3. The rational Cherednik algebra

3.1. Definition and examples. Above we have made essential use of the commutation relations between operators $x \in \mathfrak{h}^{*}, g \in G$, and $D_{a}, a \in \mathfrak{h}$. This makes it natural to consider the algebra generated by these operators.

Definition 3.1. The rational Cherednik algebra associated to (G, \mathfrak{h}) is the algebra $H_{c}(G, \mathfrak{h})$ generated inside $A=\operatorname{Rees}\left(\mathbb{C} G \ltimes \mathcal{D}\left(\mathfrak{h}_{\text {reg }}\right)\right)$ by the elements $x \in \mathfrak{h}^{*}, g \in G$, and $D_{a}(c, \hbar), a \in \mathfrak{h}$. If $t \in \mathbb{C}$, then the algebra $H_{t, c}(G, \mathfrak{h})$ is the specialization of $H_{c}(G, \mathfrak{h})$ at $\hbar=t$.

Proposition 3.2. The algebra H_{c} is the quotient of the algebra $\mathbb{C} G \ltimes \mathbf{T}\left(\mathfrak{h} \oplus \mathfrak{h}^{*}\right)[\hbar]$ (where \mathbf{T} denotes the tensor algebra) by the ideal generated by the relations

$$
\left[x, x^{\prime}\right]=0,\left[y, y^{\prime}\right]=0,[y, x]=\hbar(y, x)-\sum_{s \in \mathcal{S}} c_{s}\left(y, \alpha_{s}\right)\left(x, \alpha_{s}^{\vee}\right) s,
$$

where $x, x^{\prime} \in \mathfrak{h}^{*}, y, y^{\prime} \in \mathfrak{h}$.
Proof. Let us denote the algebra defined in the proposition by $H_{c}^{\prime}=H_{c}^{\prime}(G, \mathfrak{h})$. Then according to the results of the previous sections, we have a surjective homomorphism $\phi: H_{c}^{\prime} \rightarrow H_{c}$ defined by the formula $\phi(x)=x, \phi(g)=g, \phi(y)=D_{y}(c, \hbar)$.

Let us show that this homomorphism is injective. For this purpose assume that y_{i} is a basis of \mathfrak{h}, and x_{i} is the dual basis of \mathfrak{h}^{*}. Then it is clear from the relations of H_{c}^{\prime} that H_{c}^{\prime} is spanned over $\mathbb{C}[\hbar]$ by the elements

$$
\begin{equation*}
g \prod_{i=1}^{r} y_{i}^{m_{i}} \prod_{i=1}^{r} x_{i}^{n_{i}} \tag{3.1}
\end{equation*}
$$

Thus it remains to show that the images of the elements (3.1) under the map ϕ, i.e. the elements

$$
g \prod_{i=1}^{r} D_{y_{i}}(c, \hbar)^{m_{i}} \prod_{i=1}^{r} x_{i}^{n_{i}} .
$$

are linearly independent. But this follows from the obvious fact that the symbols of these elements in $\mathbb{C} G \ltimes \mathbb{C}\left[\mathfrak{h}^{*} \times \mathfrak{h}_{\text {reg }}\right][\hbar]$ are linearly independent. The proposition is proved.

Remark 3.3. 1. Similarly, one can define the universal algebra $H(G, \mathfrak{h})$, in which both \hbar and c are variables. (So this is an algebra over $\mathbb{C}[\hbar, c]$.) It has two equivalent definitions similar to the above.
2. It is more convenient to work with algebras defined by generators and relations than with subalgebras of a given algebra generated by a given set of elements. Therefore, from now on we will use the statement of Proposition 3.2 as a definition of the rational Cherednik algebra H_{c}. According to Proposition 3.2, this algebra comes with a natural embedding $\Theta_{c}: H_{c} \rightarrow \operatorname{Rees}\left(\mathbb{C} G \ltimes \mathcal{D}\left(\mathfrak{h}_{\text {reg }}\right)\right)$, defined by the formula $x \rightarrow x, g \rightarrow g, y \rightarrow D_{y}(c, \hbar)$. This embedding is called the Dunkl operator embedding.

Example 3.4. 1. Let $G=\mathbb{Z}_{2}, \mathfrak{h}=\mathbb{C}$. In this case c reduces to one parameter, and the algebra $H_{t, c}$ is generated by elements x, y, s with defining relations

$$
s^{2}=1, s x=-x s, s y=-y s,[y, x]=t-2 c s
$$

2. Let $G=\mathfrak{S}_{n}, \mathfrak{h}=\mathbb{C}^{n}$. In this case there is also only one complex parameter c, and the algebra $H_{t, c}$ is the quotient of $\mathfrak{S}_{n} \ltimes \mathbb{C}\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\rangle$ by the relations

$$
\left[x_{i}, x_{j}\right]=\left[y_{i}, y_{j}\right]=0,\left[y_{i}, x_{j}\right]=c s_{i j},\left[y_{i}, x_{i}\right]=t-c \sum_{j \neq i} s_{i j} .
$$

Here $\mathbb{C}\langle E\rangle$ denotes the free algebra on a set E, and $s_{i j}$ is the transposition of i and j.
3.2. The PBW theorem for the rational Cherednik algebra. Let us put a filtration on H_{c} by setting $\operatorname{deg} y=1$ for $y \in \mathfrak{h}$ and $\operatorname{deg} x=\operatorname{deg} g=0$ for $x \in \mathfrak{h}^{*}, g \in G$. Let $\operatorname{gr}\left(H_{c}\right)$ denote the associated graded algebra of H_{c} under this filtration, and similarly for $H_{t, c}$. We have a natural surjective homomorphism

$$
\xi: \mathbb{C} G \ltimes \mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right][\hbar] \rightarrow \operatorname{gr}\left(H_{c}\right) .
$$

For $t \in \mathbb{C}$, it specializes to surjective homomorphisms

$$
\xi_{t}: \mathbb{C} G \ltimes \mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right] \rightarrow \operatorname{gr}\left(H_{t, c}\right) .
$$

Proposition 3.5 (The PBW theorem for rational Cherednik algebras). The maps ξ and ξ_{t} are isomorphisms.

Proof. The statement is equivalent to the claim that the elements (3.1) are a basis of $H_{t, c}$, which follows from the proof of Proposition 3.2.

Remark 3.6. 1. We have

$$
H_{0,0}=\mathbb{C} G \ltimes \mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right] \text { and } H_{1,0}=\mathbb{C} G \ltimes \mathcal{D}(\mathfrak{h}) .
$$

2. For any $\lambda \in \mathbb{C}^{*}$, the algebra $H_{t, c}$ is naturally isomorphic to $H_{\lambda t, \lambda c}$.
3. The Dunkl operator embedding Θ_{c} specializes to embeddings

$$
\Theta_{0, c}: H_{0, c} \hookrightarrow \mathbb{C} G \ltimes \mathbb{C}\left[\mathfrak{h}^{*} \times \mathfrak{h}_{\mathrm{reg}}\right],
$$

given by $x \mapsto x, g \mapsto g, y \mapsto D_{a}^{0}$, and

$$
\Theta_{1, c}: H_{1, c} \hookrightarrow \mathbb{C} G \ltimes \mathcal{D}\left(\mathfrak{h}_{\mathrm{reg}}\right),
$$

given by $x \mapsto x, g \mapsto g, y \mapsto D_{a}$. So $H_{0, c}$ is generated by x, g, D_{a}^{0}, and $H_{1, c}$ is generated by x, g, D_{a}.

Since Dunkl operators map polynomials to polynomials, the map $\Theta_{1, c}$ defines a representation of $H_{1, c}$ on $\mathbb{C}[\mathfrak{h}]$. This representation is called the polynomial representation of $H_{1, c}$.
3.3. The spherical subalgebra. Let $\mathrm{e} \in \mathbb{C} G$ be the symmetrizer, $\mathrm{e}=|G|^{-1} \sum_{g \in G} g$. We have $\mathrm{e}^{2}=\mathrm{e}$.

Definition 3.7. B_{c} := $\mathrm{e} H_{c} \mathbf{e}$ is called the spherical subalgebra of H_{c}. The spherical subalgebra of $H_{t, c}$ is $B_{t, c}:=B_{c} /(\hbar-t)=\mathrm{e} H_{t, c} \mathrm{e}$.

Note that

$$
\mathrm{e}\left(\mathbb{C} G \ltimes \mathcal{D}\left(\mathfrak{h}_{\mathrm{reg}}\right)\right) \mathrm{e}=\mathcal{D}\left(\mathfrak{h}_{\mathrm{reg}}\right)^{G}, \quad \mathrm{e}\left(\mathbb{C} G \ltimes \mathbb{C}\left[\mathfrak{h}_{\mathrm{reg}} \times \mathfrak{h}^{*}\right]\right) \mathrm{e}=\mathbb{C}\left[\mathfrak{h}_{\mathrm{reg}} \times \mathfrak{h}^{*}\right]^{G} .
$$

Therefore, the restriction gives the embeddings: $\Theta_{1, c}: B_{1, c} \hookrightarrow \mathcal{D}\left(\mathfrak{h}_{\mathrm{reg}}\right)^{G}$, and $\Theta_{0, c}: B_{0, c} \hookrightarrow$ $\mathbb{C}\left[\mathfrak{h}^{*} \times \mathfrak{h}_{\text {reg }}\right]^{G}$. In particular, we have
Proposition 3.8. The spherical subalgebra $B_{0, c}$ is commutative and does not have zero divisors. Also $B_{0, c}$ is finitely generated.

Proof. The first statement is clear from the above. The second statement follows from the fact that $\operatorname{gr}\left(B_{0, c}\right)=B_{0,0}=\mathbb{C}\left[\mathfrak{h} \times \mathfrak{h}^{*}\right]^{G}$, which is finitely generated by Hilbert's theorem.

Corollary 3.9. $M_{c}=\operatorname{Spec} B_{0, c}$ is an irreducible affine algebraic variety.
Proof. Directly from the definition and the proposition.
We also obtain
Proposition 3.10. B_{c} is a flat quantization (non-commutative deformation) of $B_{0, c}$ over $\mathbb{C}[\hbar]$.

So $B_{0, c}$ carries a Poisson bracket $\{\cdot, \cdot\}$ (thus M_{c} is a Poisson variety), and B_{c} is a quantization of the Poisson bracket, i.e. if $a, b \in B_{c}$ and a_{0}, b_{0} are the corresponding elements in $B_{0, c}$, then

$$
[a, b] / \hbar \equiv\left\{a_{0}, b_{0}\right\} \quad(\bmod \hbar)
$$

Definition 3.11. The Poisson variety M_{c} is called the Calogero-Moser space of G, \mathfrak{h} with parameter c.
3.4. The localization lemma. Let $H_{t, c}^{\text {loc }}=H_{t, c}\left[\delta^{-1}\right]$ be the localization of $H_{t, c}$ as a module over $\mathbb{C}[\mathfrak{h}]$ with respect to the discriminant δ (a polynomial vanishing to the first order on each reflection plane). Define also $B_{t, c}^{\mathrm{loc}}=\mathrm{e} H_{t, c}^{\mathrm{loc}} \mathrm{e}$.

Proposition 3.12. (i) For $t \neq 0$ the map $\Theta_{t, c}$ induces an isomorphism of algebras $H_{t, c}^{\text {loc }} \rightarrow \mathbb{C} G \ltimes \mathcal{D}\left(\mathfrak{h}_{\text {reg }}\right)$, which restricts to an isomorphism $B_{t, c}^{\text {loc }} \rightarrow \mathcal{D}\left(\mathfrak{h}_{\text {reg }}\right)^{G}$.
(ii) The map $\Theta_{0, c}$ induces an isomorphism of algebras $H_{0, c}^{\text {loc }} \rightarrow \mathbb{C} G \ltimes \mathbb{C}\left[\mathfrak{h}^{*} \times \mathfrak{h}_{\text {reg }}\right]$, which restricts to an isomorphism $B_{0, c}^{\text {loc }} \rightarrow \mathbb{C}\left[\mathfrak{h}^{*} \times \mathfrak{h}_{\text {reg }}\right]^{G}$.
Proof. This follows immediately from the fact that the Dunkl operators have poles only on the reflection hyperplanes.

Since $\operatorname{gr}\left(B_{0, c}\right)=B_{0,0}=\mathbb{C}\left[\mathfrak{h}^{*} \oplus \mathfrak{h}\right]^{G}$, we get the following geometric corollary.
Corollary 3.13. (i) The family of Poisson varieties M_{c} is a flat deformation of the Poisson variety $M_{0}:=\left(\mathfrak{h} \times \mathfrak{h}^{*}\right) / G$. In particular, M_{c} is smooth outside of a subset of codimension 2.
(ii) We have a natural map $\beta_{c}: M_{c} \rightarrow \mathfrak{h} / G$, such that $\beta_{c}^{-1}\left(\mathfrak{h}_{\mathrm{reg}} / G\right)$ is isomorphic to $\left(\mathfrak{h}_{\text {reg }} \times \mathfrak{h}^{*}\right) / G$. The Poisson structure on M_{c} is obtained by extension of the symplectic Poisson structure on $\left(\mathfrak{h}_{\mathrm{reg}} \times \mathfrak{h}^{*}\right) / G$.

Example 3.14. Let $W=\mathbb{Z}_{2}, \mathfrak{h}=\mathbb{C}$. Then $B_{0, c}=\left\langle x^{2}, x p, p^{2}-c^{2} / x^{2}\right\rangle$. Let $X:=x^{2}, Z:=x p$ and $Y:=p^{2}-c^{2} / x^{2}$. Then $Z^{2}-X Y=c^{2}$. So M_{c} is isomorphic to the quadric $Z^{2}-X Y=c^{2}$ in the 3 -dimensional space and it is smooth for $c \neq 0$.
3.5. Category \mathcal{O} for rational Cherednik algebras. From the PBW theorem, we see that $H_{1, c}=S \mathfrak{h}^{*} \otimes \mathbb{C} G \otimes S \mathfrak{h}$. It is similar to the structure of the universal enveloping algebra of a simple Lie algebra: $U(\mathfrak{g})=U\left(\mathfrak{n}_{-}\right) \otimes U(\mathfrak{h}) \otimes U\left(\mathfrak{n}_{+}\right)$. Namely, the subalgebra $\mathbb{C} G$ plays the role of the Cartan subalgebra, and the subalgebras $S \mathfrak{h}^{*}$ and $S \mathfrak{h}$ play the role of the positive and negative nilpotent subalgebras. This similarity allows one to define and study the category \mathcal{O} analogous to the Bernstein-Gelfand-Gelfand category \mathcal{O} for simple Lie algebras.

Definition 3.15. The category $\mathcal{O}_{c}(G, \mathfrak{h})$ is the category of modules over $H_{1, c}(G, \mathfrak{h})$ which are finitely generated over $S \mathfrak{h}^{*}$ and locally finite under $S \mathfrak{h}$ (i.e., for $M \in \mathcal{O}_{c}(G, \mathfrak{h}), \forall v \in M$, $(S \mathfrak{h}) v$ is finite dimensional).

If M is a locally finite $(S \mathfrak{h})^{G}$-module, then

$$
M=\oplus_{\lambda \in \mathfrak{h}^{*} / G} M_{\lambda},
$$

where

$$
M_{\lambda}=\left\{v \in M \mid \forall p \in(S \mathfrak{h})^{G}, \exists N \text { s.t. }(p-\lambda(p))^{N} v=0\right\},
$$

(notice that $\left.\mathfrak{h}^{*} / G=\operatorname{Specm}(S \mathfrak{h})^{G}\right)$.
Proposition 3.16. M_{λ} are $H_{1, c}$-submodules.
Proof. Note first that we have an isomorphism $\mu: H_{1, c}(G, \mathfrak{h}) \cong H_{1, c}\left(G, \mathfrak{h}^{*}\right)$, which is given by $x_{a} \mapsto y_{a}, y_{b} \mapsto-x_{b}, g \mapsto g$. Now let x_{1}, \ldots, x_{r} be a basis of \mathfrak{h}^{*} and y_{1}, \ldots, y_{r} a basis of \mathfrak{h}. Suppose $P=P\left(x_{1}, \ldots, x_{r}\right) \in\left(S \mathfrak{h}^{*}\right)^{G}$. Then we have

$$
[y, P]=\frac{\partial}{\partial y} P \in S \mathfrak{h}^{*}, \text { where } y \in \mathfrak{h}
$$

(this follows from the fact that both sides act in the same way in the polynomial representation, which is faithful). So using the isomorphism μ, we conclude that if $Q \in(S \mathfrak{h})^{G}, Q=$ $Q\left(y_{1}, \ldots, y_{r}\right)$, then $[x, Q]=-\partial_{x} Q$ for $x \in \mathfrak{h}^{*}$.

Now, to prove the proposition, the only thing we need to check is that M_{λ} is invariant under $x \in \mathfrak{h}^{*}$. For any $v \in M_{\lambda}$, we have $(Q-\lambda(Q))^{N} v=0$ for some N. Then

$$
(Q-\lambda(Q))^{N+1} x v=(N+1) \partial_{x} Q \cdot(Q-\lambda(Q))^{N} v=0
$$

So $x v \in M_{\lambda}$.

Corollary 3.17. We have the following decomposition:

$$
\mathcal{O}_{c}(G, \mathfrak{h})=\bigoplus_{\lambda \in \mathfrak{h}{ }^{*} / G} \mathcal{O}_{c}(G, \mathfrak{h})_{\lambda},
$$

where $\mathcal{O}_{c}(G, \mathfrak{h})_{\lambda}$ is the subcategory of modules where $(S \mathfrak{h})^{G}$ acts with generalized eigenvalue λ.

Proof. Directly from the definition and the proposition.
Note that $\mathcal{O}_{c}(G, \mathfrak{h})_{\lambda}$ is an abelian category closed under taking subquotients and extensions.
3.6. The grading element. Let

$$
\begin{equation*}
\mathbf{h}=\sum_{i} x_{i} y_{i}+\frac{1}{2} \operatorname{dim} \mathfrak{h}-\sum_{s \in \mathcal{S}} \frac{2 c_{s}}{1-\lambda_{s}} s \tag{3.2}
\end{equation*}
$$

Proposition 3.18. We have

$$
[\mathbf{h}, x]=x, x \in \mathfrak{h}^{*}, \quad[\mathbf{h}, y]=-y, y \in \mathfrak{h} .
$$

Proof. Let us prove the first relation; the second one is proved similarly. We have

$$
\begin{aligned}
{[\mathbf{h}, x] } & =\sum_{i} x_{i}\left[y_{i}, x\right]-\sum_{s \in \mathcal{S}} \frac{2 c_{s}}{1-\lambda_{s}} \cdot \frac{\lambda_{s}-1}{2}\left(\alpha_{s}^{\vee}, x\right) \alpha_{s} \cdot s \\
& =\sum_{i} x_{i}\left(y_{i}, x\right)-\sum_{i} x_{i} \sum_{s \in \mathcal{S}} c_{s}\left(\alpha_{s}^{\vee}, x\right)\left(\alpha_{s}, y_{i}\right) s+\sum_{s \in \mathcal{S}} c_{s}\left(\alpha_{s}^{\vee}, x\right) \alpha_{s} \cdot s .
\end{aligned}
$$

The last two terms cancel since $\sum_{i} x_{i}\left(\alpha_{s}, y_{i}\right)=\alpha_{s}$, so we get $\sum_{i} x_{i}\left(y_{i}, x\right)=x$.
Proposition 3.19. Let $G=W$ be a real reflection group. Let

$$
\mathbf{h}=\sum_{i} x_{i} y_{i}+\frac{1}{2} \operatorname{dim} \mathfrak{h}-\sum_{s \in \mathcal{S}} c_{s} s, \quad \mathbf{E}=-\frac{1}{2} \sum_{i} x_{i}^{2}, \quad \mathbf{F}=\frac{1}{2} \sum_{i} y_{i}^{2} .
$$

Then
(i) $\mathbf{h}=\sum_{i}\left(x_{i} y_{i}+y_{i} x_{i}\right) / 2$;
(ii) $\mathbf{h}, \mathbf{E}, \mathbf{F}$ form an $\mathfrak{s l}_{2}$-triple.

Proof. A direct calculation.
Theorem 3.20. Let M be a module over $H_{1, c}(G, \mathfrak{h})$.
(i) If \mathfrak{h} acts locally nilpotently on M, then \mathbf{h} acts locally finitely on M.
(ii) If M is finitely generated over $S \mathfrak{h}^{*}$, then $M \in \mathcal{O}_{c}(G, \mathfrak{h})_{0}$ if and only if \mathbf{h} acts locally finitely on M.

Proof. (i) Assume that $S \mathfrak{h}$ acts locally nilpotently on M. Let $v \in M$. Then $S \mathfrak{h} \cdot v$ is a finite dimensional vector space and let $d=\operatorname{dim} S \mathfrak{h} \cdot v$. We prove that v is \mathbf{h}-finite by induction in dimension d. We can use $d=0$ as base, so only need to do the induction step. The space $S \mathfrak{h} \cdot v$ must contain a nonzero vector u such that $y \cdot u=0, \forall y \in \mathfrak{h}$. Let $U \subset M$ be the subspace of vectors with this property. \mathbf{h} acts on U by an element of $\mathbb{C} G$, hence locally finitely. So it is sufficient to show that the image of v in $M /\langle U\rangle$ is \mathbf{h}-finite (where $\langle U\rangle$ is the submodule generated by U). But this is true by the induction assumption, as $u=0$ in $M /\langle U\rangle$.
(ii) We need to show that if \mathbf{h} acts locally finitely on M, then \mathfrak{h} acts locally nilpotently on M. Assume \mathbf{h} acts locally finitely on M. Then $M=\oplus_{\beta \in B} M[\beta]$, where $B \subset \mathbb{C}$. Since M is finitely generated over $S \mathfrak{h}^{*}, B$ is a finite union of sets of the form $z+\mathbb{Z}_{\geq 0}, z \in \mathbb{C}$. So $S \mathfrak{h}$ must act locally nilpotently on M.

We can obtain the following corollary easily.
Corollary 3.21. Any finite dimensional $H_{1, c}(G, \mathfrak{h})$-module is in $\mathcal{O}_{c}(G, \mathfrak{h})_{0}$.
We see that any module $M \in \mathcal{O}_{c}(G, \mathfrak{h})_{0}$ has a grading by generalized eigenvalues of \mathbf{h} : $M=\oplus_{\beta} M[\beta]$.
3.7. Standard modules. Let τ be a finite dimensional representation of G. The standard module over $H_{1, c}(G, \mathfrak{h})$ corresponding to τ (also called the Verma module) is

$$
M_{c}(G, \mathfrak{h}, \tau)=M_{c}(\tau)=H_{1, c}(G, \mathfrak{h}) \otimes_{\mathbb{C} G \ltimes S \mathfrak{h}} \tau \in \mathcal{O}_{c}(G, \mathfrak{h})_{0},
$$

where $S \mathfrak{h}$ acts on τ by zero.
So from the PBW theorem, we have that as vector spaces, $M_{c}(\tau) \cong \tau \otimes S \mathfrak{h}^{*}$.

Remark 3.22. More generally, $\forall \lambda \in \mathfrak{h}^{*}$, let $G_{\lambda}=\operatorname{Stab}(\lambda)$, and τ be a finite dimensional representation of G_{λ}. Then we can define $M_{c, \lambda}(G, \mathfrak{h}, \tau)=H_{1, c}(G, \mathfrak{h}) \otimes_{\mathbb{C}_{\lambda} \ltimes S \mathfrak{h}} \tau$, where $S \mathfrak{h}$ acts on τ by λ. These modules are called the Whittaker modules.

Let τ be irreducible, and let $h_{c}(\tau)$ be the number given by the formula

$$
h_{c}(\tau)=\frac{\operatorname{dim} \mathfrak{h}}{2}-\left.\sum_{s \in \mathcal{S}} \frac{2 c_{s}}{1-\lambda_{s}} s\right|_{\tau} .
$$

Then we see that \mathbf{h} acts on $\tau \otimes S^{m} \mathfrak{h}^{*}$ by the scalar $h_{c}(\tau)+m$.
Definition 3.23. A vector v in an $H_{1, c}$-module M is singular if $y_{i} v=0$ for all i.
Proposition 3.24. Let U be an $H_{1, c}(G, \mathfrak{h})$-module. Let $\tau \subset U$ be a G-submodule consisting of singular vectors. Then there is a unique homomorphism $\phi: M_{c}(\tau) \rightarrow U$ of $\mathbb{C}[\mathfrak{h}]$-modules such that $\left.\phi\right|_{\tau}$ is the identity, and it is an $H_{1, c}$-homomorphism.
Proof. The first statement follows from the fact that $M_{c}(\tau)$ is a free module over $\mathbb{C}[\mathfrak{h}]$ generated by τ. Also, it follows from the Frobenius reciprocity that there must exist a map ϕ which is an $H_{1, c}$-homomorphism. This implies the proposition.

3.8. Finite length.

Proposition 3.25. $\exists K \in \mathbb{R}$ such that for any $M \subset N$ in $\mathcal{O}_{c}(G, \mathfrak{h})_{0}$, if $M[\beta]=N[\beta]$ for $\operatorname{Re}(\beta) \leq K$, then $M=N$.
Proof. Let $K=\max _{\tau} \operatorname{Re} h_{c}(\tau)$. Then if $M \neq N, M / N$ begins in degree β_{0} with $\operatorname{Re} \beta_{0}>K$, which is impossible since by Proposition 3.24, β_{0} must equal $h_{c}(\tau)$ for some τ.
Corollary 3.26. Any $M \in \mathcal{O}_{c}(G, \mathfrak{h})_{0}$ has finite length.
Proof. Directly from the proposition.
3.9. Characters. For $M \in \mathcal{O}_{c}(G, \mathfrak{h})_{0}$, define the character of M as the following formal series in t :

$$
\operatorname{ch}_{M}(g, t)=\sum_{\beta} t^{\beta} \operatorname{Tr}_{M[\beta]}(g)=\operatorname{Tr}_{M}\left(g t^{\mathbf{h}}\right), \quad g \in G
$$

Proposition 3.27. We have

$$
\operatorname{ch}_{M_{c}(\tau)}(g, t)=\frac{\chi_{\tau}(g) t^{h_{c}(\tau)}}{\operatorname{det}_{\mathfrak{h}^{*}}(1-t g)}
$$

Proof. We begin with the following lemma.
Lemma 3.28 (MacMahon's Master theorem). Let V be a finite dimensional space, $A: V \rightarrow$ V a linear operator. Then

$$
\sum_{n \geq 0} t^{n} \operatorname{Tr}\left(S^{n} A\right)=\frac{1}{\operatorname{det}(1-t A)}
$$

Proof of the lemma. If A is diagonalizable, this is obvious. The general statement follows by continuity.

The lemma implies that $\operatorname{Tr}_{S \mathfrak{b}^{*}}\left(g t^{D}\right)=\frac{1}{\operatorname{det}(1-g t)}$ where D is the degree operator. This implies the required statement.
3.10. Irreducible modules. Let τ be an irreducible representation of G.

Proposition 3.29. $M_{c}(\tau)$ has a maximal proper submodule $J_{c}(\tau)$.
Proof. The proof is standard. $J_{c}(\tau)$ is the sum of all proper submodules of $M_{c}(\tau)$, and it is not equal to $M_{c}(\tau)$ because any proper submodule has a grading by generalized eigenspaces of \mathbf{h}, with eigenvalues β such that $\beta-h_{c}(\tau)>0$.

We define $L_{c}(\tau)=M_{c}(\tau) / J_{c}(\tau)$, which is an irreducible module.
Proposition 3.30. Any irreducible object of $\mathcal{O}_{c}(G, \mathfrak{h})_{0}$ has the form $L_{c}(\tau)$ for an unique τ.
Proof. Let $L \in \mathcal{O}_{c}(G, \mathfrak{h})_{0}$ be irreducible, with lowest eigenspace of \mathbf{h} containing an irreducible G-module τ. Then by Proposition 3.24, we have a nonzero homomorphism $M_{c}(\tau) \rightarrow L$, which is surjective, since L is irreducible. Then we must have $L=L_{c}(\tau)$.
Remark 3.31. Let χ be a character of G. Then we have an isomorphism $H_{1, c}(G, \mathfrak{h}) \rightarrow$ $H_{1, c \chi}(G, \mathfrak{h})$, mapping $g \in G$ to $\chi^{-1}(g) g$. This automorphism maps $L_{c}(\tau)$ to $L_{c \chi}\left(\chi^{-1} \otimes \tau\right)$ isomorphically.
3.11. The contragredient module. Set $\bar{c}(s)=c\left(s^{-1}\right)$. We have a natural isomorphism $\gamma: H_{1, \bar{c}}\left(G, \mathfrak{h}^{*}\right)^{\text {op }} \rightarrow H_{1, c}(G, \mathfrak{h})$, acting trivially on \mathfrak{h} and \mathfrak{h}^{*}, and sending $g \in G$ to g^{-1}.

Thus if M is an $H_{1, c}(G, \mathfrak{h})$-module, then the full dual space M^{*} is an $H_{1, \bar{c}}\left(M, \mathfrak{h}^{*}\right)$-module. If $M \in \mathcal{O}_{c}(G, \mathfrak{h})_{0}$, then we can define M^{\dagger}, which is the \mathbf{h}-finite part of M^{*}.
Proposition 3.32. M^{\dagger} belongs to $\mathcal{O}_{\bar{c}}\left(G, \mathfrak{h}^{*}\right)_{0}$.
Proof. Clearly, if L is irreducible, then so is L^{\dagger}. Then L^{\dagger} is generated by its lowest \mathbf{h} eigenspace over $H_{1, \bar{c}}\left(G, \mathfrak{h}^{*}\right)$, hence over $S \mathfrak{h}^{*}$. Thus, $L^{\dagger} \in \mathcal{O}_{\bar{c}}\left(G, \mathfrak{h}^{*}\right)_{0}$. Now, let $M \in \mathcal{O}_{c}(G, \mathfrak{h})_{0}$ be any object. Since M has finite length, so does M^{\dagger}. Moreover, M^{\dagger} has a finite filtration with successive quotients of the form L^{\dagger}, where $L \in \mathcal{O}_{c}(G, \mathfrak{h})_{0}$ is irreducible. This implies the required statement, since $\mathcal{O}_{c}(G, \mathfrak{h})_{0}$ is closed under taking extensions.

Clearly, $M^{\dagger \dagger}=M$. Thus, $M \mapsto M^{\dagger}$ is an equivalence of categories $\mathcal{O}_{c}(G, \mathfrak{h}) \rightarrow \mathcal{O}_{\bar{c}}\left(G, \mathfrak{h}^{*}\right)^{\text {op }}$.
3.12. The contravariant form. Let τ be an irreducible representation of G. By Proposition 3.24, we have a unique homomorphism $\phi: M_{c}(G, \mathfrak{h}, \tau) \rightarrow M_{\bar{c}}\left(G, \mathfrak{h}^{*}, \tau^{*}\right)^{\dagger}$ which is the identity in the lowest \mathbf{h}-eigenspace. Thus, we have a pairing

$$
\beta_{c}: M_{c}(G, \mathfrak{h}, \tau) \times M_{\bar{c}}\left(G, \mathfrak{h}^{*}, \tau^{*}\right) \rightarrow \mathbb{C},
$$

which is called the contravariant form.
Remark 3.33. If $G=W$ is a real reflection group, then $\mathfrak{h} \cong \mathfrak{h}^{*}, c=\bar{c}$, and $\tau \cong \tau^{*}$ via a symmetric form. So for real reflection groups, β_{c} is a symmetric form on $M_{c}(\tau)$.
Proposition 3.34. The maximal proper submodule $J_{c}(\tau)$ is the kernel of ϕ (or, equivalently, of the contravariant form β_{c}).
Proof. Let K be the kernel of the contravariant form. It suffices to show that $M_{c}(\tau) / K$ is irreducible. We have a diagram:

Indeed, a nonzero map ξ exists by Proposition 3.24, and it factors through $L_{c}(G, \mathfrak{h}, \tau)$, with η being an isomorphism, since $L_{c}\left(G, \mathfrak{h}^{*}, \tau^{*}\right)^{\dagger}$ is irreducible. Now, by Proposition 3.24 (uniqueness of ϕ), the diagram must commute up to scaling, which implies the statement.
Proposition 3.35. Assume that $h_{c}(\tau)-h_{c}\left(\tau^{\prime}\right)$ never equals a positive integer for any $\tau, \tau^{\prime} \in$ Irrep G. Then $\mathcal{O}_{c}(G, \mathfrak{h})_{0}$ is semisimple, with simple objects $M_{c}(\tau)$.
Proof. It is clear that in this situation, all $M_{c}(\tau)$ are simple. Also consider $\operatorname{Ext}^{1}\left(M_{c}(\tau), M_{c}\left(\tau^{\prime}\right)\right)$. If $h_{c}(\tau)-h_{c}\left(\tau^{\prime}\right) \notin \mathbb{Z}$, it is clearly 0 . Otherwise, $h_{c}(\tau)=h_{c}\left(\tau^{\prime}\right)$, and again $\operatorname{Ext}^{1}\left(M_{c}(\tau), M_{c}\left(\tau^{\prime}\right)\right)=$ 0 , since for any extension

$$
0 \rightarrow M_{c}\left(\tau^{\prime}\right) \rightarrow N \rightarrow M_{c}(\tau) \rightarrow 0
$$

by Proposition 3.24 we have a splitting $M_{c}(\tau) \rightarrow N$.
Remark 3.36. In fact, our argument shows that if $\operatorname{Ext}^{1}\left(M_{c}(\tau), M_{c}\left(\tau^{\prime}\right)\right) \neq 0$, then $h_{c}(\tau)-$ $h_{c}\left(\tau^{\prime}\right) \in \mathbb{N}$.
3.13. The matrix of multiplicities. For $\tau, \sigma \in \operatorname{Irrep} G$, write $\tau<\sigma$ if

$$
\operatorname{Re} h_{c}(\sigma)-\operatorname{Re} h_{c}(\tau) \in \mathbb{N}
$$

Proposition 3.37. There exists a matrix of integers $N=\left(n_{\sigma, \tau}\right)$, with $n_{\sigma, \tau} \geq 0$, such that $n_{\tau, \tau}=1, n_{\sigma, \tau}=0$ unless $\sigma<\tau$, and

$$
M_{c}(\sigma)=\sum n_{\sigma, \tau} L_{c}(\tau) \in \mathrm{K}_{0}\left(\mathcal{O}_{c}(G, \mathfrak{h})_{0}\right)
$$

Proof. This follows from the Jordan-Hölder theorem and the fact that objects in $\mathcal{O}_{c}(G, \mathfrak{h})_{0}$ have finite length.
Corollary 3.38. Let $N^{-1}=\left(\bar{n}_{\tau, \sigma}\right)$. Then

$$
L_{c}(\tau)=\sum \bar{n}_{\tau, \sigma} M_{c}(\sigma)
$$

Corollary 3.39. We have

$$
\operatorname{ch}_{L_{c}(\tau)}(g, t)=\frac{\sum \bar{n}_{\tau, \sigma} \chi_{\sigma}(g) t^{h_{c}(\tau)}}{\operatorname{det}_{\mathfrak{h}^{*}}(1-t g)}
$$

Both of the corollaries can be obtained from the above proposition easily.
One of the main problems in the representation theory of rational Cherednik algebras is the following problem.

Problem: Compute the multiplicities $n_{\sigma, \tau}$ or, equivalently, $\mathrm{ch}_{L_{c}(\tau)}$ for all τ.
In general, this problem is open.
3.14. Example: the rank 1 case. Let $G=\mathbb{Z} / m \mathbb{Z}$ and λ be an m-th primitive root of 1 . Then the algebra $H_{1, c}(G, \mathfrak{h})$ is generated by x, y, s with relations

$$
[y, x]=1-2 \sum_{j=1}^{m-1} c_{j} s^{j}, \quad s x s^{-1}=\lambda x, \quad s y s^{-1}=\lambda^{-1} y
$$

Consider the one-dimensional space \mathbb{C} and let y act by 0 and $g \in G$ act by 1 . We have $M_{c}(\mathbb{C})=\mathbb{C}[x]$. The contravariant form $\beta_{c, \mathbb{C}}$ on $M_{c}(\mathbb{C})$ is defined by

$$
\beta_{c, \mathbb{C}}\left(x^{n}, x^{n}\right)=a_{n} ; \quad \begin{gathered}
\beta_{c, \mathbb{C}}\left(x^{n}, x^{n^{\prime}}\right)=0, n \neq n^{\prime} .
\end{gathered}
$$

Recall that $\beta_{c, \mathbb{C}}$ satisfies $\beta_{c, \mathbb{C}}\left(x^{n}, x^{n}\right)=\beta_{c, \mathbb{C}}\left(x^{n-1}, y x^{n}\right)$, which gives

$$
a_{n}=a_{n-1}\left(n-b_{n}\right),
$$

where b_{n} are new parameters:

$$
b_{n}:=2 \sum_{j=1}^{m-1} \frac{1-\lambda^{j n}}{1-\lambda^{j}} c_{j} \quad\left(b_{0}=0, b_{n+m}=b_{n}\right) .
$$

Thus we obtain the following proposition.
Proposition 3.40. (i) $M_{c}(\mathbb{C})$ is irreducible if only if $n-b_{n} \neq 0$ for any $n \geq 1$.
(ii) Assume that r is the smallest positive integer such that $r=b_{r}$. Then $L_{c}(\mathbb{C})$ has dimension r (which can be any number not divisible by m) with basis $1, x, \ldots, x^{r-1}$.

Remark 3.41. According to Remark 3.31, this proposition in fact describes all the irreducible lowest weight modules.
Example 3.42. Consider the case $m=2$. The $M_{c}(\mathbb{C})$ is irreducible unless $c \in 1 / 2+\mathbb{Z}_{\geq 0}$. If $c=(2 n+1) / 2 \in 1 / 2+\mathbb{Z}, n \geq 0$, then $L_{c}(\mathbb{C})$ has dimension $2 n+1$. A similar answer is obtained for lowest weight \mathbb{C}_{-}, replacing c by $-c$.
3.15. The Frobenius property. Let A be a \mathbb{Z}_{+}-graded commutative algebra. The algebra A is called Frobenius if the top degree $A[d]$ of A is 1 -dimensional, and the multiplication map $A[m] \times A[d-m] \rightarrow A[d]$ is a nondegenerate pairing for any $0 \leq m \leq d$. In particular, the Hilbert polynomial of a Frobenius algebra A is palindromic.
Now, let us go back to considering modules over the rational Cherednik algebra $H_{1, c}$. Any submodule J of the polynomial representation $M_{c}(\mathbb{C})=M_{c}=\mathbb{C}[\mathfrak{h}]$ is an ideal in $\mathbb{C}[\mathfrak{h}]$, so the quotient $A=M_{c} / J$ is a \mathbb{Z}_{+}-graded commutative algebra.

Now suppose that G preserves an inner product in \mathfrak{h}, i.e., $G \subseteq \mathrm{O}(\mathfrak{h})$.
Theorem 3.43. If $A=M_{c}(\mathbb{C}) / J$ is finite dimensional, then A is irreducible $\left(A=L_{c}(\mathbb{C})\right)$ $\Longleftrightarrow A$ is a Frobenius algebra.
Proof. 1) Suppose A is an irreducible $H_{1, c}$-module, i.e., $A=L_{c}(\mathbb{C})$. By Proposition 3.19, A is naturally a finite dimensional $\mathfrak{s l}_{2}$-module (in particular, it integrates to the group $\mathrm{SL}_{2}(\mathbb{C})$). Hence, by the representation theory of $\mathfrak{s l}_{2}$, the top degree of A is 1-dimensional. Let $\phi \in A^{*}$ denote a nonzero linear function on the top component. Let β_{c} be the contravariant form on $M_{c}(\mathbb{C})$. Consider the form

$$
\left(v_{1}, v_{2}\right) \mapsto E\left(v_{1}, v_{2}\right):=\beta_{c}\left(v_{1}, g v_{2}\right), \text { where } g=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{C})
$$

Then $E\left(x v_{1}, v_{2}\right)=E\left(v_{1}, x v_{2}\right)$. So for any $p, q \in M_{c}(\mathbb{C})=\mathbb{C}[\mathfrak{h}], E(p, q)=\phi(p(x) q(x))$ (for a suitable normalization of ϕ).

Since E is a nondegenerate form, A is a Frobenius algebra.
2) Suppose A is Frobenius. Then the highest component is 1-dimensional, and $E: A \otimes A \rightarrow \mathbb{C}, E(a, b)=\phi(a b)$ is nondegenerate. We have $E(x a, b)=E(a, x b)$. So set $\beta(a, b)=E\left(a, g^{-1} b\right)$. Then β satisfies $\beta\left(a, x_{i} b\right)=\beta\left(y_{i} a, b\right)$. Thus, for all $p, q \in \mathbb{C}[\mathfrak{h}]$, $\beta(p(x), q(x))=\beta(q(y) p(x), 1)$. So $\beta=\beta_{c}$ up to scaling. Thus, β_{c} is nondegenerate and A is irreducible.

Remark 3.44. If $G \nsubseteq \mathrm{O}(\mathfrak{h})$, this theorem is false, in general.

Now consider the Frobenius property of $L_{c}(\mathbb{C})$ for any $G \subset G L(\mathfrak{h})$.
Theorem 3.45. Let $U \subset M_{c}(\mathbb{C})=\mathbb{C}[\mathfrak{h}]$ be a G-subrepresentation of dimension $l=\operatorname{dim} \mathfrak{h}$, sitting in degree r, which consists of singular vectors. Let $J=\langle U\rangle$. Assume that $A=M_{c} / J$ is finite dimensional. Then
(i) A is Frobenius.
(ii) A admits a $B G G$ type resolution:

$$
A \leftarrow M_{c}(\mathbb{C}) \leftarrow M_{c}(U) \leftarrow M_{c}\left(\wedge^{2} U\right) \leftarrow \cdots \leftarrow M_{c}\left(\wedge^{l} U\right) \leftarrow 0 .
$$

(iii) The character of A is given by the formula

$$
\chi_{A}(g, t)=t^{\frac{l}{2}-\sum_{s \in \mathcal{S}} \frac{2 c s}{1-\lambda s}} \frac{\operatorname{det}_{U}\left(1-g t^{r}\right)}{\operatorname{det}_{\mathfrak{h}^{*}}(1-g t)} .
$$

In particular, $\operatorname{dim} A=r^{l}$.
(iv) If G preserves an inner product, then A is irreducible.

Proof. (i) Since $\operatorname{Spec} A$ is a complete intersection, A is Frobenius.
(ii) We will use the following theorem:

Theorem 3.46 (Serre). Let $f_{1}, \ldots, f_{n} \in \mathbb{C}\left[t_{1}, \ldots, t_{n}\right]$ be homogeneous polynomials, and assume that $\mathbb{C}\left[t_{1}, \ldots, t_{n}\right]$ is a finitely generated module over $\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$. Then this is a free module.

Consider $S U \subset S \mathfrak{h}^{*}$. Then $S \mathfrak{h}^{*}$ is a finitely generated $S U$-module (as $S \mathfrak{h}^{*} /\langle U\rangle$ is finite dimensional). By Serre's theorem, we know that $S \mathfrak{h}^{*}$ is a free $S U$-module. The rank of this module is r^{l}. Consider the Koszul complex attached to this module. Since the module is free, the Koszul complex is exact (i.e., it is a resolution of the zero fiber). At the level of $S U$-modules, it looks exactly like we want in (3.45).

So we only need to show that the maps of the resolution are morphisms over $H_{1, c}$. This is shown by induction. Namely, let $\delta_{j}: M_{c}\left(\wedge^{j} U\right) \rightarrow M_{c}\left(\wedge^{j-1} U\right)$ be the corresponding differentials (so that $\delta_{0}: M_{c}(\mathbb{C}) \rightarrow A$ is the projection). Then δ_{0} is an $H_{1, c}$-morphism, which is the base of induction. If δ_{j} is an $H_{1, c}$-morphism, then the kernel of δ_{j} is a submodule $K_{j} \subset M_{c}\left(\wedge^{j} U\right)$. Its lowest degree part is $\wedge^{j+1} U$ sitting in degree $(j+1) r$ and consisting of singular vectors. Now, δ_{j+1} is a morphism over $S \mathfrak{h}^{*}$ which maps $\wedge^{j+1} U$ identically to itself. By Proposition 3.24, there is only one such morphism, and it must be an $H_{1, c}$-morphism. This completes the induction step.
(iii) follows from (ii) by the Euler-Poincaré formula.
(iv) follows from Theorem 3.43.
3.16. Representations of $H_{1, c}$ of type A. Let us now apply the above results to the case of type A. We will follow the paper [CE].

Let $G=\mathfrak{S}_{n}$, and \mathfrak{h} be its reflection representation. In this case the function c reduces to one number. We will denote the rational Cherednik algebra $H_{1, c}\left(\mathfrak{S}_{n}\right)$ by $H_{c}(n)$. It is generated by $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ and $\mathbb{C} \mathfrak{S}_{n}$ with the following relations:

$$
\sum y_{i}=0, \quad \sum x_{i}=0, \quad\left[y_{i}, x_{j}\right]=-\frac{1}{n}+c s_{i j}, i \neq j
$$

$$
\left[y_{i}, x_{i}\right]=\frac{n-1}{n}-c \sum_{j \neq i} s_{i j} .
$$

The polynomial representation $M_{c}(\mathbb{C})$ of this algebra is the space of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{T}$ of polynomials of x_{1}, \ldots, x_{n}, which are invariant under simultaneous translation $T: x_{i} \mapsto x_{i}+a$. In other words, it is the space of regular functions on $\mathfrak{h}=\mathbb{C}^{n} / \Delta$, where Δ is the diagonal.
Proposition 3.47 (C. Dunkl). Let r be a positive integer not divisible by n, and $c=r / n$. Then $M_{c}(\mathbb{C})$ contains a copy of the reflection representation \mathfrak{h} of \mathfrak{S}_{n}, which consists of singular vectors (i.e. those killed by $y \in \mathfrak{h}$). This copy sits in degree r and is spanned by the functions

$$
f_{i}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Res}_{\infty}\left[\left(z-x_{1}\right) \cdots\left(z-x_{n}\right)\right]^{\frac{r}{n}} \frac{\mathrm{~d} z}{z-x_{i}}
$$

(the symbol $\operatorname{Res}_{\infty}$ denotes the residue at infinity).
Remark 3.48. The space spanned by f_{i} is $(n-1)$-dimensional, since $\sum_{i} f_{i}=0$ (this sum is the residue of an exact differential).
Proof. This proposition can be proved by a straightforward computation. The functions f_{i} are a special case of Jack polynomials.

Let I_{c} be the submodule of $M_{c}(\mathbb{C})$ generated by f_{i}. Consider the $H_{c}(n)$-module $V_{c}=$ $M_{c}(\mathbb{C}) / I_{c}$, and regard it as a $\mathbb{C}[\mathfrak{h}]$-module. We have the following results.
Theorem 3.49. Let $d=(r, n)$ denote the greatest common divisor of r and n. Then the (set-theoretical) support of V_{c} is the union of \mathfrak{S}_{n}-translates of the subspaces of \mathbb{C}^{n} / Δ, defined by the equations

$$
x_{1}=x_{2}=\cdots=x_{\frac{n}{d}} ; \quad x_{\frac{n}{d}+1}=\cdots=x_{2 \frac{n}{d}} ; \quad \ldots \quad x_{(d-1) \frac{n}{d}+1}=\cdots=x_{n} .
$$

In particular, the Gelfand-Kirillov dimension of V_{c} is $d-1$.
Corollary 3.50 ([BEG]). If $d=1$ then the module V_{c} is finite dimensional, irreducible, admits a BGG type resolution, and its character is

$$
\chi_{V_{c}}(g, t)=t^{(1-r)(n-1) / 2} \frac{\left.\operatorname{det}\right|_{\mathfrak{h}}\left(1-g t^{r}\right)}{\left.\operatorname{det}\right|_{\mathfrak{h}}(1-g t)} .
$$

Proof. For $d=1$ Theorem 3.49 says that the support of $M_{c}(\mathbb{C}) / I_{c}$ is $\{0\}$. This implies that $M_{c}(\mathbb{C}) / I_{c}$ is finite dimensional. The rest follows from Theorem 3.45.

Proof of Theorem 3.49. The support of V_{c} is the zero set of I_{c}, i.e. the common zero set of f_{i}. Fix $x_{1}, \ldots, x_{n} \in \mathbb{C}$. Then $f_{i}\left(x_{1}, \ldots, x_{n}\right)=0$ for all i iff $\sum_{i=1}^{n} \lambda_{i} f_{i}=0$ for all λ_{i}, i.e.

$$
\operatorname{Res}_{\infty}\left(\prod_{j=1}^{n}\left(z-x_{j}\right)^{\frac{r}{n}} \sum_{i=1}^{n} \frac{\lambda_{i}}{z-x_{i}}\right) \mathrm{d} z=0 .
$$

Assume that $x_{1}, \ldots x_{n}$ take distinct values y_{1}, \ldots, y_{p} with positive multiplicities m_{1}, \ldots, m_{p}. The previous equation implies that the point $\left(x_{1}, \ldots, x_{n}\right)$ is in the zero set iff

$$
\operatorname{Res}_{\infty} \prod_{j=1}^{p}\left(z-y_{j}\right)^{m_{j} \frac{r}{n}-1}\left(\sum_{i=1}^{p} \nu_{i}\left(z-y_{1}\right) \cdots\left(\widehat{z-y_{i}}\right) \cdots\left(z-y_{p}\right)\right) \mathrm{d} z=0 \quad \forall \nu_{i} .
$$

Since ν_{i} are arbitrary, this is equivalent to the condition

$$
\operatorname{Re} e s_{\infty} \prod_{j=1}^{p}\left(z-y_{j}\right)^{m_{j} \frac{r}{n}-1} z^{i} \mathrm{~d} z=0, \quad i=0, \ldots, p-1
$$

We will now need the following lemma.
Lemma 3.51. Let $a(z)=\prod_{j=1}^{p}\left(z-y_{j}\right)^{\mu_{j}}$, where $\mu_{j} \in \mathbb{C}, \sum_{j} \mu_{j} \in \mathbb{Z}$ and $\sum_{j} \mu_{j}>-p$. Suppose

$$
\operatorname{Re}_{\infty} a(z) z^{i} \mathrm{~d} z=0, \quad i=0,1, \ldots, p-2 .
$$

Then $a(z)$ is a polynomial.
Proof. Let $g(z)$ be a polynomial. Then

$$
0=\operatorname{Res} s_{\infty} \mathrm{d}(g(z) \cdot a(z))=\operatorname{Res}_{\infty}\left(g^{\prime}(z) a(z)+a^{\prime}(z) g(z)\right) \mathrm{d} z
$$

and hence

$$
\operatorname{Res}_{\infty}\left(g^{\prime}(z)+\sum_{i} \frac{\mu_{j}}{z-y_{j}} g(z)\right) a(z) \mathrm{d} z=0 .
$$

Let $g(z)=z^{l} \prod_{j}\left(z-y_{j}\right)$. Then $g^{\prime}(z)+\sum_{j} \frac{\mu_{j}}{z-y_{j}} g(z)$ is a polynomial of degree $l+p-1$ with highest coefficient $l+p+\sum \mu_{j} \neq 0\left(\right.$ as $\left.\sum \mu_{j}>-p\right)$. This means that for every $l \geq 0$, $\operatorname{Res}_{\infty} z^{l+p-1} a(z) \mathrm{d} z$ is a linear combination of residues of $z^{q} a(z) \mathrm{d} z$ with $q<l+p-1$. By the assumption of the lemma, this implies by induction in l that all such residues are 0 and hence a is a polynomial.

In our case $\sum\left(m_{j} r / n-1\right)=r-p\left(\right.$ since $\left.\sum m_{j}=n\right)$ and the conditions of the lemma are satisfied. Hence $\left(x_{1}, \ldots, x_{n}\right)$ is in the zero set of I_{c} iff $\prod_{j=1}^{p}\left(z-y_{j}\right)^{m_{j} \frac{r}{n}-1}$ is a polynomial. This is equivalent to saying that all m_{j} are divisible by n / d.

We have proved that $\left(x_{1}, \ldots, x_{n}\right)$ is in the zero set of I_{c} if and only if $\left(z-x_{1}\right) \cdots\left(z-x_{n}\right)$ is the (n / d)-th power of a polynomial of degree d. This implies the theorem.
Remark 3.52. For $c>0$, the above representations are the only irreducible finite dimensional representations of $H_{1, c}\left(\mathfrak{S}_{n}\right)$. Namely, it is proved in [BEG] that the only finite dimensional representations of $H_{1, c}\left(\mathfrak{S}_{n}\right)$ are multiples of $L_{c}(\mathbb{C})$ for $c=r / n$, and of $L_{c}\left(\mathbb{C}_{-}\right)$ (where \mathbb{C}_{-}is the sign representation) for $c=-r / n$, where r is a positive integer relatively prime to n.
3.17. Notes. The discussion of the definition of rational Cherednik algebras and their basic properties follows Section 7 of [E4]. The discussion of the category \mathcal{O} for rational Cherednik algebras follows Section 11 of [E4]. The material in Sections 3.14-3.16 is borrowed from [CE].

MIT OpenCourseWare
http://ocw.mit.edu

18.735 Double Affine Hecke Algebras in Representation Theory, Combinatorics, Geometry, and Mathematical Physics
 Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

