
6. The Knizhnik-Zamolodchikov functor


6.1. Braid groups and Hecke algebras. Let G be a complex reflection group and let h 
be its reflection representation. For any reflection hyperplane H ⊂ h, its pointwise stabilizer 
is a cyclic group of order mH . Fix a collection of nonzero constants q1,H , . . . , qmH −1,H which 
are G-invariant, namely, if H and H � are conjugate to each other under some element in G, 
then qi,H = qi,H� for i = 1, . . . ,mH − 1. 

Let BG = π1(hreg/G, x0) be the braid group of G, and TH ∈ BG be a representative of 
the conjugacy class defined by a small circle around the image of H in h/G oriented in the 
counterclockwise direction. 

The following theorem follows from elementary algebraic topology. 

Proposition 6.1. The group G is the quotient of the braid group BG by the relations 

TH
mH = 1 

for all reflection hyperplanes H. 

Proof. See, e.g., [BMR] Proposition 2.17. � 

Definition 6.2. The Hecke algebra of G is defined to be 
m�H −1 

Hq(G) = C[BG]/�(TH − 1) (TH − exp(2πij/mH )qj,H ), for all H�. 
j=1 

Thus, by Proposition 6.1 we have an isomorphism 

= CG.H1(G) ∼

So Hq(G) is a deformation of CG. 

Example 6.3 (Coxeter group case). Now let W be a Coxeter group. Let S be the set of 
reflections and let αs = 0 be the reflection hyperplane corresponding to s ∈ S. The Hecke 
algebra Hq(W ) is the quotient of C[BW ] by the relations 

(Ts − 1)(Ts + qs) = 0, 

for all reflections s where Ts is a small counterclockwise circle around the image of the 
hyperplane αs = 0 in h/W . 

6.2. KZ functors. For a complex reflection group G, let Loc(hreg) be the category of local 
systems (i.e., O-coherent D-modules) on hreg, and let Loc(hreg)

G be the category of G
equivariant local systems on hreg, i.e. of local systems on hreg/G. 

Suppose that G� = 1 is the trivial subgroup in G. Then the restriction functor defined in 
Section 5.10 defines a functor Res : Oc(G, h)0 → Loc(hreg/G). Also, we have the monodromy 
functor Mon : Loc(hreg/G) ∼ Rep(BG). The composition of these two functors is a functor = 
from Oc(G, h)0 to Rep(BG), which is exactly the KZ functor defined in [GGOR]. We will 
denote this functor by KZ. 

Theorem 6.4 (Ginzburg, Guay, Opdam, Rouquier, [GGOR]). The KZ functor factors 
through 
RepHq(G), where 

m�H −1 c � (1 − e2πij�/mH ) 
qj,H = exp(2πibj,H /mH ), and bj,H = 2 

sH . 
1 − e−2πi�/mH 

�=1 
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Proof. Assume first that c is generic. Then the category Oc(G, h)0 is semisimple, with simple 
objects Mc(τ), so it is enough to check the statement on Mc(τ). Consider the trivial bundle 
over hreg with fiber τ . The KZ connection on it has the form � 2cs dαs

d − (1 − s). 
1 − λs αs 

s∈S 

The residue of the connection form of this connection on the hyperplane H on the j-th 
irreducible representation of Z/mH Z is 

m�H −1 c �s
2

1 − e−2
H 

πi�/mH 
(1 − e 2πij�/mH ). 

�=1 

Therefore, the monodromy operator around this hyperplane is diagonalizable, and the eigen
values of this operator are 1 and exp(2πij/mH )qj,H , as desired. 

For special c, introduce the generalized Verma module 

Mc,n(τ ) = Hc(G, h) ⊗CG�Sh (τ ⊗ Sh/m n+1), 

where m Sh is the maximal ideal of 0, n 0. Clearly, Mc,0 = Mc(τ). Moreover, ⊂ ≥
Mc,n (G, h)0 for any n, since it has a finite filtration whose successive quotients are ∈ Oc
Verma modules. 

Theorem 6.5. For large enough n, Mc,n(CG) contains a direct summand which is a projec
tive generator of Oc(G, h)0. 

Proof. From the definition, Mc,n = Sh∗ ⊗ CG ⊗ Sh/mn+1 . Let ∂ be the degree operator on 
Mc,n(CG) with deg h∗ = 1, deg h = −1, and deg G = 0, i.e., we have 

[∂, x] = x, [∂, y] = −y, where x ∈ h∗, y ∈ h. 

So h − ∂ is a module endomorphism of Mc,n(CG) where h is the operator defined in (3.2). 
Moreover, h − ∂ acts locally finitely. In particular, we have a decomposition of Mc,n(CG) 
into generalized eigenspaces of h − ∂: 

Mc,n(CG) = Mβ (CG).c,n

β∈C 

We have 

Hom(Mc,n(CG), N) = {vectors in N which are killed by m n+1}, 

and 
Hom(Mβ (CG), N) = {vectors in N which are killed by m n+1 

c,n

and are generalized eigenvectors of h with generalized eigenvalue β}. 
Let Σ � = {hc(τ)|τ is a irreducible representation of G} (recall that 

hc(τ) = dim h 2cs s τ ), and let 
2 − s∈S 1−λs 

|

MΣ (CG) = Mβ (CG).c,n c,n

β∈Σ 

Claim: for large n, MΣ (CG) is a projective generator of Oc(G, h)0.c,n
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Proof of the claim. First, for any β, there exists n such that MΣ (CG) is projective (since c,n

the condition of being killed by mn+1 is vacuous for large n). 
Secondly, consider the functor Hom(MΣ (CG), •). For any module N ∈ Oc(G, h)0, ifc,n

Hom(MΣ (CG), N) = 0, then ⊕β∈ΣN [β] = 0. So N = 0. Thus this functor does not kill c,n

nonzero objects, and so MΣ (CG) is a generator. �c,n

Theorem 6.5 is proved. � 

Corollary 6.6. (i) Oc(G, h)0 has enough projectives, so it is equivalent to the category 
of modules over a finite dimensional algebra. 

(ii) Any object of Oc(G, h)0 is a quotient of a multiple of Mc,n(CG) for large enough n. 

Proof. Directly from the definition and the above theorem. � 

Now we can finish the proof of Theorem 6.4. We have shown that for generic c, 
KZ(Mc,n(CG)) ∈ RepHq(G). Hence this is true for any c, since Mc,n(CG) is a flat fam
ily of modules over Hc(G, h). Then, KZ(M) is a Hq(G)-module for all M , since any M is a 
quotient of Mc,n(CG) and the functor KZ is exact. � 

Corollary 6.7 (Broué, Malle, Rouquier, [BMR]). Let qj,H = exp(tj,H ) where tj,H ’s are 
formal parameters. Then Hq(G) is a free module over C[[tj,H ]] of rank |G|. 

Proof. We have 
Hq(G)/(t) = H1(G) = CG. 

So it remains to show that Hq(G) is free. To show this, it is sufficient to show that any 
τ ∈ IrrepG admits a flat deformation τq to a representation of Hq(G). We can define this 
deformation by letting τq = KZ(Mc(τ )). � 

Remark 6.8. 1. The validity of this Corollary in characteristic zero implies that it is also 
valid over a field positive characteristic. 

2. It is not known in general if the Corollary holds for numerical q (even generically). This 
is a conjecture of Broué, Malle, and Rouquier. But it is known for many cases (including all 
Coxeter groups). 

3. The proof of the Corollary is analytic (it is based on the notion of monodromy). There 
is no known algebraic proof, except in special cases, and in the case of Coxeter groups, which 
we’ll discuss later. 

6.3. The image of the KZ functor. First, let us recall the definition of a quotient category. 
Let A be an abelian category and B ⊂ A a full abelian subcategory. 

Definition 6.9. B is a Serre subcategory if it is closed under subquotients and extensions 
(i.e., if two terms in a short exact sequence are in B, so is the third one). 

If B ⊂ A is a Serre subcategory, one can define a category A/B as follows: 

objects in A/B = objects in A, 
HomA/B(X, Y ) = lim HomA(X �, Y/Y �). 

−→ 
Y �,X/X�∈B 

The category A/B is an abelian category with the following universal property: any exact 
functor F : A → C that kills B must factor through A/B. 
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Now let Oc(G, h)tor be the full subcategory of Oc(G, h)0 consisting of modules supported 0 
on the reflection hyperplanes. It is a Serre subcategory, and ker(KZ) = Oc(G, h)tor

0 . Thus 
we have a functor: 

KZ : Oc(G, h)0/Oc(G, h)tor RepHq(G).0 → 

Theorem 6.10 (Ginzburg, Guay, Opdam, Rouquier, [GGOR]). If dim Hq(G) = |G|, the 
functor KZ is an equivalence of categories. 

Proof. See [GGOR], Theorem 5.14. � 

6.4. Example: the symmetric group Sn. Let h = Cn , G = Sn. Then we have (for 
q ∈ C∗): 

Hq(Sn) = �T1, . . . , Tn−1�/�the braid relations and (Ti − 1)(Ti + q) = 0�.

The following facts are known:

(1) dim Hq(Sn) = n!; 
(2) Hq(Sn) is semisimple if and only if ord(q) = 2, 3, . . . , n. 

Now suppose q is generic. Let λ be a partition of n. Then we can define an Hq(Sn)
module Sλ, the Specht module for the Hecke algebra in the sense of [DJ]. This is a certain 
deformation of the classical irreducible Specht module for the symmetric group. The Specht 
module carries an inner product �·, ·�. Denote Dλ = Sλ/Rad�·, ·�. 

Theorem 6.11 (Dipper, James, [DJ]). Dλ is either an irreducible Hq(Sn)-module, or 0. 
Dλ = 0 if and only if λ is e-regular where e = ord(q) (i.e., every part of λ occurs less than 
e times).


Proof. See [DJ], Theorem 6.3, 6.8. �


Now let Mc(λ) be the Verma module associated to the Specht module for Sn and Lc(λ) 
be its irreducible quotient. Then we have the following theorem. 

Theorem 6.12. If c ≤ 0, then KZ(Mc(λ)) = Sλ and KZ(Lc(λ)) = Dλ. 

Proof. See Section 6.2 of [GGOR]. � 

Corollary 6.13. If c ≤ 0, then SuppLc(λ) = Cn if and only if λ is e-regular. If c > 0, 
then SuppLc(λ) = Cn if and only if λ∨ is e-regular, or equivalently, λ is e-restricted (i.e.,

λi − λi+1 < e for i = 1, . . . , n − 1).


Proof. Directly from the definition and the above theorem. �


6.5. Notes. The references for this section are [GGOR], [BMR]. 
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