor. Projection away from 0 defines a morphism $\pi : S \to \mathbb{P}^1$ which gives S as a geometrically ruled surface on \mathbb{P}^1 . $E^2 = -1$ implies $S \cong \mathbb{F}_1$, so \mathbb{F}_1 is not minimal, and is isomorphic to \mathbb{P}^2 blown up at a point.

Note. An elementary transformation of \mathbb{F}_n corresponding to a point on a special curve gives \mathbb{F}_{n+1} , while one corresponding to a point not on the special curve gives \mathbb{F}_{n-1} .