MIT OpenCourseWare
http://ocw.mit.edu

### 18.727 Topics in Algebraic Geometry: Algebraic Surfaces

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

# ALGEBRAIC SURFACES, LECTURE 8 

LECTURES: ABHINAV KUMAR

## 1. EXAMPLES

1.1. Linear systems on $\mathbb{P}^{2}$. Let $P$ be a linear system (of conics, cubics, etc.) on $\mathbb{P}^{2}$ and $\phi: \mathbb{P}^{2} \rightarrow P^{\vee} \cong \mathbb{P}^{N}$ the corresponding rational map. The full linear system of degree $k$ polynomials has dimension $N=\binom{k+2}{2}-1 . \phi$ may have base points: blow them up to get $f=\phi \circ \pi: S=\mathbb{P}^{2}(r) \rightarrow \mathbb{P}^{N}$ with exceptional divisors corresponding to base points $p_{1}, \ldots, p_{r}$ (here, we assume one blowup is sufficient to resolve each point). Let $m_{i}$ be the minimal multiplicity of the members of the linear system at $p_{i}, d$ the degree of $S$. Let $\ell$ be line in $\mathbb{P}^{2}, L=\pi^{*} \ell, E_{i}=\pi^{-1}\left(p_{i}\right)$. We obtain $\hat{I} \subset\left|d L-\sum m_{i} E_{i}\right|$ a linear system without base points on S . Assume $f$ is an embedding, i.e. it separates points and tangent vectors. Then $S^{\prime}=f(S)$ is a smooth rational surface in $\mathbb{P}^{N}$ and $\operatorname{Pic}\left(S^{\prime}\right)$ has an orthogonal basis consisting of $L=\pi^{*} \ell$ and the $E_{i}$ with $L^{2}=1, E_{i}^{2}=-1$. The hyperplane section $H$ of $S^{\prime}$ is $d L-\sum m_{i} E_{i}$ and the degree of $S^{\prime}$ is $H^{2}=d^{2}-\sum m_{i}^{2}$.
Example. The linear system of all conics on $\mathbb{P}^{2}$ gives an embedding $j: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5}$ with no base points via $[x: y: z] \mapsto\left[x^{2}: y^{2}: z^{2}: x y: x z: y x\right]$ : the image $V$ has degree 4 and is called the Veronese surface. It contains no lines, but contains a two-dimensional linear system of conics coming from lines on $\mathbb{P}^{2}$. We can write down equations for $V$ in $\mathbb{P}^{5}$ as a determinantal variety, with

$$
\operatorname{rk}\left(\begin{array}{lll}
Z_{0} & Z_{3} & Z_{5}  \tag{1}\\
Z_{3} & Z_{1} & Z_{4} \\
Z_{5} & Z_{4} & Z_{2}
\end{array}\right)=1
$$

i.e. all $2 \times 2$ minors vanish, i.e. it is cut out by quadratic relations. Projecting from a generic point of $\mathbb{P}^{5}$ gives an isomorphism $V \rightarrow V^{\prime} \subset \mathbb{P}^{4}$ called the Steiner surface, while projection from a point of $V$ is a surface $S \subset \mathbb{P}^{4}$ of degree 3 obtained from a linear system of conics passing through a given point on $\mathbb{P}^{2}$. This in turn gives an embedding $\mathbb{F}_{1} \subset \mathbb{P}^{4}$, a cubic ruled surface in $\mathbb{P}^{4}$.

Proposition 1. The linear system of cubics passing through points $p_{1}, \ldots, p_{r}, r \leq$ 6 in general position (no 3 on a line, no 6 on a conic) gives an embedding $j: P_{r}=\mathbb{P}^{2}(r) \rightarrow \mathbb{P}^{d}, d=9-r . S_{d}=j\left(P_{r}\right)$ is a surface of degree $d$ in $\mathbb{P}^{d}$, called $a$ del Pezzo surface of degree $d$.

| $r=\# E_{i}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\#\left\langle p_{i}, p_{j}\right\rangle$ | 0 | 0 | 1 | 3 | 6 | 10 | 15 |
| $\#$ conics | 0 | 0 | 0 | 0 | 0 | 1 | 6 |
| $\#$ total lines | 0 | 1 | 3 | 6 | 10 | 16 | 27 |

Proof. To see this, we need to check that the linear system of cubics through $p_{1}, \ldots, p_{r}$ separates points and tangent vectors on $P_{r}$. Then the system is without base points, so by induction the dimension is $9-r$. We only need to check for $r=6$ : to see that it separates points, take $x, y \in P_{6}$ with $x \neq y$, and choose $p_{i} \neq \pi(x), \pi(y)$ s.t. $x$ is not on the proper transform of the conic $C_{i}$ through the 5 points $p_{j}, j \neq i$. There is a unique conic $D_{i j x}$ through $x$ and the points $p_{k}$ for $k \neq i, j$. Then $D_{i j x} \cap D_{i k x}=\{x\}$ for $p_{k} \neq\left\{p_{i}, p_{j}, \pi(x)\right\}$. Hence $y \in D_{i j x}$ for at most one value of $j$, and there is some $D_{i j x}$ s.t. $y \notin D_{i j x}$. Also, if $L_{i j}$ is the proper transform of the line joining $p_{i}, p_{j}$, then $y \in L_{i j}$ for at most one value of $j$. So there is a cubic $D_{i j x} \cup L_{i j}$ passing through $x$ but not $j$, and $j: P_{6} \rightarrow \mathbb{P}^{3}$ is injective. Separating tangent vectors follows similarly.

Note. The linear system of cubics passing through $p_{1}, \ldots, p_{r}$ is the complete anticanonical system $-K$ on $P_{r}\left(\right.$ as $\left.K=-3 H+E_{1}+\cdots+E_{r}\right)$

Proposition 2. $S_{d}$ contains a finite number of lines, which are the images of the exceptional curves $E_{i}$, the strict transforms of the lines $\left\langle p_{i}, p_{j}\right\rangle, i \neq j$, and the strict transforms of the conics through 5 of the $\left\{p_{i}\right\}$.

Proof. Since $H=-K$, the lines on $S$ are its exceptional curves (want $\ell \cdot H=1=$ $-K \cdot \ell, 2 g-2=-2=\ell^{2}+K \cdot \ell \Longrightarrow \ell^{2}=-1$ ). In particular, $j\left(E_{i}\right)$ are lines in $S$. Let $E$ be a divisor on $S$ not equal to some $E_{i}$. Then $E \cdot H=1, E \cdot E_{i}=0$ or 1 implies that $E \equiv m L-\sum m_{i} E_{i}$ with $m_{i} \in\{0,1\}$ for all $i, E \cdot H=3 m-\sum m_{i}=1$. Counting all the solutions of these equations, we get all the numbers above and the classes of the lines in Pic $S$, so we can compute intersection numbers, etc.

Note. Classically, a del Pezzo surface is defined to be a surface $X$ of degree $d$ in $\mathbb{P}^{d}$ s.t. $\omega_{X} \cong \mathcal{O}_{X}(-1)$ (i.e. it is embedded by its anticanonical bundle). Every del Pezzo surface is a $P_{r}$ for some $r=0, \ldots, 6$ or is the 2 -uple embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1} \subset \mathbb{P}^{3}$ which is a del Pezzo surface of degree 8 in $\mathbb{P}^{8}$.

If we have $p_{1}, \ldots, p_{r}$ a finite set of points in $\mathbb{P}^{2}$, we can define a notion of general position for these (no 3 collinear, no 6 on a conic, even after a finite set of admissible quadratic transformations). If we blow up 7 points in general position, we get exactly 56 irreducible nonsingular exceptional curves of the first kind. For $r=8$, we get 240 exceptional curves. The numbers are related to the root latices $A_{1}, A_{2}, A_{5}, D_{4}, D_{5}, E_{6}, E_{7}, E_{8}$ : the automorphism groups of these graphs coming from exceptional curves are related to the Weyl groups of these
groups. If we blow up $r=9$ points, the surface has infinitely many exceptional curves of the first kind.

Theorem 1. Any smooth cubic surface in $\mathbb{P}^{3}$ is a del Pezzo surface of degree 3, i.e. it is isomorphic to $\mathbb{P}^{2}$ with 6 points blown up.

Theorem 2. Any smooth complete intersection of 2 quadrics in $\mathbb{P}^{4}$ is a del Pezzo surface of degree 4.

See Beauville for proofs.
1.2. Rational normal scrolls. A scroll is a ruled surface embedded in $\mathbb{P}^{N}$ s.t. the fibers of ruling are straight lines. The Veronese embedding of $\mathbb{P}^{1}$ into $\mathbb{P}^{d}$ is called the rational normal curve, and comes from $v_{d}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{d},[x: y] \mapsto$ $\left[x^{d}: x^{d-1} y: \cdots: y^{d}\right]$. Its image has degree $d$, which is the minimal degree for a nondegenerate curve in $\mathbb{P}^{d}$ : if you intersect a curve of degree $d$ with a generic hyperplane, you get $e$ points which span $\mathbb{P}^{d-1}$, so $e \geq d$. A rational normal scroll $S_{a, b}$ in $\mathbb{P}^{a+b+1}$ : take 2 complementary linear subspaces of dimensions $a$ and $b$, put a rational normal curve in each, and take the union of all lines joining $v_{a}(p)$ to $v_{b}(p)$ for $p \in \mathbb{P}^{1}$. We can also think of $S_{a, b}$ as the quotient of $\left(\mathbb{A}^{2} \backslash\{0\}\right) \times\left(\mathbb{A}^{2} \backslash\{0\}\right)$ by the action of $\mathbb{F}_{m} \times \mathbb{F}_{m}\left(k^{*} \times k^{*}\right)$ acting as

$$
\begin{align*}
& (\lambda, 1):\left(t_{1}, t_{2}, x_{1}, x_{2}\right) \mapsto\left(\lambda t_{1}, \lambda t_{2}, \lambda^{-a} x_{1}, \lambda^{-b} x_{2}\right) \\
& (1, \mu):\left(t_{1}, t_{2}, x_{1}, x_{2}\right) \mapsto\left(t_{1}, t_{2}, \mu x_{1}, \mu x_{2}\right) \tag{2}
\end{align*}
$$

One can check that the fibers are $\mathbb{P}^{1}$ : we get a geometrically ruled surface over $\mathbb{P}^{1}$, i.e. a rational surface. In fact, $S_{a, b}$ is isomorphic to $\mathbb{F}_{n}, n=b-a$, and the special curve $G$ of negative self-intersection $-n$ is the rational normal curve of degree $a$ where $1 \leq a \leq b$. The hyperplane divisor $\left(\mathcal{O}_{\mathbb{F}_{n}}(1)\right)$ is $G+b F$ and the degree of $S_{a, b}$ is $a+b$. When $a=0$, we get a cone over a rational normal curve of degree $b$, while for $a=b=1$ we get a smooth quadric in $\mathbb{P}^{3}$.

Theorem 3. A surface of degree $n-1$ in $\mathbb{P}^{n}$ is either a rational normal scroll $S_{a, b}$ or the Veronese surface of degree 4 in $\mathbb{P}^{5}$ : this is the minimal possible degree for a nondegenerate surface.
Theorem 4. A surface of degree $k$ in $\mathbb{P}^{k}$ is either a del Pezzo surface or a Steiner surface.

Next, we will see where ruled and rational surfaces fit into the classifications of surfaces.

Theorem 5 (Enriques). An algebraic surface with Kodaira dimension $\kappa(S)=$ $-\infty$ is ruled.

Theorem 6 (Castelnuovo). An algebraic surface is rational iff $q=p_{2}=0$.
Theorem 7. An algebraic surface has $\kappa=-\infty$ iff $p_{4}=p_{6}=0$

