18.727 Topics in Algebraic Geometry: Algebraic Surfaces Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 8

LECTURES: ABHINAV KUMAR

1. EXAMPLES

1.1. Linear systems on \mathbb{P}^2 . Let P be a linear system (of conics, cubics, etc.) on \mathbb{P}^2 and $\phi : \mathbb{P}^2 \dashrightarrow P^{\vee} \cong \mathbb{P}^N$ the corresponding rational map. The full linear system of degree k polynomials has dimension $N = \binom{k+2}{2} - 1$. ϕ may have base points: blow them up to get $f = \phi \circ \pi : S = \mathbb{P}^2(r) \to \mathbb{P}^N$ with exceptional divisors corresponding to base points p_1, \ldots, p_r (here, we assume one blowup is sufficient to resolve each point). Let m_i be the minimal multiplicity of the members of the linear system at p_i , d the degree of S. Let ℓ be line in \mathbb{P}^2 , $L = \pi^* \ell$, $E_i = \pi^{-1}(p_i)$. We obtain $\hat{I} \subset |dL - \sum m_i E_i|$ a linear system without base points on S. Assume f is an embedding, i.e. it separates points and tangent vectors. Then S' = f(S) is a smooth rational surface in \mathbb{P}^N and Pic (S') has an orthogonal basis consisting of $L = \pi^* \ell$ and the E_i with $L^2 = 1$, $E_i^2 = -1$. The hyperplane section H of S' is $dL - \sum m_i E_i$ and the degree of S' is $H^2 = d^2 - \sum m_i^2$.

Example. The linear system of all conics on \mathbb{P}^2 gives an embedding $j : \mathbb{P}^2 \to \mathbb{P}^5$ with no base points via $[x : y : z] \mapsto [x^2 : y^2 : z^2 : xy : xz : yx]$: the image V has degree 4 and is called the Veronese surface. It contains no lines, but contains a two-dimensional linear system of conics coming from lines on \mathbb{P}^2 . We can write down equations for V in \mathbb{P}^5 as a determinantal variety, with

(1)
$$\operatorname{rk} \begin{pmatrix} Z_0 & Z_3 & Z_5 \\ Z_3 & Z_1 & Z_4 \\ Z_5 & Z_4 & Z_2 \end{pmatrix} = 1$$

i.e. all 2×2 minors vanish, i.e. it is cut out by quadratic relations. Projecting from a generic point of \mathbb{P}^5 gives an isomorphism $V \to V' \subset \mathbb{P}^4$ called the *Steiner* surface, while projection from a point of V is a surface $S \subset \mathbb{P}^4$ of degree 3 obtained from a linear system of conics passing through a given point on \mathbb{P}^2 . This in turn gives an embedding $\mathbb{F}_1 \subset \mathbb{P}^4$, a cubic ruled surface in \mathbb{P}^4 .

Proposition 1. The linear system of cubics passing through points $p_1, \ldots, p_r, r \leq 6$ in general position (no 3 on a line, no 6 on a conic) gives an embedding $j: P_r = \mathbb{P}^2(r) \to \mathbb{P}^d, d = 9 - r.$ $S_d = j(P_r)$ is a surface of degree d in \mathbb{P}^d , called a del Pezzo surface of degree d.

$r = \#E_i$	0	1	2	3	4	5	6
$\#\langle p_i, p_j \rangle$	0	0	1	3	6	10	15
# conics	0	0	0	0	0	1	6
# total lines	0	1	3	6	10	16	27

Proof. To see this, we need to check that the linear system of cubics through p_1, \ldots, p_r separates points and tangent vectors on P_r . Then the system is without base points, so by induction the dimension is 9 - r. We only need to check for r = 6: to see that it separates points, take $x, y \in P_6$ with $x \neq y$, and choose $p_i \neq \pi(x), \pi(y)$ s.t. x is not on the proper transform of the conic C_i through the 5 points $p_j, j \neq i$. There is a unique conic D_{ijx} through x and the points p_k for $k \neq i, j$. Then $D_{ijx} \cap D_{ikx} = \{x\}$ for $p_k \neq \{p_i, p_j, \pi(x)\}$. Hence $y \in D_{ijx}$ for at most one value of j, and there is some D_{ijx} s.t. $y \notin D_{ijx}$. Also, if L_{ij} is the proper transform of the line joining p_i, p_j , then $y \in L_{ij}$ for at most one value of j. So there is a cubic $D_{ijx} \cup L_{ij}$ passing through x but not j, and $j : P_6 \to \mathbb{P}^3$ is injective. Separating tangent vectors follows similarly. \Box

Note. The linear system of cubics passing through p_1, \ldots, p_r is the complete anticanonical system -K on P_r (as $K = -3H + E_1 + \cdots + E_r$)

Proposition 2. S_d contains a finite number of lines, which are the images of the exceptional curves E_i , the strict transforms of the lines $\langle p_i, p_j \rangle$, $i \neq j$, and the strict transforms of the conics through 5 of the $\{p_i\}$.

Proof. Since H = -K, the lines on S are its exceptional curves (want $\ell \cdot H = 1 = -K \cdot \ell$, $2g - 2 = -2 = \ell^2 + K \cdot \ell \implies \ell^2 = -1$). In particular, $j(E_i)$ are lines in S. Let E be a divisor on S not equal to some E_i . Then $E \cdot H = 1, E \cdot E_i = 0$ or 1 implies that $E \equiv mL - \sum m_i E_i$ with $m_i \in \{0, 1\}$ for all $i, E \cdot H = 3m - \sum m_i = 1$. Counting all the solutions of these equations, we get all the numbers above and the classes of the lines in Pic S, so we can compute intersection numbers, etc. \Box

Note. Classically, a del Pezzo surface is defined to be a surface X of degree d in \mathbb{P}^d s.t. $\omega_X \cong \mathcal{O}_X(-1)$ (i.e. it is embedded by its anticanonical bundle). Every del Pezzo surface is a P_r for some $r = 0, \ldots, 6$ or is the 2-uple embedding of $\mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3$ which is a del Pezzo surface of degree 8 in \mathbb{P}^8 .

If we have p_1, \ldots, p_r a finite set of points in \mathbb{P}^2 , we can define a notion of general position for these (no 3 collinear, no 6 on a conic, even after a finite set of admissible quadratic transformations). If we blow up 7 points in general position, we get exactly 56 irreducible nonsingular exceptional curves of the first kind. For r = 8, we get 240 exceptional curves. The numbers are related to the root latices $A_1, A_2, A_5, D_4, D_5, E_6, E_7, E_8$: the automorphism groups of these graphs coming from exceptional curves are related to the Weyl groups of these

groups. If we blow up r = 9 points, the surface has infinitely many exceptional curves of the first kind.

Theorem 1. Any smooth cubic surface in \mathbb{P}^3 is a del Pezzo surface of degree 3, *i.e.* it is isomorphic to \mathbb{P}^2 with 6 points blown up.

Theorem 2. Any smooth complete intersection of 2 quadrics in \mathbb{P}^4 is a del Pezzo surface of degree 4.

See Beauville for proofs.

1.2. **Rational normal scrolls.** A scroll is a ruled surface embedded in \mathbb{P}^N s.t. the fibers of ruling are straight lines. The Veronese embedding of \mathbb{P}^1 into \mathbb{P}^d is called the rational normal curve, and comes from $v_d : \mathbb{P}^1 \to \mathbb{P}^d, [x : y] \mapsto [x^d : x^{d-1}y : \cdots : y^d]$. Its image has degree d, which is the minimal degree for a nondegenerate curve in \mathbb{P}^d : if you intersect a curve of degree d with a generic hyperplane, you get e points which span \mathbb{P}^{d-1} , so $e \geq d$. A rational normal scroll $S_{a,b}$ in \mathbb{P}^{a+b+1} : take 2 complementary linear subspaces of dimensions a and b, put a rational normal curve in each, and take the union of all lines joining $v_a(p)$ to $v_b(p)$ for $p \in \mathbb{P}^1$. We can also think of $S_{a,b}$ as the quotient of $(\mathbb{A}^2 \setminus \{0\}) \times (\mathbb{A}^2 \setminus \{0\})$ by the action of $\mathbb{F}_m \times \mathbb{F}_m$ $(k^* \times k^*)$ acting as

(2)
$$(\lambda, 1) : (t_1, t_2, x_1, x_2) \mapsto (\lambda t_1, \lambda t_2, \lambda^{-a} x_1, \lambda^{-b} x_2)$$

$$(1,\mu): (t_1,t_2,x_1,x_2) \mapsto (t_1,t_2,\mu x_1,\mu x_2)$$

One can check that the fibers are \mathbb{P}^1 : we get a geometrically ruled surface over \mathbb{P}^1 , i.e. a rational surface. In fact, $S_{a,b}$ is isomorphic to \mathbb{F}_n , n = b - a, and the special curve G of negative self-intersection -n is the rational normal curve of degree a where $1 \leq a \leq b$. The hyperplane divisor $(\mathcal{O}_{\mathbb{F}_n}(1))$ is G + bF and the degree of $S_{a,b}$ is a + b. When a = 0, we get a cone over a rational normal curve of degree b, while for a = b = 1 we get a smooth quadric in \mathbb{P}^3 .

Theorem 3. A surface of degree n - 1 in \mathbb{P}^n is either a rational normal scroll $S_{a,b}$ or the Veronese surface of degree 4 in \mathbb{P}^5 : this is the minimal possible degree for a nondegenerate surface.

Theorem 4. A surface of degree k in \mathbb{P}^k is either a del Pezzo surface or a Steiner surface.

Next, we will see where ruled and rational surfaces fit into the classifications of surfaces.

Theorem 5 (Enriques). An algebraic surface with Kodaira dimension $\kappa(S) = -\infty$ is ruled.

Theorem 6 (Castelnuovo). An algebraic surface is rational iff $q = p_2 = 0$.

Theorem 7. An algebraic surface has $\kappa = -\infty$ iff $p_4 = p_6 = 0$