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3. The rational Cherednik algebra


3.1. Definition and examples. Above we have made essential use of the commutation 
relations between operators x ∈ h∗, g ∈ G, and Da, a ∈ h. This makes it natural to consider 
the algebra generated by these operators. 

Definition 3.1. The rational Cherednik algebra associated to (G, h) is the algebra Hc(G, h) 
generated inside A = Rees(CG � D(hreg)) by the elements x ∈ h∗, g ∈ G, and Da(c, �), a ∈ h. 
If t ∈ C, then the algebra Ht,c(G, h) is the specialization of Hc(G, h) at � = t. 

Proposition 3.2. The algebra Hc is the quotient of the algebra CG � T(h ⊕ h∗)[�] (where 
T denotes the tensor algebra) by the ideal generated by the relations 

[x, x�] = 0, [y, y�] = 0, [y, x] = �(y, x) − cs(y, αs)(x, α
∨)s,s 

s∈S 

where x, x� ∈ h∗, y, y� ∈ h. 

Proof. Let us denote the algebra defined in the proposition by Hc
� = Hc

�(G, h). Then accord
ing to the results of the previous sections, we have a surjective homomorphism φ : Hc

� Hc 

defined by the formula φ(x) = x, φ(g) = g, φ(y) = Dy(c, �). 
→ 

Let us show that this homomorphism is injective. For this purpose assume that yi is a 
basis of h, and xi is the dual basis of h∗. Then it is clear from the relations of Hc

� that Hc
� is 

spanned over C[�] by the elements 
r r

(3.1) g yi
mi xi

ni . 
i=1 i=1 

Thus it remains to show that the images of the elements (3.1) under the map φ, i.e. the 
elements 

r r

g Dyi (c, �)mi xi
ni . 

i=1 i=1 

are linearly independent. But this follows from the obvious fact that the symbols of these 
elements in CG � C[h∗ × hreg][�] are linearly independent. The proposition is proved. � 

Remark 3.3. 1. Similarly, one can define the universal algebra H(G, h), in which both � 
and c are variables. (So this is an algebra over C[�, c].) It has two equivalent definitions 
similar to the above. 

2. It is more convenient to work with algebras defined by generators and relations than 
with subalgebras of a given algebra generated by a given set of elements. Therefore, from 
now on we will use the statement of Proposition 3.2 as a definition of the rational Cherednik 
algebra Hc. According to Proposition 3.2, this algebra comes with a natural embedding 
Θc : Hc → Rees(CG � D(hreg)), defined by the formula x → x, g → g, y → Dy(c, �). This 
embedding is called the Dunkl operator embedding. 

Example 3.4. 1. Let G = Z2, h = C. In this case c reduces to one parameter, and the 
algebra Ht,c is generated by elements x, y, s with defining relations 

s 2 = 1, sx = −xs, sy = −ys, [y, x] = t − 2cs. 
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2. Let G = Sn, h = Cn . In this case there is also only one complex parameter c, and the 
algebra Ht,c is the quotient of Sn � C�x1, . . . , xn, y1, . . . , yn� by the relations 

[xi, xj ] = [yi, yj ] = 0, [yi, xj ] = csij , [yi, xi] = t − c sij . 
j=i 

Here C�E� denotes the free algebra on a set E, and sij is the transposition of i and j. 

3.2. The PBW theorem for the rational Cherednik algebra. Let us put a filtration 
on Hc by setting deg y = 1 for y ∈ h and deg x = deg g = 0 for x ∈ h∗, g ∈ G. Let gr(Hc) 
denote the associated graded algebra of Hc under this filtration, and similarly for Ht,c. We 
have a natural surjective homomorphism 

ξ : CG � C[h ⊕ h∗][�] → gr(Hc). 

For t ∈ C, it specializes to surjective homomorphisms 

ξt : CG � C[h ⊕ h∗] → gr(Ht,c). 

Proposition 3.5 (The PBW theorem for rational Cherednik algebras). The maps ξ and ξt 
are isomorphisms. 

Proof. The statement is equivalent to the claim that the elements (3.1) are a basis of Ht,c, 
which follows from the proof of Proposition 3.2. � 

Remark 3.6. 1. We have 

H0,0 = CG � C[h ⊕ h∗] and H1,0 = CG � D(h). 

2. For any λ ∈ C∗, the algebra Ht,c is naturally isomorphic to Hλt,λc. 
3. The Dunkl operator embedding Θc specializes to embeddings 

Θ0,c : H0,c �→ CG � C[h∗ × hreg], 

given by x �→ x, g �→ g, y �→ D0, and a

Θ1,c : H1,c �→ CG � D(hreg), 

given by x �→ x, g �→ g, y �→ Da. So H0,c is generated by x, g, D0, and H1,c is generated by a

x, g, Da. 
Since Dunkl operators map polynomials to polynomials, the map Θ1,c defines a represen

tation of H1,c on C[h]. This representation is called the polynomial representation of H1,c. 

3.3. The spherical subalgebra. Let e ∈ CG be the symmetrizer, e = |G|−1 
g∈G g. We 

have e 2 = e.


Definition 3.7. Bc := eHce is called the spherical subalgebra of Hc. The spherical subalgebra

of Ht,c is Bt,c := Bc/(� − t) = eHt,ce.


Note that 

e (CG � D(hreg)) e = D(hreg)
G , e (CG � C[hreg × h∗]) e = C[hreg × h∗]G . 

Therefore, the restriction gives the embeddings: Θ1,c : B1,c )G, and Θ0,c : B0,c �
C[h∗ × hreg]

G . In particular, we have 
�→ D(hreg → 

Proposition 3.8. The spherical subalgebra B0,c is commutative and does not have zero 
divisors. Also B0,c is finitely generated. 
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Proof. The first statement is clear from the above. The second statement follows from the 
fact that gr(B0,c) = B0,0 = C[h × h∗]G, which is finitely generated by Hilbert’s theorem. � 

Corollary 3.9. Mc = SpecB0,c is an irreducible affine algebraic variety. 

Proof. Directly from the definition and the proposition. � 

We also obtain 

Proposition 3.10. Bc is a flat quantization (non-commutative deformation) of B0,c over 
C[�]. 

So B0,c carries a Poisson bracket {·, ·}(thus Mc is a Poisson variety), and Bc is a quanti
zation of the Poisson bracket, i.e. if a, b ∈ Bc and a0, b0 are the corresponding elements in 
B0,c, then 

[a, b]/� ≡ {a0, b0} (mod �). 

Definition 3.11. The Poisson variety Mc is called the Calogero-Moser space of G, h with 
parameter c. 

3.4. The localization lemma. Let H loc = Ht,c[δ
−1] be the localization of Ht,c as a module t,c 

over C[h] with respect to the discriminant δ (a polynomial vanishing to the first order on 
each reflection plane). Define also Bloc = eH loc e.t,c t,c 

Proposition 3.12. (i) For t = 0 the map Θt,c induces an isomorphism of algebras 
H loc 

�
), which restricts to an isomorphism Bloc )G .t,c → CG � D(hreg t,c → D(hreg

(ii) The map Θ0,c induces an isomorphism of algebras H loc → CG � C[h∗ × hreg], which 0,c


restricts to an isomorphism Bloc ]G .
0,c → C[h∗ × hreg

Proof. This follows immediately from the fact that the Dunkl operators have poles only on 
the reflection hyperplanes. � 

Since gr(B0,c) = B0,0 = C[h∗ ⊕ h]G, we get the following geometric corollary. 

Corollary 3.13. (i) The family of Poisson varieties Mc is a flat deformation of the 
Poisson variety M0 := (h × h∗)/G. In particular, Mc is smooth outside of a subset of 
codimension 2. 

(ii) We have a natural map βc : Mc h/G, such that βc
−1(hreg/G) is isomorphic to →

(hreg ×h∗)/G. The Poisson structure on Mc is obtained by extension of the symplectic 
Poisson structure on (hreg × h∗)/G. 

Example 3.14. Let W = Z2, h = C. Then B0,c = �x2, xp, p2 −c2/x2�. Let X := x2, Z := xp 
and Y := p2 −c2/x2 . Then Z2 − XY = c2 . So Mc is isomorphic to the quadric Z2 −XY = c2 

in the 3-dimensional space and it is smooth for c = 0. 

3.5. Category O for rational Cherednik algebras. From the PBW theorem, we see that 
H1,c = Sh∗ ⊗ CG ⊗ Sh. It is similar to the structure of the universal enveloping algebra of a 
simple Lie algebra: U(g) = U(n−)⊗U(h)⊗U(n+). Namely, the subalgebra CG plays the role 
of the Cartan subalgebra, and the subalgebras Sh∗ and Sh play the role of the positive and 
negative nilpotent subalgebras. This similarity allows one to define and study the category 
O analogous to the Bernstein-Gelfand-Gelfand category O for simple Lie algebras. 
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Definition 3.15. The category Oc(G, h) is the category of modules over H1,c(G, h) which 
are finitely generated over Sh∗ and locally finite under Sh (i.e., for M ∈ Oc(G, h), ∀v ∈ M , 
(Sh)v is finite dimensional). 

If M is a locally finite (Sh)G-module, then 

M = ⊕λ∈h∗/GMλ, 

where 
Mλ = {v ∈ M |∀p ∈ (Sh)G , ∃N s.t. (p − λ(p))N v = 0}, 

(notice that h∗/G = Specm(Sh)G). 

Proposition 3.16. Mλ are H1,c-submodules. 

Proof. Note first that we have an isomorphism µ : H1,c(G, h) ∼ H1,c= (G, h∗), which is given 
by xa Now let x1, . . . , xr be a basis of h∗ and y1, . . . , yr a basis of h.�→ ya, yb �→ −xb, g �→ g. 
Suppose P = P (x1, . . . , xr) ∈ (Sh∗)G . Then we have 

∂ 
[y, P ] = 

∂y 
P ∈ Sh∗, where y ∈ h, 

(this follows from the fact that both sides act in the same way in the polynomial represen
tation, which is faithful). So using the isomorphism µ, we conclude that if Q ∈ (Sh)G, Q = 
Q(y1, . . . , yr), then [x, Q] = −∂xQ for x ∈ h∗. 

Now, to prove the proposition, the only thing we need to check is that Mλ is invariant 
under x ∈ h∗. For any v ∈ Mλ, we have (Q − λ(Q))N v = 0 for some N . Then 

(Q − λ(Q))N+1 xv = (N + 1)∂xQ (Q − λ(Q))N v = 0.· 

So xv ∈ Mλ. 

Corollary 3.17. We have the following decomposition: 

Oc(G, h) = Oc(G, h)λ, 
λ∈h∗/G 

where Oc(G, h)λ is the subcategory of modules where (Sh)G acts with generalized eigenvalue 
λ. 

Proof. Directly from the definition and the proposition.	 � 

Note that Oc(G, h)λ is an abelian category closed under taking subquotients and exten
sions. 

3.6. The grading element. Let � 1 � 2cs
(3.2)	 h = xiyi + 

2 
dim h − 

1 − λs 
s. 

i s∈S 

Proposition 3.18. We have 

[h, x] = x, x ∈ h∗, [h, y] = −y, y ∈ h. 
17 



� � 

� 

Proof. Let us prove the first relation; the second one is proved similarly. We have 

[h, x] = 
� 

xi[yi, x] − 
� 

1

2

− 
cs 

λs 
· λs 

2 
− 1

(α∨, x)αs · ss 
i � 

s∈S � 
= xi(yi, x) − (α∨, x)(αs, yi)s + (α∨, x)αs · s.xi cs s cs s 

i i � 
s∈S � 

s∈S 

The last two terms cancel since i xi(αs, yi) = αs, so we get i xi(yi, x) = x. � 

Proposition 3.19. Let G = W be a real reflection group. Let � 1 � 1 � 1 �

h = xiyi + dim h − css, E = − xi 

2 , F = yi 
2 .


2	 2 2 
i	 i is∈S 

Then 

(i)	 h = i(xiyi + yixi)/2; 
(ii)	 h, E, F form an sl2-triple. 

Proof. A direct calculation.	 � 

Theorem 3.20. Let M be a module over H1,c(G, h). 

(i)	 If h acts locally nilpotently on M , then h acts locally finitely on M . 
(ii)	 If M is finitely generated over Sh∗, then M ∈ Oc(G, h)0 if and only if h acts locally 

finitely on M . 

Proof. (i) Assume that Sh acts locally nilpotently on M . Let v ∈ M . Then Sh v is a finite · 
dimensional vector space and let d = dim Sh v. We prove that v is h-finite by induction · 
in dimension d. We can use d = 0 as base, so only need to do the induction step. The 
space Sh v must contain a nonzero vector u such that y u = 0, ∀y ∈ h. Let U ⊂ M be ·	 · 
the subspace of vectors with this property. h acts on U by an element of CG, hence locally 
finitely. So it is sufficient to show that the image of v in M/�U� is h-finite (where �U� is 
the submodule generated by U). But this is true by the induction assumption, as u = 0 in 
M/�U�. 

(ii) We need to show that if h acts locally finitely on M , then h acts locally nilpotently 
on M . Assume h acts locally finitely on M . Then M = ⊕β∈B M [β], where B ⊂ C. Since M 
is finitely generated over Sh∗, B is a finite union of sets of the form z + Z≥0, z ∈ C. So Sh 
must act locally nilpotently on M . � 

We can obtain the following corollary easily. 

Corollary 3.21. Any finite dimensional H1,c(G, h)-module is in Oc(G, h)0. 

We see that any module M ∈ Oc(G, h)0 has a grading by generalized eigenvalues of h: 
M = ⊕β M [β]. 

3.7. Standard modules. Let τ be a finite dimensional representation of G. The standard 
module over H1,c(G, h) corresponding to τ (also called the Verma module) is 

Mc(G, h, τ) = Mc(τ) = H1,c(G, h) ⊗CG�Sh τ ∈ Oc(G, h)0, 

where Sh acts on τ by zero. 
So from the PBW theorem, we have that as vector spaces, Mc(τ) ∼= τ ⊗ Sh∗. 

18 
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Remark 3.22. More generally, ∀λ ∈ h∗, let Gλ = Stab(λ), and τ be a finite dimensional 
representation of Gλ. Then we can define Mc,λ(G, h, τ) = H1,c(G, h) ⊗CGλ�Sh τ , where Sh 
acts on τ by λ. These modules are called the Whittaker modules. 

Let τ be irreducible, and let hc(τ) be the number given by the formula


dim h � 2cs

hc(τ) = 

2 
− 

1 − λs 
s|τ . 

s∈S 

Then we see that h acts on τ ⊗ Smh∗ by the scalar hc(τ) + m. 

Definition 3.23. A vector v in an H1,c-module M is singular if yiv = 0 for all i. 

Proposition 3.24. Let U be an H1,c(G, h)-module. Let τ ⊂ U be a G-submodule consisting 
of singular vectors. Then there is a unique homomorphism φ : Mc(τ ) U of C[h]-modules →
such that φ|τ is the identity, and it is an H1,c-homomorphism. 

Proof. The first statement follows from the fact that Mc(τ) is a free module over C[h] gen
erated by τ . Also, it follows from the Frobenius reciprocity that there must exist a map φ 
which is an H1,c-homomorphism. This implies the proposition. � 

3.8. Finite length. 

Proposition 3.25. ∃K ∈ R such that for any M ⊂ N in Oc(G, h)0, if M [β] = N [β] for

Re (β) ≤ K, then M = N .


Proof. Let K = maxτ Re hc(τ). Then if M = N , M/N begins in degree β0 with Re β0 > K,

which is impossible since by Proposition 3.24, β0 must equal hc(τ) for some τ . � 

Corollary 3.26. Any M ∈ Oc(G, h)0 has finite length. 

Proof. Directly from the proposition. � 

3.9. Characters. For M ∈ Oc(G, h)0, define the character of M as the following formal 
series in t: � 

ch M (g, t) = tβTr M [β](g) = Tr M (gt
h), g ∈ G. 

β 

Proposition 3.27. We have 

χτ (g)t
hc(τ ) 

ch Mc(τ )(g, t) = . 
deth∗ (1 − tg) 

Proof. We begin with the following lemma. 

Lemma 3.28 (MacMahon’s Master theorem). Let V be a finite dimensional space, A : V →
V a linear operator. Then � 1 

tnTr (SnA) = . 
n≥0 

det(1 − tA) 

Proof of the lemma. If A is diagonalizable, this is obvious. The general statement follows by 
continuity. � 

1 
The lemma implies that Tr Sh∗ (gtD) = where D is the degree operator. This 

det(1 − gt) 
implies the required statement. � 
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3.10. Irreducible modules. Let τ be an irreducible representation of G.


Proposition 3.29. Mc(τ) has a maximal proper submodule Jc(τ).


Proof. The proof is standard. Jc(τ) is the sum of all proper submodules of Mc(τ), and it is

not equal to Mc(τ) because any proper submodule has a grading by generalized eigenspaces 
of h, with eigenvalues β such that β − hc(τ) > 0. � 

We define Lc(τ) = Mc(τ )/Jc(τ), which is an irreducible module. 

Proposition 3.30. Any irreducible object of Oc(G, h)0 has the form Lc(τ) for an unique τ . 

Proof. Let L ∈ Oc(G, h)0 be irreducible, with lowest eigenspace of h containing an irreducible 
G-module τ . Then by Proposition 3.24, we have a nonzero homomorphism Mc(τ) L, which 
is surjective, since L is irreducible. Then we must have L = Lc(τ). 

→ 
� 

Remark 3.31. Let χ be a character of G. Then we have an isomorphism H1,c(G, h) →
H1,cχ(G, h), mapping g ∈ G to χ−1(g)g. This automorphism maps Lc(τ) to Lcχ(χ−1 ⊗ τ) 
isomorphically. 

3.11. The contragredient module. Set c̄(s) = c(s−1). We have a natural isomorphism 
γ : H1,c̄(G, h∗)op → H1,c(G, h), acting trivially on h and h∗, and sending g ∈ G to g−1 . 

Thus if M is an H1,c(G, h)-module, then the full dual space M∗ is an H1,c̄(M, h∗)-module. 
If M ∈ Oc(G, h)0, then we can define M †, which is the h-finite part of M∗. 

Proposition 3.32. M † belongs to Oc̄(G, h∗)0. 

Proof. Clearly, if L is irreducible, then so is L†. Then L† is generated by its lowest h
eigenspace over H1,c̄(G, h∗), hence over Sh∗. Thus, L† ∈ Oc̄(G, h∗)0. Now, let M ∈ Oc(G, h)0 

be any object. Since M has finite length, so does M †. Moreover, M † has a finite filtration 
with successive quotients of the form L†, where L ∈ Oc(G, h)0 is irreducible. This implies 
the required statement, since Oc(G, h)0 is closed under taking extensions. � 

Clearly, M †† = M . Thus, M �→ M † is an equivalence of categories Oc(G, h) → Oc̄(G, h∗)op. 

3.12. The contravariant form. Let τ be an irreducible representation of G. By Propo
sition 3.24, we have a unique homomorphism φ : Mc(G, h, τ) Mc̄(G, h∗, τ ∗)† which is the→
identity in the lowest h-eigenspace. Thus, we have a pairing 

βc : Mc(G, h, τ) × Mc̄(G, h
∗, τ ∗) → C, 

which is called the contravariant form. 

Remark 3.33. If G = = = c, and τ ∼ τ ∗W is a real reflection group, then h ∼ h∗, c ¯ = via a 
symmetric form. So for real reflection groups, βc is a symmetric form on Mc(τ ). 

Proposition 3.34. The maximal proper submodule Jc(τ ) is the kernel of φ (or, equivalently, 
of the contravariant form βc). 

Proof. Let K be the kernel of the contravariant form. It suffices to show that Mc(τ)/K is 
irreducible. We have a diagram: 

φ 
Mc(G, h, τ) �� Mc(G, h∗, τ ∗)† ������������ 

��
ξ 

Lc(G, h, τ) η 
∼ �� Lc(G, h∗, τ ∗)† 
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Indeed, a nonzero map ξ exists by Proposition 3.24, and it factors through Lc(G, h, τ), 
with η being an isomorphism, since Lc(G, h∗, τ ∗)† is irreducible. Now, by Proposition 3.24 
(uniqueness of φ), the diagram must commute up to scaling, which implies the statement. � 

Proposition 3.35. Assume that hc(τ) − hc(τ �) never equals a positive integer for any τ, τ � ∈
IrrepG. Then Oc(G, h)0 is semisimple, with simple objects Mc(τ). 

Proof. It is clear that in this situation, all Mc(τ) are simple. Also consider Ext1(Mc(τ),Mc(τ �)). 
If hc(τ)−hc(τ �) ∈/ Z, it is clearly 0. Otherwise, hc(τ) = hc(τ �), and again Ext1(Mc(τ),Mc(τ

�)) = 

→ 

0, since for any extension 

0 Mc(τ 
�) N→ → → Mc(τ) → 0, 

by Proposition 3.24 we have a splitting Mc(τ) N . � 

Remark 3.36. In fact, our argument shows that if Ext1(Mc(τ),Mc(τ
�)) �= 0, then hc(τ) −

hc(τ
�) ∈ N. 

3.13.	 The matrix of multiplicities. For τ, σ ∈ IrrepG, write τ < σ if 

Re hc(σ) − Re hc(τ) ∈ N. 

Proposition 3.37. There exists a matrix of integers N = (nσ,τ ), with nσ,τ ≥ 0, such that 
nτ,τ = 1, nσ,τ = 0 unless σ < τ , and 

Mc(σ) = nσ,τ Lc(τ) ∈ K0(Oc(G, h)0). 

Proof. This follows from the Jordan-Hölder theorem and the fact that objects in Oc(G, h)0 

have finite length. � 

Corollary 3.38. Let N−1 = (n̄τ,σ). Then 

Lc(τ) = n̄τ,σMc(σ). 

Corollary 3.39. We have 

n̄τ,σχσ(g)t
hc(τ ) 

ch Lc(τ )(g, t) =	 . 
deth∗ (1 − tg) 

Both of the corollaries can be obtained from the above proposition easily. 
One of the main problems in the representation theory of rational Cherednik algebras is 

the following problem. 
Problem: Compute the multiplicities nσ,τ or, equivalently, ch Lc(τ ) for all τ . 
In general, this problem is open. 

3.14. Example: the rank 1 case. Let G = Z/mZ and λ be an m-th primitive root of 1. 
Then the algebra H1,c(G, h) is generated by x, y, s with relations 

m−1

[y, x] = 1 − 2 cj s
j , sxs−1 = λx, sys−1 = λ−1 y. 

j=1 

Consider the one-dimensional space C and let y act by 0 and g ∈ G act by 1. We have 
Mc(C) = C[x]. The contravariant form βc,C on Mc(C) is defined by 

n	 nβc,C(x , x n) = an; βc,C(x , x n
� 
) = 0, n �= n�. 
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nRecall that βc,C satisfies βc,C(x , xn) = βc,C(xn−1, yxn), which gives 

an = an−1(n − bn), 

where bn are new parameters: 
m−1

1 − λjn 

bn := 2 cj (b0 = 0, bn+m = bn). 
1 − λj 

j=1 

Thus we obtain the following proposition. 

Proposition 3.40. (i) Mc(C) is irreducible if only if n − bn = 0 � for any n ≥ 1. 
(ii)	 Assume that r is the smallest positive integer such that r = br. Then Lc(C) has 

dimension r (which can be any number not divisible by m) with basis 1, x, . . . , xr−1 . 

Remark 3.41. According to Remark 3.31, this proposition in fact describes all the irre
ducible lowest weight modules. 

Example 3.42. Consider the case m = 2. The Mc(C) is irreducible unless c ∈ 1/2 + Z≥0. 
If c = (2n + 1)/2 ∈ 1/2 + Z, n ≥ 0, then Lc(C) has dimension 2n + 1. A similar answer is 
obtained for lowest weight C−, replacing c by −c. 
3.15. The Frobenius property. Let A be a Z+-graded commutative algebra. The algebra 
A is called Frobenius if the top degree A[d] of A is 1-dimensional, and the multiplication 
map A[m] × A[d − m] A[d] is a nondegenerate pairing for any 0 ≤ m ≤ d. In particular, →
the Hilbert polynomial of a Frobenius algebra A is palindromic. 

Now, let us go back to considering modules over the rational Cherednik algebra H1,c. Any 
submodule J of the polynomial representation Mc(C) = Mc = C[h] is an ideal in C[h], so 
the quotient A = Mc/J is a Z+-graded commutative algebra. 

Now suppose that G preserves an inner product in h, i.e., G ⊆ O(h). 

Theorem 3.43. If A = Mc(C)/J is finite dimensional, then A is irreducible (A = Lc(C)) 
⇐⇒ A is a Frobenius algebra. 

Proof. 1) Suppose A is an irreducible H1,c-module, i.e., A = Lc(C). By Proposition 3.19, A 
is naturally a finite dimensional sl2-module (in particular, it integrates to the group SL2(C)). 
Hence, by the representation theory of sl2, the top degree of A is 1-dimensional. Let φ ∈ A∗ 

denote a nonzero linear function on the top component. Let βc be the contravariant form 
on Mc(C). Consider the form 

0	 1 
(v1, v2) �→ E(v1, v2) := βc(v1, gv2), where g = −1 0 

∈ SL2(C). 

Then E(xv1, v2) = E(v1, xv2). So for any p, q ∈ Mc(C) = C[h], E(p, q) = φ(p(x)q(x)) (for a 
suitable normalization of φ). 

Since E is a nondegenerate form, A is a Frobenius algebra. 
2)	 Suppose A is Frobenius. Then the highest component is 1-dimensional, and 

E : A ⊗ A → C, E(a, b) = φ(ab) is nondegenerate. We have E(xa, b) = E(a, xb). So 
set β(a, b) = E(a, g−1b). Then β satisfies β(a, xib) = β(yia, b). Thus, for all p, q ∈ C[h], 
β(p(x), q(x)) = β(q(y)p(x), 1). So β = βc up to scaling. Thus, βc is nondegenerate and A is 
irreducible. � 

Remark 3.44. If G � O(h), this theorem is false, in general. 
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Now consider the Frobenius property of Lc(C) for any G ⊂ GL(h). 

Theorem 3.45. Let U ⊂ Mc(C) = C[h] be a G-subrepresentation of dimension l = dim h, 
sitting in degree r, which consists of singular vectors. Let J = �U�. Assume that A = Mc/J 
is finite dimensional. Then 

(i)	A is Frobenius. 
(ii)	A admits a BGG type resolution:


A ← Mc(C) ← Mc(U) ← Mc(∧2U) ← · · · ← Mc(∧lU) ← 0.


(iii) The character of A is given by the formula 

l 2cs 
χA(g, t) = t 2 − 

P 
1−λs 

detU (1 − gtr) 
.s∈S 

deth∗ (1 − gt) 

In particular, dim A = rl . 
(iv) If G preserves an inner product, then A is irreducible. 

Proof. (i) Since Spec A is a complete intersection, A is Frobenius. 
(ii) We will use the following theorem: 

Theorem 3.46 (Serre). Let f1, . . . , fn ∈ C[t1, . . . , tn] be homogeneous polynomials, and 
assume that C[t1, . . . , tn] is a finitely generated module over C[f1, . . . , fn]. Then this is a free 
module. 

Consider SU ⊂ Sh∗. Then Sh∗ is a finitely generated SU -module (as Sh∗/�U� is finite 
dimensional). By Serre’s theorem, we know that Sh∗ is a free SU -module. The rank of this 
module is rl . Consider the Koszul complex attached to this module. Since the module is 
free, the Koszul complex is exact (i.e., it is a resolution of the zero fiber). At the level of 
SU -modules, it looks exactly like we want in (3.45). 

So we only need to show that the maps of the resolution are morphisms over H1,c. This 
is shown by induction. Namely, let δj : Mc(∧j U) → Mc(∧j−1U) be the corresponding 
differentials (so that δ0 : Mc(C) A is the projection). Then δ0 is an H1,c-morphism, which →
is the base of induction. If δj is an H1,c-morphism, then the kernel of δj is a submodule 
Kj ⊂ Mc(∧j U). Its lowest degree part is ∧j+1U sitting in degree (j + 1)r and consisting of 
singular vectors. Now, δj+1 is a morphism over Sh∗ which maps ∧j+1U identically to itself. 
By Proposition 3.24, there is only one such morphism, and it must be an H1,c-morphism. 
This completes the induction step. 

(iii) follows from (ii) by the Euler-Poincaré formula. 
(iv) follows from Theorem 3.43. 

3.16. Representations of H1,c of type A. Let us now apply the above results to the case 
of type A. We will follow the paper [CE]. 

Let G = Sn, and h be its reflection representation. In this case the function c reduces 
to one number. We will denote the rational Cherednik algebra H1,c(Sn) by Hc(n). It is 
generated by x1, . . . , xn, y1, . . . , yn and CSn with the following relations: �	 � 1 

yi = 0, xi = 0, [yi, xj] = −
n 

+ csij , i =� j, 
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� � 
� � 

n − 1 � 
[yi, xi] = − c sij . 

n 
j=i 

The polynomial representation Mc(C) of this algebra is the space of C[x1, . . . , xn]
T of poly

nomials of x1, . . . , xn, which are invariant under simultaneous translation T : xi �→ xi + a. 
In other words, it is the space of regular functions on h = Cn/Δ, where Δ is the diagonal. 

Proposition 3.47 (C. Dunkl). Let r be a positive integer not divisible by n, and c = r/n. 
Then Mc(C) contains a copy of the reflection representation h of Sn, which consists of 
singular vectors (i.e. those killed by y ∈ h). This copy sits in degree r and is spanned by the 
functions 

dz
r 
nfi(x1, . . . , xn) = Res∞[(z − x1) (z − xn)]· · · .

z − xi 

(the symbol Res∞ denotes the residue at infinity). 

Remark 3.48. The space spanned by fi is (n − 1)-dimensional, since fi = 0 (this sum i 
is the residue of an exact differential). 

Proof. This proposition can be proved by a straightforward computation. The functions fi 
are a special case of Jack polynomials. � 

Let Ic be the submodule of Mc(C) generated by fi. Consider the Hc(n)-module Vc = 
Mc(C)/Ic, and regard it as a C[h]-module. We have the following results. 

Theorem 3.49. Let d = (r, n) denote the greatest common divisor of r and n. Then the 
(set-theoretical) support of Vc is the union of Sn-translates of the subspaces of Cn/Δ, defined 
by the equations 

;
 x
 ;
 . . .
 x(d−1)x1 = x2 = = x· · · +1 = · · · = x2 +1 = · · · = xn.n n n n 
d d d d

In particular, the Gelfand-Kirillov dimension of Vc is d − 1. 

Corollary 3.50 ([BEG]). If d = 1 then the module Vc is finite dimensional, irreducible, 
admits a BGG type resolution, and its character is 

χVc (g, t) = t(1−r)(n−1)/2 det |h(1 − gtr) 
. 

det |h(1 − gt) 

Proof. For d = 1 Theorem 3.49 says that the support of Mc(C)/Ic is {0}. This implies that 
Mc(C)/Ic is finite dimensional. The rest follows from Theorem 3.45. � 

Proof of Theorem 3.49. The support of Vc is the zero set of Ic, i.e. the common zero set of 
n� 

fi. Fix x1, . . . , xn ∈ C. Then fi(x1, . . . , xn) = 0 for all i iff λifi = 0 for all λi, i.e. � � 
i=1 

n� n� 
r λi 
nRes∞ (z − xj ) dz = 0.


z − xij=1 i=1 

Assume that x1, . . . xn take distinct values y1, . . . , yp with positive multiplicities m1, . . . ,mp. 
The previous equation implies that the point (x1, . . . , xn) is in the zero set iff 

p p

(z�− yi) 
r 

Res∞ (z − yj )
mj n −1 νi(z − y1) · · ·
(z − yp) dz = 0 ∀νi.· · ·


j=1 i=1 
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� � � 

Since νi are arbitrary, this is equivalent to the condition 
p

Res∞ (z − yj )
mj n

r −1 z idz = 0, i = 0, . . . , p − 1. 
j=1 

We will now need the following lemma. 
p

Lemma 3.51. Let a(z) = (z −yj )µj , where µj ∈ C, j µj ∈ Z and j µj > −p. Suppose 
j=1 

Res∞a(z)z 
idz = 0, i = 0, 1, . . . , p − 2. 

Then a(z) is a polynomial. 

Proof. Let g(z) be a polynomial. Then 

0 = Res∞d(g(z) a(z)) = Res∞(g�(z)a(z) + a�(z)g(z))dz, · 
and hence � � 

Res g�(z) + 
µj 

g(z) a(z)dz = 0.∞ 
z − yji 

Let g(z) = z l (z − yj). Then g�(z) + 
z − 
µj 
yj 
g(z) is a polynomial of degree l + p − 1 

j � j � 
with highest coefficient l + p + µj = 0 (as � µj > −p). This means that for every l ≥ 0, 
Res∞z 

l+p−1 a(z)dz is a linear combination of residues of zqa(z)dz with q < l + p − 1. By 
the assumption of the lemma, this implies by induction in l that all such residues are 0 and 
hence a is a polynomial. � 

In our case (mj r/n − 1) = r − p (since mj = n) and the conditions of the lemma are 
p

satisfied. Hence (x1, . . . , xn) is in the zero set of Ic iff (z − yj)
mj n

r −1 is a polynomial. This 
j=1 

is equivalent to saying that all mj are divisible by n/d. 
We have proved that (x1, . . . , xn) is in the zero set of Ic if and only if (z − x1) (z − xn)· · · 

is the (n/d)-th power of a polynomial of degree d. This implies the theorem. � 

Remark 3.52. For c > 0, the above representations are the only irreducible finite di
mensional representations of H1,c(Sn). Namely, it is proved in [BEG] that the only finite 
dimensional representations of H1,c(Sn) are multiples of Lc(C) for c = r/n, and of Lc(C−) 
(where C− is the sign representation) for c = −r/n, where r is a positive integer relatively 
prime to n. 

3.17. Notes. The discussion of the definition of rational Cherednik algebras and their basic 
properties follows Section 7 of [E4]. The discussion of the category O for rational Cherednik 
algebras follows Section 11 of [E4]. The material in Sections 3.14-3.16 is borrowed from [CE]. 
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