5. Parabolic induction and restriction functors for rational Cherednik Algebras

5.1. A geometric approach to rational Cherednik algebras. An important property of the rational Cherednik algebra $H_{1,c}(G, \mathfrak{h})$ is that it can be sheafified, as an algebra, over \mathfrak{h}/G (see [E1]). More specifically, the usual sheafification of $H_{1,c}(G, \mathfrak{h})$ as a $\mathcal{O}_{\mathfrak{h}/G}$ -module is in fact a quasicoherent sheaf of algebras, $H_{1,c,G,\mathfrak{h}}$. Namely, for every affine open subset $U \subset \mathfrak{h}/G$, the algebra of sections $H_{1,c,G,\mathfrak{h}}(U)$ is, by definition, $\mathbb{C}[U] \otimes_{\mathbb{C}[\mathfrak{h}]^G} H_{1,c}(G,\mathfrak{h})$.

The same sheaf can be defined more geometrically as follows (see [E1], Section 2.9). Let \widetilde{U} be the preimage of U in \mathfrak{h} . Then the algebra $H_{1,c,G,\mathfrak{h}}(U)$ is the algebra of linear operators on $\mathcal{O}(\widetilde{U})$ generated by $\mathcal{O}(\widetilde{U})$, the group G, and Dunkl operators

$$\partial_a - \sum_{s \in \mathcal{S}} \frac{2c_s}{1 - \lambda_s} \frac{\alpha_s(a)}{\alpha_s} (1 - s), \text{ where } a \in \mathfrak{h}.$$

5.2. Completion of rational Cherednik algebras. For any $b \in \mathfrak{h}$ we can define the completion $\widehat{H_{1,c}}(G,\mathfrak{h})_b$ to be the algebra of sections of the sheaf $H_{1,c,G,\mathfrak{h}}$ on the formal neighborhood of the image of b in \mathfrak{h}/G . Namely, $\widehat{H_{1,c}}(G,\mathfrak{h})_b$ is generated by regular functions on the formal neighborhood of the G-orbit of b, the group G, and Dunkl operators.

The algebra $\widehat{H_{1,c}}(G, \mathfrak{h})_b$ inherits from $H_{1,c}(G, \mathfrak{h})$ the natural filtration F^{\bullet} by order of differential operators, and each of the spaces $F^n \widehat{H_{1,c}}(G, \mathfrak{h})_b$ has a projective limit topology; the whole algebra is then equipped with the topology of the nested union (or inductive limit).

Consider the completion of the rational Cherednik algebra at zero, $H_{1,c}(G, \mathfrak{h})_0$. It naturally contains the algebra $\mathbb{C}[[\mathfrak{h}]]$. Define the category $\widehat{\mathcal{O}}_c(G, \mathfrak{h})$ of representations of $\widehat{H_{1,c}}(G, \mathfrak{h})_0$ which are finitely generated over $\mathbb{C}[[\mathfrak{h}]]_0 = \mathbb{C}[[\mathfrak{h}]]_{2,c}$

We have a completion functor $\widehat{}: \mathcal{O}_c(G, \mathfrak{h}) \to \widehat{\mathcal{O}}_c(G, \mathfrak{h})$, defined by

$$\widehat{M} = \widehat{H_{1,c}}(G, \mathfrak{h})_0 \otimes_{H_{1,c}(G, \mathfrak{h})} M = \mathbb{C}[[\mathfrak{h}]] \otimes_{\mathbb{C}[\mathfrak{h}]} M.$$

Also, for $N \in \widehat{\mathcal{O}}_c(G, \mathfrak{h})$, let E(N) be the subspace spanned by generalized eigenvectors of **h** in N where **h** is defined by (3.2). Then it is easy to see that $E(N) \in \mathcal{O}_c(G, \mathfrak{h})_0$.

Theorem 5.1. The restriction of the completion functor $\widehat{}$ to $\mathcal{O}_c(G, \mathfrak{h})_0$ is an equivalence of categories $\mathcal{O}_c(G, \mathfrak{h})_0 \to \widehat{\mathcal{O}}_c(G, \mathfrak{h})$. The inverse equivalence is given by the functor E.

Proof. It is clear that $M \subset \widehat{M}$, so $M \subset E(\widehat{M})$ (as M is spanned by generalized eigenvectors of **h**). Let us demonstrate the opposite inclusion. Pick generators m_1, \ldots, m_r of M which are generalized eigenvectors of **h** with eigenvalues μ_1, \ldots, μ_r . Let $0 \neq v \in E(\widehat{M})$. Then v = $\sum_i f_i m_i$, where $f_i \in \mathbb{C}[[\mathfrak{h}]]$. Assume that $(\mathbf{h} - \mu)^N v = 0$ for some N. Then $v = \sum_i f_i^{(\mu - \mu_i)} m_i$, where for $f \in \mathbb{C}[[\mathfrak{h}]]$ we denote by $f^{(d)}$ the degree d part of f. Thus $v \in M$, so $M = E(\widehat{M})$.

It remains to show that E(N) = N, i.e. that N is the closure of E(N). In other words, letting \mathfrak{m} denote the maximal ideal in $\mathbb{C}[[\mathfrak{h}]]$, we need to show that the natural map $E(N) \to N/\mathfrak{m}^j N$ is surjective for every j.

To do so, note that **h** preserves the descending filtration of N by subspaces $\mathfrak{m}^{j}N$. On the other hand, the successive quotients of these subspaces, $\mathfrak{m}^{j}N/\mathfrak{m}^{j+1}N$, are finite dimensional, which implies that **h** acts locally finitely on their direct sum grN, and moreover each generalized eigenspace is finite dimensional. Now for each $\beta \in \mathbb{C}$ denote by $N_{j,\beta}$ the generalized β -eigenspace of **h** in $N/\mathfrak{m}^j N$. We have surjective homomorphisms $N_{j+1,\beta} \to N_{j,\beta}$, and for large enough j they are isomorphisms. This implies that the map $E(N) \to N/\mathfrak{m}^j N$ is surjective for every j, as desired. \Box

Example. Suppose that c = 0. Then Theorem 5.1 specializes to the well known fact that the category of *G*-equivariant local systems on \mathfrak{h} with a locally nilpotent action of partial differentiations is equivalent to the category of all *G*-equivariant local systems on the formal neighborhood of zero in \mathfrak{h} . In fact, both categories in this case are equivalent to the category of finite dimensional representations of *G*.

We can now define the composition functor $\mathcal{J} : \mathcal{O}_c(G, \mathfrak{h}) \to \mathcal{O}_c(G, \mathfrak{h})_0$, by the formula $\mathcal{J}(M) = E(\widehat{M})$. The functor \mathcal{J} is called the Jacquet functor ([Gi2]).

5.3. The duality functor. Recall that in Section 3.11, for any $H_{1,c}(G, \mathfrak{h})$ -module M, the full dual space M^* is naturally an $H_{1,\bar{c}}(G, \mathfrak{h}^*)$ -module, via $\pi_{M^*}(a) = \pi_M(\gamma(a))^*$.

It is clear that the duality functor * defines an equivalence between the category $\mathcal{O}_c(G, \mathfrak{h})_0$ and $\widehat{\mathcal{O}}_{\bar{c}}(G, \mathfrak{h}^*)^{\mathrm{op}}$, and that $M^{\dagger} = E(M^*)$ (where M^{\dagger} is the contragredient, or restricted dual module to M defined in Section 3.11).

5.4. Generalized Jacquet functors.

Proposition 5.2. For any $M \in \widehat{\mathcal{O}}_c(G, \mathfrak{h})$, a vector $v \in M$ is **h**-finite if and only if it is \mathfrak{h} -nilpotent.

Proof. The "if" part follows from Theorem 3.20. To prove the "only if" part, assume that $(\mathbf{h} - \mu)^N v = 0$. Then for any $u \in S^r \mathfrak{h} \cdot v$, we have $(\mathbf{h} - \mu + r)^N u = 0$. But by Theorem 5.1, the real parts of generalized eigenvalues of \mathbf{h} in M are bounded below. Hence $S^r \mathfrak{h} \cdot v = 0$ for large enough r, as desired.

According to Proposition 5.2, the functor E can be alternatively defined by setting E(M) to be the subspace of M which is locally nilpotent under the action of \mathfrak{h} .

This gives rise to the following generalization of E: for any $\lambda \in \mathfrak{h}^*$ we define the functor $E_{\lambda} : \widehat{\mathcal{O}}_c(G, \mathfrak{h}) \to \mathcal{O}_c(G, \mathfrak{h})_{\lambda}$ by setting $E_{\lambda}(M)$ to be the space of generalized eigenvectors of $\mathbb{C}[\mathfrak{h}^*]^G$ in M with eigenvalue λ . This way, we have $E_0 = E$.

We can also define the generalized Jacquet functor $\mathcal{J}_{\lambda} : \mathcal{O}_{c}(G, \mathfrak{h}) \to \mathcal{O}_{c}(G, \mathfrak{h})_{\lambda}$ by the formula $\mathcal{J}_{\lambda}(M) = E_{\lambda}(\widehat{M})$. Then we have $\mathcal{J}_{0} = \mathcal{J}$, and one can show that the restriction of \mathcal{J}_{λ} to $\mathcal{O}_{c}(G, \mathfrak{h})_{\lambda}$ is the identity functor.

5.5. The centralizer construction. For a finite group H, let $\mathbf{e}_H = |H|^{-1} \sum_{g \in H} g$ be the symmetrizer of H.

If $G \supset H$ are finite groups, and A is an algebra containing $\mathbb{C}[H]$, then define the algebra Z(G, H, A) to be the centralizer $\operatorname{End}_A(P)$ of A in the right A-module $P = \operatorname{Fun}_H(G, A)$ of H-invariant A-valued functions on G, i.e. such functions $f: G \to A$ that f(hg) = hf(g). Clearly, P is a free A-module of rank |G/H|, so the algebra Z(G, H, A) is isomorphic to $\operatorname{Mat}_{|G/H|}(A)$, but this isomorphism is not canonical.

The following lemma is trivial.

Lemma 5.3. The functor $N \mapsto I(N) := P \otimes_A N = \operatorname{Fun}_H(G, N)$ defines an equivalence of categories $A - \operatorname{mod} \to Z(G, H, A) - \operatorname{mod}$.

5.6. Completion of rational Cherednik algebras at arbitrary points of \mathfrak{h}/G . The following result is, in essence, a consequence of the geometric approach to rational Cherednik algebras, described in Subsection 5.1. It should be regarded as a direct generalization to the case of Cherednik algebras of Theorem 8.6 of [L] for affine Hecke algebras.

Let $b \in \mathfrak{h}$. Abusing notation, denote the restriction of c to the set S_b of reflections in G_b also by c.

Theorem 5.4. One has a natural isomorphism

$$\theta: \widehat{H_{1,c}}(G, \mathfrak{h})_b \to Z(G, G_b, \widehat{H_{1,c}}(G_b, \mathfrak{h})_0),$$

defined by the following formulas. Suppose that $f \in P = \operatorname{Fun}_{G_b}(G, \widehat{H_{1,c}}(G_b, \mathfrak{h})_0)$. Then

$$(\theta(u)f)(w) = f(wu), u \in G;$$

for any $\alpha \in \mathfrak{h}^*$,

$$(\theta(x_{\alpha})f)(w) = (x_{w\alpha}^{(b)} + (w\alpha, b))f(w)$$

where $x_{\alpha} \in \mathfrak{h}^* \subset H_{1,c}(G,\mathfrak{h}), x_{\alpha}^{(b)} \in \mathfrak{h}^* \subset H_{1,c}(G_b,\mathfrak{h})$ are the elements corresponding to α ; and for any $a \in \mathfrak{h}$,

(5.1)
$$(\theta(y_a)f)(w) = y_{wa}^{(b)}f(w) - \sum_{s \in \mathcal{S}: s \notin G_b} \frac{2c_s}{1 - \lambda_s} \frac{\alpha_s(wa)}{x_{\alpha_s}^{(b)} + \alpha_s(b)} (f(w) - f(sw)).$$

where $y_a \in \mathfrak{h} \subset H_{1,c}(G,\mathfrak{h}), y_a^{(b)} \in \mathfrak{h} \subset H_{1,c}(G_b,\mathfrak{h}).$

Proof. The proof is by a direct computation. We note that in the last formula, the fraction $\alpha_s(wa)/(x_{\alpha_s}^{(b)} + \alpha_s(b))$ is viewed as a power series (i.e., an element of $\mathbb{C}[[\mathfrak{h}]]$), and that only the entire sum, and not each summand separately, is in the centralizer algebra.

Remark. Let us explain how to see the existence of θ without writing explicit formulas, and how to guess the formula (5.1) for θ . It is explained in [E1] (see e.g. [E1], Section 2.9) that the sheaf of algebras obtained by sheafification of $H_{1,c}(G, \mathfrak{h})$ over \mathfrak{h}/G is generated (on every affine open set in \mathfrak{h}/G) by regular functions on \mathfrak{h} , elements of G, and Dunkl operators. Therefore, this statement holds for formal neighborhoods, i.e., it is true on the formal neighborhood of the image in \mathfrak{h}/G of any point $b \in \mathfrak{h}$. However, looking at the formula for Dunkl operators near b, we see that the summands corresponding to $s \in S, s \notin G_b$ are actually regular at b, so they can be safely deleted without changing the generated algebra (as all regular functions on the formal neighborhood of b are included into the system of generators). But after these terms are deleted, what remains is nothing but the Dunkl operators for (G_b, \mathfrak{h}) , which, together with functions on the formal neighborhood of b and the group G_b , generate the completion of $H_{1,c}(G_b, \mathfrak{h})$. This gives a construction of θ without using explicit formulas.

Also, this argument explains why θ should be defined by formula (5.1) of Theorem 5.4. Indeed, what this formula does is just restores the terms with $s \notin G_b$ that have been previously deleted.

The map θ defines an equivalence of categories

$$\theta_* : \widehat{H_{1,c}}(G, \mathfrak{h})_b - \operatorname{mod} \to Z(G, G_b, \widehat{H_{1,c}}(G_b, \mathfrak{h})_0) - \operatorname{mod}.$$
38

Corollary 5.5. We have a natural equivalence of categories

$$\psi_{\lambda}: \mathcal{O}_c(G, \mathfrak{h})_{\lambda} \to \mathcal{O}_c(G_{\lambda}, \mathfrak{h}/\mathfrak{h}^{G_{\lambda}})_0.$$

Proof. The category $\mathcal{O}_c(G, \mathfrak{h})_{\lambda}$ is the category of modules over $H_{1,c}(G, \mathfrak{h})$ which are finitely generated over $\mathbb{C}[\mathfrak{h}]$ and extend by continuity to the completion of the algebra $H_{1,c}(G, \mathfrak{h})$ at λ . So it follows from Theorem 5.4 that we have an equivalence $\mathcal{O}_c(G, \mathfrak{h})_{\lambda} \to \mathcal{O}_c(G_{\lambda}, \mathfrak{h})_0$. Composing this equivalence with the equivalence $\zeta : \mathcal{O}_c(G_{\lambda}, \mathfrak{h})_0 \to \mathcal{O}_c(G_{\lambda}, \mathfrak{h}/\mathfrak{h}^{G_{\lambda}})_0$, we obtain the desired equivalence ψ_{λ} .

Remark 5.6. Note that in this proof, we take the completion of $H_{1,c}(G, \mathfrak{h})$ at a point of $\lambda \in \mathfrak{h}^*$ rather than $b \in \mathfrak{h}$.

5.7. The completion functor. Let $\widehat{\mathcal{O}}_c(G, \mathfrak{h})^b$ be the category of modules over $\widehat{H_{1,c}}(G, \mathfrak{h})_b$ which are finitely generated over $\widehat{\mathbb{C}[\mathfrak{h}]}_b$.

Proposition 5.7. The duality functor * defines an anti-equivalence of categories $\mathcal{O}_c(G, \mathfrak{h})_{\lambda} \to \widehat{\mathcal{O}}_{\overline{c}}(G, \mathfrak{h}^*)^{\lambda}$.

Proof. This follows from the fact (already mentioned above) that $\mathcal{O}_c(G, \mathfrak{h})_{\lambda}$ is the category of modules over $H_{1,c}(G, \mathfrak{h})$ which are finitely generated over $\mathbb{C}[\mathfrak{h}]$ and extend by continuity to the completion of the algebra $H_{1,c}(G, \mathfrak{h})$ at λ .

Let us denote the functor inverse to * also by *; it is the functor of continuous dual (in the formal series topology).

We have an exact functor of completion at $b, \mathcal{O}_c(G,\mathfrak{h})_0 \to \widehat{\mathcal{O}}_c(G,\mathfrak{h})^b, M \mapsto \widehat{M}_b$. We also have a functor $E^b : \widehat{\mathcal{O}}_c(G,\mathfrak{h})^b \to \mathcal{O}_c(G,\mathfrak{h})_0$ in the opposite direction, sending a module N to the space $E^b(N)$ of \mathfrak{h} -nilpotent vectors in N.

Proposition 5.8. The functor E^b is right adjoint to the completion functor $\widehat{}_b$.

Proof. We have

$$\operatorname{Hom}_{\widehat{H_{1,c}(G,\mathfrak{h})_{b}}}(\widehat{M_{b}},N) = \operatorname{Hom}_{\widehat{H_{1,c}(G,\mathfrak{h})_{b}}}(\widehat{H_{1,c}(G,\mathfrak{h})_{b}}\otimes_{H_{1,c}(G,\mathfrak{h})}M,N)$$
$$= \operatorname{Hom}_{H_{1,c}(G,\mathfrak{h})}(M,N|_{H_{1,c}(G,\mathfrak{h})}) = \operatorname{Hom}_{H_{1,c}(G,\mathfrak{h})}(M,E^{b}(N)).$$

Remark 5.9. Recall that by Theorem 5.1, if b = 0 then these functors are not only adjoint but also inverse to each other.

Proposition 5.10. (i) For $M \in \mathcal{O}_{\bar{c}}(G, \mathfrak{h}^*)_b$, one has $E^b(M^*) = (\widehat{M})^*$ in $\mathcal{O}_c(G, \mathfrak{h})_0$.

(ii) For $M \in \mathcal{O}_c(G, \mathfrak{h})_{0, \underline{\cdot}}(\widehat{M}_b)^* = E_b(M^*)$ in $\mathcal{O}_{\overline{c}}(G, \mathfrak{h}^*)_b$.

(iii) The functors E_b , E^b are exact.

Proof. (i),(ii) are straightforward from the definitions. (iii) follows from (i),(ii), since the completion functors are exact. \Box

5.8. Parabolic induction and restriction functors for rational Cherednik algebras. Theorem 5.4 allows us to define analogs of parabolic restriction functors for rational Cherednik algebras.

Namely, let $b \in \mathfrak{h}$, and $G_b = G'$. Define a functor $\operatorname{Res}_b : \mathcal{O}_c(G, \mathfrak{h})_0 \to \mathcal{O}_c(G', \mathfrak{h}/\mathfrak{h}^{G'})_0$ by the formula

$$\operatorname{Res}_b(M) = (\zeta \circ E \circ I^{-1} \circ \theta_*)(\widehat{M}_b)$$

We can also define the parabolic induction functors in the opposite direction. Namely, let $N \in \mathcal{O}_c(G', \mathfrak{h}/\mathfrak{h}^{G'})_0$. Then we can define the object $\mathrm{Ind}_b(N) \in \mathcal{O}_c(G, \mathfrak{h})_0$ by the formula

$$\operatorname{Ind}_b(N) = (E^b \circ \theta_*^{-1} \circ I)(\widehat{\zeta^{-1}(N)}_0)$$

Proposition 5.11. (i) The functors Ind_b , Res_b are exact.

(ii) One has $\operatorname{Ind}_b(\operatorname{Res}_b(M)) = E^b(M_b)$.

Proof. Part (i) follows from the fact that the functor E^b and the completion functor $\hat{}_b$ are exact (see Proposition 5.10). Part (ii) is straightforward from the definition.

Theorem 5.12. The functor Ind_b is right adjoint to Res_b .

Proof. We have

- $\operatorname{Hom}(\operatorname{Res}_{b}(M), N) = \operatorname{Hom}((\zeta \circ E \circ I^{-1} \circ \theta_{*})(\widehat{M}_{b}), N) = \operatorname{Hom}((E \circ I^{-1} \circ \theta_{*})(\widehat{M}_{b}), \zeta^{-1}(N))$ $= \operatorname{Hom}((I^{-1} \circ \theta_{*})(\widehat{M}_{b}), \widehat{\zeta^{-1}(N)}_{0}) = \operatorname{Hom}(\widehat{M}_{b}, (\theta_{*}^{-1} \circ I)(\widehat{\zeta^{-1}(N)}_{0}))$
- $= \operatorname{Hom}(M, (E^b \circ \theta_*^{-1} \circ I)(\widehat{\zeta^{-1}(N)}_0)) = \operatorname{Hom}(M, \operatorname{Ind}_b(N)).$

At the end we used Proposition 5.8.

Then we can obtain the following corollary easily.

Corollary 5.13. The functor Res_b maps projective objects to projective ones, and the functor Ind_b maps injective objects to injective ones.

We can also define functors $\operatorname{res}_{\lambda} : \mathcal{O}_c(G, \mathfrak{h})_0 \to \mathcal{O}_c(G', \mathfrak{h}/\mathfrak{h}^{G'})_0$ and $\operatorname{ind}_{\lambda} : \mathcal{O}_c(G', \mathfrak{h}/\mathfrak{h}^{G'})_0 \to \mathcal{O}_c(G, \mathfrak{h})_0$, attached to $\lambda \in \mathfrak{h}_{\operatorname{reg}}^{*G'}$, by

 $\operatorname{res}_{\lambda} := \dagger \circ \operatorname{Res}_{\lambda} \circ \dagger, \operatorname{ind}_{\lambda} := \dagger \circ \operatorname{Ind}_{\lambda} \circ \dagger,$

where \dagger is as in Subsection 5.3.

Corollary 5.14. The functors $\operatorname{res}_{\lambda}$, $\operatorname{ind}_{\lambda}$ are exact. The functor $\operatorname{ind}_{\lambda}$ is left adjoint to $\operatorname{res}_{\lambda}$. The functor $\operatorname{ind}_{\lambda}$ maps projective objects to projective ones, and the functor $\operatorname{res}_{\lambda}$ injective objects to injective ones.

Proof. Easy to see from the definition of the functors and the Theorem 5.12.

We also have the following proposition, whose proof is straightforward.

Proposition 5.15. We have

 $\operatorname{ind}_{\lambda}(N) = (\mathcal{J} \circ \psi_{\lambda}^{-1})(N), \quad and \quad \operatorname{res}_{\lambda}(M) = (\psi_{\lambda} \circ E_{\lambda})(\widehat{M}),$

where ψ_{λ} is defined in Corollary 5.5.

5.9. Some evaluations of the parabolic induction and restriction functors. For generic c, the category $\mathcal{O}_c(G, \mathfrak{h})$ is semisimple, and naturally equivalent to the category RepG of finite dimensional representations of G, via the functor $\tau \mapsto M_c(G, \mathfrak{h}, \tau)$. (If G is a Coxeter group, the exact set of such c (which are called regular) is known from [GGOR] and [Gy]).

Proposition 5.16. (i) Suppose that c is generic. Upon the above identification, the functors Ind_b , $\operatorname{ind}_\lambda$ and Res_b , $\operatorname{res}_\lambda$ go to the usual induction and restriction functors between categories $\operatorname{Rep} G$ and $\operatorname{Rep} G'$. In other words, we have

$$\operatorname{Res}_b(M_c(G,\mathfrak{h},\tau)) = \bigoplus_{\xi \in \widehat{G'}} n_{\tau\xi} M_c(G',\mathfrak{h}/\mathfrak{h}^{G'},\xi),$$

and

$$\mathrm{Ind}_b(M_c(G',\mathfrak{h}/\mathfrak{h}^{G'},\xi)) = \bigoplus_{\tau \in \widehat{G}} n_{\tau\xi} M_c(G,\mathfrak{h},\tau),$$

where $n_{\tau\xi}$ is the multiplicity of occurrence of ξ in $\tau|_{G'}$, and similarly for res_{λ}, ind_{λ}. (ii) The equations of (i) hold at the level of Grothendieck groups for all c.

Proof. Part (i) is easy for c = 0, and is obtained for generic c by a deformation argument. Part (ii) is also obtained by deformation argument, taking into account that the functors Res_b and Ind_b are exact and flat with respect to c.

Example 5.17. Suppose that G' = 1. Then $\operatorname{Res}_b(M)$ is the fiber of M at b, while $\operatorname{Ind}_b(\mathbb{C}) = P_{KZ}$, the object defined in [GGOR], which is projective and injective (see Remark 5.22). This shows that Proposition 5.16 (i) does not hold for special c, as P_{KZ} is not, in general, a direct sum of standard modules.

5.10. Dependence of the functor Res_b on b. Let $G' \subset G$ be a parabolic subgroup. In the construction of the functor Res_b , the point b can be made a variable which belongs to the open set $\mathfrak{h}_{\operatorname{reg}}^{G'}$.

the open set $\mathfrak{h}_{\text{reg}}^{G'}$. Namely, let $\widehat{\mathfrak{h}_{\text{reg}}^{G'}}$ be the formal neighborhood of the locally closed set $\mathfrak{h}_{\text{reg}}^{G'}$ in \mathfrak{h} , and let $\pi: \widehat{\mathfrak{h}_{\text{reg}}^{G'}} \to \mathfrak{h}/G$ be the natural map (note that this map is an étale covering of the image with the Galois group $N_G(G')/G'$, where $N_G(G')$ is the normalizer of G' in G). Let $\widehat{H_{1,c}}(G,\mathfrak{h})_{\mathfrak{h}_{\text{reg}}^{G'}}$ be the pullback of the sheaf $H_{1,c,G,\mathfrak{h}}$ under π . We can regard it as a sheaf of algebras over $\mathfrak{h}_{\text{reg}}^{G'}$. Similarly to Theorem 5.4 we have an isomorphism

$$\theta:\widehat{H_{1,c}}(G,\mathfrak{h})_{\mathfrak{h}_{\mathrm{reg}}^{G'}}\to Z(G,G',\widehat{H_{1,c}}(G',\mathfrak{h}/\mathfrak{h}^{G'})_0)\hat{\otimes}\mathcal{D}(\mathfrak{h}_{\mathrm{reg}}^{G'}),$$

where $\mathcal{D}(\mathfrak{h}_{reg}^{G'})$ is the sheaf of differential operators on $\mathfrak{h}_{reg}^{G'}$, and $\hat{\otimes}$ is an appropriate completion of the tensor product.

Thus, repeating the construction of Res_b , we can define the functor

Res :
$$\mathcal{O}_c(G, \mathfrak{h})_0 \to \mathcal{O}_c(G', \mathfrak{h}/\mathfrak{h}^{G'})_0 \boxtimes \operatorname{Loc}(\mathfrak{h}_{\operatorname{reg}}^{G'}),$$

where $\operatorname{Loc}(\mathfrak{h}_{\operatorname{reg}}^{G'})$ stands for the category of local systems (i.e. \mathcal{O} -coherent \mathcal{D} -modules) on $\mathfrak{h}_{\operatorname{reg}}^{G'}$. This functor has the property that Res_b is the fiber of Res at b. Namely, the functor Res is defined by the formula

$$\operatorname{Res}(M) = (E \circ I^{-1} \circ \theta_*)(\widehat{M}_{\mathfrak{h}^{G'}_{\operatorname{reg}}}),$$

where $\widehat{M}_{\mathfrak{h}_{reg}^{G'}}$ is the restriction of the sheaf M on \mathfrak{h} to the formal neighborhood of $\mathfrak{h}_{reg}^{G'}$.

Remark 5.18. If G' is the trivial group, the functor Res is just the KZ functor from [GGOR], which we will discuss later. Thus, Res is a relative version of the KZ functor.

Remark 5.19. Note that the object $\operatorname{Res}(M)$ is naturally equivariant under the group $N_G(G')/G'$.

Thus, we see that the functor Res_b does not depend on b, up to an isomorphism. A similar statement is true for the functors Ind_b , $\operatorname{res}_\lambda$, $\operatorname{ind}_\lambda$.

Conjecture 5.20. For any $b \in \mathfrak{h}, \lambda \in \mathfrak{h}^*$ such that $G_b = G_\lambda$, we have isomorphisms of functors $\operatorname{Res}_b \cong \operatorname{res}_\lambda$, $\operatorname{Ind}_b \cong \operatorname{ind}_\lambda$.

Remark 5.21. Conjecture 5.20 would imply that Ind_b is left adjoint to Res_b , and that Res_b maps injective objects to injective ones, while Ind_b maps projective objects to projective ones.

Remark 5.22. If b and λ are generic (i.e., $G_b = G_{\lambda} = 1$) then the conjecture holds. Indeed, in this case the conjecture reduces to showing that we have an isomorphism of functors $Fiber_b(M) \cong Fiber_{\lambda}(M^{\dagger})^*$ ($M \in \mathcal{O}_c(G, \mathfrak{h})$). Since both functors are exact functors to the category of vector spaces, it suffices to check that dim $Fiber_b(M) = \dim Fiber_{\lambda}(M^{\dagger})$. But this is true because both dimensions are given by the leading coefficient of the Hilbert polynomial of M (characterizing the growth of M).

It is important to mention, however, that although Res_b is isomorphic to $\operatorname{Res}_{b'}$ if $G_b = G_{b'}$, this isomorphism is not canonical. So let us examine the dependence of Res_b on b a little more carefully.

Theorem 5.16 implies that if c is generic, then

$$\operatorname{Res}(M_c(G,\mathfrak{h},\tau)) = \bigoplus_{\xi} M_c(G',\mathfrak{h}/\mathfrak{h}^{G'},\xi) \otimes \mathcal{L}_{\tau\xi},$$

where $\mathcal{L}_{\tau\xi}$ is a local system on $\mathfrak{h}_{\text{reg}}^{G'}$ of rank $n_{\tau\xi}$. Let us characterize the local system $\mathcal{L}_{\tau\xi}$ explicitly.

Proposition 5.23. The local system $\mathcal{L}_{\tau\xi}$ is given by the connection on the trivial bundle given by the formula

$$\nabla = \mathrm{d} - \sum_{s \in \mathcal{S}: s \notin G'} \frac{2c_s}{1 - \lambda_s} \frac{\mathrm{d}\alpha_s}{\alpha_s} (1 - s).$$

with values in $\operatorname{Hom}_{G'}(\xi, \tau|_{G'})$.

Proof. This follows immediately from formula (5.1).

Definition 5.24. We will call the connection of Proposition 5.23 the parabolic KZ (Knizhnik-Zamolodchikov) connection.

Example 5.25. Let $G = \mathfrak{S}_n$ and $G' = \mathfrak{S}_{n_1} \times \cdots \times \mathfrak{S}_{n_k}$ with $n_1 + \cdots + n_k = n$. In this case, there is only one parameter c.

Let $\mathfrak{h} = \mathbb{C}^n$ be the permutation representation of G. Then

$$\mathfrak{h}^{G'} = (\mathbb{C}^n)^{G'} = \{ v \in \mathfrak{h} | v = (\underbrace{z_1, \dots, z_1}_{n_1}, \underbrace{z_2, \dots, z_2}_{n_2}, \dots, \underbrace{z_k, \dots, z_k}_{n_k}) \}.$$

Thus, the parabolic KZ connection on the trivial bundle with fiber being a representation τ of \mathfrak{S}_n has the form

$$d - c \sum_{1 \le p < q \le k} \sum_{i=n_1 + \dots + n_{p-1} + 1}^{n_1 + \dots + n_p} \sum_{j=n_1 + \dots + n_{q-1} + 1}^{n_1 + \dots + n_q} \frac{dz_p - dz_q}{z_p - z_q} (1 - s_{ij}).$$

So the differential equations for a flat section F(z) of this bundle have the form

$$\frac{\partial F}{\partial z_p} = c \sum_{q \neq p} \sum_{i=n_1 + \dots + n_{p-1} + 1}^{n_1 + \dots + n_p} \sum_{j=n_1 + \dots + n_{q-1} + 1}^{n_1 + \dots + n_q} \frac{(1 - s_{ij})F}{z_p - z_q}.$$

So $F(z) = G(z) \prod_{p < q} (z_p - z_q)^{cn_p n_q}$, where the function G satisfies the differential equation

$$\frac{\partial G}{\partial z_p} = -c \sum_{q \neq p} \sum_{i=n_1 + \dots + n_{p-1} + 1}^{n_1 + \dots + n_p} \sum_{j=n_1 + \dots + n_{q-1} + 1}^{n_1 + \dots + n_q} \frac{s_{ij}G}{z_p - z_q}.$$

Let $\tau = V^{\otimes n}$ where V is a finite dimensional space with dim V = N (this class of representations contains as summands all irreducible representations of \mathfrak{S}_n). Let $V_p = V^{\otimes n_p}$, so that $\tau = V_1 \otimes \cdots \otimes V_k$. Then the equation for G can be written as

$$\frac{\partial G}{\partial z_p} = -c \sum_{q \neq p} \frac{\Omega_{pq} G}{z_p - z_q}, \quad p = 1, \dots, k,$$

where $\Omega = \sum_{s,t=1}^{N} E_{s,t} \otimes E_{t,s}$ is the Casimir element for \mathfrak{gl}_N ($E_{i,j}$ is the N by N matrix with the only 1 at the (i, j)-th place, and the rest of the entries being 0).

This is nothing but the well known Knizhnik-Zamolodchikov system of equations of the WZW conformal field theory, for the Lie algebra \mathfrak{gl}_N , see [EFK]. (Note that the representations V_i are "the most general" in the sense that any irreducible finite dimensional representation of \mathfrak{gl}_N occurs in $V^{\otimes r}$ for some r, up to tensoring with a character.)

This motivates the term "parabolic KZ connection".

5.11. Supports of modules. The following two basic propositions are proved in [Gi1], Section 6. We will give different proofs of them, based on the restriction functors.

Proposition 5.26. Consider the stratification of \mathfrak{h} with respect to stabilizers of points in G. Then the (set-theoretical) support SuppM of any object M of $\mathcal{O}_c(G,\mathfrak{h})$ in \mathfrak{h} is a union of strata of this stratification.

Proof. This follows immediately from the existence of the flat connection along the set of points b with a fixed stabilizer G' on the bundle $\operatorname{Res}_b(M)$.

Proposition 5.27. For any irreducible object M in $\mathcal{O}_c(G, \mathfrak{h})$, $\operatorname{Supp} M/G$ is an irreducible algebraic variety.

Proof. Let X be a component of $\operatorname{Supp} M/G$. Let M' be the subspace of elements of M whose restriction to a neighborhood of a generic point of X is zero. It is obvious that M' is an $H_{1,c}(G, \mathfrak{h})$ -submodule in M. By definition, it is a proper submodule. Therefore, by the irreducibility of M, we have M' = 0. Now let $f \in \mathbb{C}[\mathfrak{h}]^G$ be a function that vanishes on X. Then there exists a positive integer N such that f^N maps M to M', hence acts by zero on M. This implies that $\operatorname{Supp} M/G = X$, as desired. \Box

Propositions 5.26 and 5.27 allow us to attach to every irreducible module $M \in \mathcal{O}_c(G, \mathfrak{h})$, a conjugacy class of parabolic subgroups, $C_M \in Par(G)$, namely, the conjugacy class of the stabilizer of a generic point of the support of M. Also, for a parabolic subgroup $G' \subset G$, denote by $\mathcal{X}(G')$ the set of points $b \in \mathfrak{h}$ whose stabilizer contains a subgroup conjugate to G'.

The following proposition is immediate.

Proposition 5.28. (i) Let $M \in \mathcal{O}_c(G, \mathfrak{h})_0$ be irreducible. If b is such that $G_b \in C_M$, then $\operatorname{Res}_b(M)$ is a nonzero finite dimensional module over $H_{1,c}(G_b, \mathfrak{h}/\mathfrak{h}^{G_b})$.

(ii) Conversely, let $b \in \mathfrak{h}$, and L be a finite dimensional module $H_{1,c}(G_b, \mathfrak{h}/\mathfrak{h}^{G_b})$. Then the support of $\operatorname{Ind}_b(L)$ in \mathfrak{h} is $\mathcal{X}(G_b)$.

Let $FD(G, \mathfrak{h})$ be the set of c for which $H_{1,c}(G, \mathfrak{h})$ admits a finite dimensional representation.

Corollary 5.29. Let G' be a parabolic subgroup of G. Then $\mathcal{X}(G')$ is the support of some irreducible representation from $\mathcal{O}_c(G,\mathfrak{h})_0$ if and only if $c \in \mathrm{FD}(G',\mathfrak{h}/\mathfrak{h}^{G'})$.

Proof. Immediate from Proposition 5.28.

Example 5.30. Let $G = \mathfrak{S}_n$, $\mathfrak{h} = \mathbb{C}^{n-1}$. In this case, the set $\operatorname{Par}(G)$ is the set of partitions of n. Assume that c = r/m, (r, m) = 1, $2 \leq m \leq n$. By a result of [BEG], finite dimensional representations of $H_c(G, \mathfrak{h})$ exist if and only if m = n. Thus the only possible classes C_M for irreducible modules M have stabilizers $\mathfrak{S}_m \times \cdots \times \mathfrak{S}_m$, i.e., correspond to partitions into parts, where each part is equal to m or 1. So there are [n/m] + 1 possible supports for modules, where [a] denotes the integer part of a.

5.12. Notes. Our discussion of the geometric approach to rational Cherednik algebras in Section 5.1 follows [E1] and Section 2.2 of [BE]. Our exposition in the other sections follows the corresponding parts of the paper [BE].

18.735 Double Affine Hecke Algebras in Representation Theory, Combinatorics, Geometry, and Mathematical Physics Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.