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10. Quantization of Claogero-Moser spaces


10.1. Quantum moment maps and quantum Hamiltonian reduction. Now we would 
like to quantize the notion of a moment map. Let g be a Lie algebra, and A be an associative 
algebra equipped with a g-action, i.e. a Lie algebra map φ : g DerA. A quantum moment →
map for (A, φ) is an associative algebra homomorphism µ : U(g) A such that for any → 
a ∈ g, b ∈ A one has [µ(a), b] = φ(a)b. 

The space of g-invariants Ag, i.e. elements b ∈ A such that [µ(a), b] = 0 for all a ∈ g, is 
a subalgebra of A. Let J ⊂ A be the left ideal generated by µ(a), a ∈ g. Then J is not 
a 2-sided ideal, but Jg := J ∩ Ag is a 2-sided ideal in Ag. Indeed, let c ∈ Ag, and b ∈ Jg, 
b = biµ(ai), bi ∈ A, ai ∈ g. Then bc = biµ(ai)c = bicµ(ai) ∈ Jg.i 

Thus, the algebra A//g := Ag/Jg is an associative algebra, which is called the quantum 
Hamiltonian reduction of A with respect to the quantum moment map µ. 

10.2. The Levasseur-Stafford theorem. In general, similarly to the classical case, it is 
rather difficult to compute the quantum reduction A//g. For example, in this subsection 
we will describe A//g in the case when A = D(g) is the algebra of differential operators 
on a reductive Lie algebra g, and g acts on A through the adjoint action on itself. This 
description is a very nontrivial result of Levasseur and Stafford. 

Let h be a Cartan subalgebra of g, and W the Weyl group of (g, h). Let hreg denote the set 
of regular points in h, i.e. the complement of the reflection hyperplanes. To describe D(g)//g, 
we will construct a homomorphism HC : D(g)g → D(h)W , called the Harish-Chandra homo
morphism (as it was first constructed by Harish-Chandra). Recall that we have the classical 
Harish-Chandra isomorphism ζ : C[g]g C[h]W , defined simply by restricting g-invariant →
functions on g to the Cartan subalgebra h. Using this isomorphism, we can define an action 
of D(g)g on C[h]W , which is clearly given by W -invariant differential operators. However, 
these operators will, in general, have poles on the reflection hyperplanes. Thus we get a 
homomorphism HC� : D(g)g → D(hreg)

W . 
The homomorphism HC� is called the radial part homomorphism, as for example for 

g = su(2) it computes the radial parts of rotationally invariant differential operators on R3 

in spherical coordinates. This homomorphism is not yet what we want, since it does not 
actually land in D(h)W (the radial parts have poles). 

Thus we define the Harish-Chandra homomorphism by twisting HC� by the discriminant 
δ(x) = (α, x) (x ∈ h, and α runs over positive roots of g):α>0

HC(D) := δ ◦ HC�(D) ◦ δ−1 ∈ D(hreg)
W . 

Theorem 10.1. (i) (Harish-Chandra, [HC]) For any reductive g, HC lands in D(h)W ⊂ 
D(hreg)

W . 
(ii) (Levasseur-Stafford [LS]) The homomorphism HC defines an isomorphism D(g)//g = 
D(h)W . 

Remark 10.2. (1) Part (i) of the theorem says that the poles magically disappear after 
conjugation by δ. 

(2) Both parts of this theorem are quite nontrivial. The first part was proved by Harish-
Chandra using analytic methods, and the second part by Levasseur and Stafford 
using the theory of D-modules. 
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In the case g = gln, Theorem 10.1 is a quantum analog of Theorem 9.14. The remaining 
part of this subsection is devoted to the proof of Theorem 10.1 in this special case, using 
Theorem 9.14. 

We start the proof with the following proposition, valid for any reductive Lie algebra. 

Proposition 10.3. If D ∈ (Sg)g is a differential operator with constant coefficients, then 
HC(D) is the W -invariant differential operator with constant coefficients on h, obtained from 
D via the classical Harish-Chandra isomorphism η : (Sg)g (Sh)W .→ 

Proof. Without loss of generality, we may assume that g is simple. 

Lemma 10.4. Let D be the Laplacian Δg of g, corresponding to an invariant form. Then 
HC(D) is the Laplacian Δh. 

Proof. Let us calculate HC�(D). We have 
r

D = ∂x
2 

i 
+ 2 ∂fα ∂eα , 

i=1 α>0 

where xi is an orthonormal basis of h, and eα, fα are root elements such that (eα, fα) = 1. 
Thus if F (x) is a g-invariant function on g, then we get 

r � 
(DF )|h = ∂x

2 
i 
(F |h) + 2 (∂fα ∂eα F )|h. 

i=1 α>0 

Now let x ∈ h, and consider (∂fα ∂eα F )(x). We have 

(∂fα ∂eα F )(x) = ∂s∂t|s=t=0F (x + tfα + seα). 

On the other hand, we have 

Ad(e sα(x)−1eα )(x + tfα + seα) = x + tfα + tsα(x)−1hα + · · · , 
where hα = [eα, fα]. Hence, ∂s∂t s=t=0F (x + tfα +seα) = α(x)−1(∂hα F )(x). This implies that 

HC�(D)F (x) = ΔhF (x) + 2 α(x)−1∂hα F (x). 
α>0 

Now the statement of the Lemma reduces to the identity δ−1 ◦Δh◦δ = Δh+2 α>0 α(x)−1∂hα . 
This identity follows immediately from the identity Δhδ = 0. To prove the latter, it suffices 
to note that δ is the lowest degree nonzero polynomial on h, which is antisymmetric under 
the action of W . The lemma is proved. � 

Now let D be any element of (Sg)g ⊂ D(g)g of degree d (operator with constant coeffi
cients). It is obvious that the leading order part of the operator HC(D) is the operator η(D) 
with constant coefficients, whose symbol is just the restriction of the symbol of D from g∗ 

to h∗. Our job is to show that in fact HC(D) = η(D). To do so, denote by Y the difference 
HC(D) − η(D). Assume Y =� 0. By Lemma 10.4, the operator HC(D) commutes with Δh. 
Therefore, so does Y . Also Y has homogeneity degree d but order m ≤ d − 1. Let S(x, p) be 
the symbol of Y (x ∈ h, p ∈ h∗). Then S is a homogeneous function of homogeneity degree 
d under the transformations x t−1x, p tp, polynomial in p of degree m. From these → →
properties of S it is clear that S is not a polynomial (its degree in x is m − d < 0). On 
the other hand, since Y commutes with Δh, the Poisson bracket of S with p2 is zero. Thus 
Proposition 10.3 follows from Lemma 2.22. � 
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Now we continue the proof of Theorem 10.1. Consider the filtration on D(g) in which 
deg(g) = 1 deg(g∗) = 0 (the order filtration), and the associated graded map grHC : C[g × 
g∗]g → C[hreg × h∗]W , which attaches to every differential operator the symbol of its radial 
part. It is easy to see that this map is just the restriction map to h ⊕ h∗ ⊂ g ⊕ g∗, so it 
actually lands in C[h ⊕ h∗]W . 

Moreover, grHC is a map onto C[h ⊕ h∗]W . Indeed, grHC is a Poisson map, so the 
surjectivity follows from the following Lemma. 

Lemma 10.5. C[h ⊕ h∗]W is generated as a Poisson algebra by C[h]W and C[h∗]W , i.e. by 
functions fm = xi m = p , m ≥ 1. m and f ∗ m

i 

Proof. We have {f ∗ , fr} = mr x r−1 p m−1 . Thus the result follows from Corollary 9.13. �m i i 

Let K0 be the kernel of grHC. Then by Theorem 9.14, K0 is the ideal of the commuting 
scheme Comm(g)/G. 

Now consider the kernel K of the homomorphism HC. It is easy to see that K ⊃ Jg, 
so gr(K) ⊃ gr(J)g. On the other hand, since K0 is the ideal of the commuting scheme, 
we clearly have gr(J)g ⊃ K0, and K0 ⊃ grK. This implies that K0 = grK = gr(J)g, and 
K = Jg. 

It remains to show that Im HC = D(h)W . Since grK = K0, we have grIm HC = C[h⊕h∗]W . 
Therefore, to finish the proof of the Harish-Chandra and Levasseur-Stafford theorems, it 
suffices to prove the following proposition. 

Proposition 10.6. Im HC ⊃ D(h)W . 

Proof. We will use the following Lemma. 

Lemma 10.7 (N. Wallach, [Wa]). D(h)W is generated as an algebra by W -invariant func
tions and W -invariant differential operators with constant coefficients. 

Proof. The lemma follows by taking associated graded algebras from Lemma 10.5. � 

Remark 10.8. Levasseur and Stafford showed [LS] that this lemma is valid for any finite 
group W acting on a finite dimensional vector space h. However, the above proof does not 
apply, since, as explained in [Wa], Lemma 10.5 fails for many groups W , including Weyl 
groups of exceptional Lie algebras E6, E7, E8 (in fact it even fails for the cyclic group of 
order > 2 acting on a 1-dimensional space!). The general proof is more complicated and uses 
some results in noncommutative algebra. 

Lemma 10.7 and Proposition 10.3 imply Proposition 10.6. � 

Thus, Theorem 10.1 is proved. 

10.3. Corollaries of Theorem 10.1. Let gR be the compact form of g, and O a regular 
coadjoint orbit in g∗ Consider the map R. 

ψO : h → C, ψO(x) = 
O 
e(b,x)db, x ∈ h, 

where db is the measure on the orbit coming from the Kirillov-Kostant symplectic structure. 
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Theorem 10.9 (Harish-Chandra formula). For a regular element x ∈ h, we have 

ψO(x) = δ−1(x) (−1)�(w)e(wλ,x), 
w∈W 

where λ is the intersection of O with the dominant chamber in the dual Cartan subalgebra 
h∗ R, and �(w) is the length of an element w ∈ W .R ⊂ g∗

Proof. Take D ∈ (Sg)g. Then δ(x)ψO is an eigenfunction of HC(D) = η(D) ∈ (Sh)W with 
eigenvalue χO(D), where χO(D) is the value of the invariant polynomial D at the orbit O. 

Since the solutions of the equation η(D)ϕ = χO(D)ϕ have a basis e(wλ,x) where w ∈ W , 
we have � 

δ(x)ψO(x) = cw · e(wλ,x). 
w∈W 

Since it is antisymmetric, we have cw = c (−1)�(w), where c is a constant. The fact that · 
c = 1 can be shown by comparing the asymptotics of both sides as x → ∞ in the regular 
chamber (using the stationary phase approximation for the integral). � 

From Theorem 10.9 and the Weyl Character formula, we have the following corollary. 

Corollary 10.10 (Kirillov character formula for finite dimensional representations, [Ki]). If 
λ is a dominant integral weight, and Lλ is the corresponding representation of G, then 

Tr Lλ (e x) = 
δ(x) 

e(b,x)db,
δTr (x) Oλ+ρ 

where δTr (x) is the trigonometric version of δ(x), i.e. the Weyl denominator 
(eα(x)/2 − e−α(x)/2), and Oµ denotes the coadjoint orbit passing through µ.α>0

10.4. The deformed Harish-Chandra homomorphism. Finally, we would like to ex
plain how to quantize the Calogero-Moser space Cn, using the procedure of quantum Hamil
tonian reduction. 

Let g = gln, A = D(g) as above. Let k be a complex number, and Wk be the representation 
of sln on the space of functions of the form (x1 · · · xn)kf(x1, . . . , xn), where f is a Laurent 
polynomial of degree 0. We regard Wk as a g-module by pulling it back to g under the 
natural projection g sln. Let Ik be the annihilator of Wk in U(g). The ideal Ik is the →
quantum counterpart of the coadjoint orbit of matrices T such that T + 1 has rank 1. 

Let Bk = D(g)g/(D(g)µ(Ik))
g where µ : U(g) A is the quantum momentum map (the →

quantum Hamiltonian reduction with respect to the ideal Ik). Then Bk has a filtration 
induced from the order filtration of D(g)g. 

Let HCk : D(g)g → Bk be the natural homomorphism, and K(k) be the kernel of HCk. 

Theorem 10.11 (Etingof-Ginzburg, [EG]). (i) K(0) = K, B0 = D(h)W , HC0 = HC. 
(ii) grK(k) = Ker (grHCk) = K0 for all complex k. Thus, HCk is a flat family of 

homomorphisms. 
(iii) The algebra grBk is commutative and isomorphic to C[h ⊕ h∗]W as a Poisson algebra. 

Because of this theorem, the homomorphism HCk is called the deformed Harish-Chandra 
homomorphism. 

Theorem 10.11 implies that Bk is a quantization of the Calogero-Moser space Cn (with 
deformation parameter 1/k). But we already know one such quantization - the spherical 
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Cherednik algebra B1,k for the symmetric group. Therefore, the following theorem comes as 
no surprize. 

Theorem 10.12 ([EG]). The algebra Bk is isomorphic to the spherical rational Cherednik 
algebra B1,k(Sn, Cn). 

Thus, quantum Hamiltonian reduction provides a Lie-theoretic construction of the spher
ical rational Cherednik algebra for the symmetric group. A similar (but more complicated) 
Lie theoretic construction exists for symplectic reflection algebras for wreath product groups 
defined in Example 8.5 (see [EGGO]). 

10.5. Notes. Our exposition in this section follows Section 4, Section 5 of [E4]. 
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