
9. Calogero-Moser spaces


9.1. Hamiltonian reduction along an orbit. Let M be an affine algebraic variety and 
G a reductive algebraic group. Suppose M is Poisson and the action of G preserves the 
Poisson structure. Let g be the Lie algebra of G and g∗ the dual of g. Let µ : M→ g∗ be a 
moment map for this action (we assume it exists). It induces a map µ∗ : Sg → C[M]. 

Let O be a closed coadjoint orbit of G, IO be the ideal in Sg corresponding to O, and let 
JO be the ideal in C[M] generated by µ∗(IO). Then JG is a Poisson ideal in C[M]G, and O 
A = C[M]G/JG is a Poisson algebra. O 

Geometrically, Spec(A) = µ−1(O)/G (categorical quotient). It can also be written as 
µ−1(z)/Gz, where z ∈ O and Gz is the stabilizer of z in G. 

Definition 9.1. The scheme µ−1(O)/G is called the Hamiltonian reduction of M with respect 
to G along O. We will denote by R(M, G, O). 

The following proposition is standard. 

Proposition 9.2. If M is a symplectic variety and the action of G on µ−1(O) is free, then 
R(M, G, O) is a symplectic variety, of dimension dim(M) − 2 dim(G) + dim(O). 

9.2. The Calogero-Moser space. Let M = T ∗Matn(C), and G = PGLn(C) (so g = 
sln(C)). Using the trace form we can identify g∗ with g, and M with Matn(C) ⊕ Matn(C). 
Then a moment map is given by the formula µ(X, Y ) = [X, Y ], for X, Y ∈ Matn(C). 

Let O be the orbit of the matrix diag(−1, −1, . . . , −1, n − 1), i.e. the set of traceless 
matrices T such that T + 1 has rank 1. 

Definition 9.3 (Kazhdan, Kostant, Sternberg, [KKS]). The scheme Cn := R(M, G, O) is 
called the Calogero-Moser space. 

Proposition 9.4. The action of G on µ−1(O) is free, and thus (by Proposition 9.2) Cn is a 
smooth symplectic variety (of dimension 2n). 

Proof. It suffices to show that if X, Y are such that XY − Y X + 1 has rank 1, then (X, Y ) 
is an irreducible set of matrices. Indeed, in this case, by Schur’s lemma, if B ∈ GLn is such 
that BX = XB and BY = Y B then B is a scalar, so the stabilizer of (X, Y ) in PGLn is 
trivial. 

To show this, assume that W =� 0 is an invariant subspace of X, Y . In this case, the 
eigenvalues of [X, Y ] on W are a subcollection of the collection of n − 1 copies of −1 and 
one copy of n − 1. The sum of the elements of this subcollection must be zero, since it is the 
trace of [X, Y ] on W . But then the subcollection must be the entire collection, so W = Cn , 
as desired. � 

Thus, Cn is the space of conjugacy classes of pairs of n × n matrices (X, Y ) such that the 
matrix XY − Y X + 1 has rank 1. 

In fact, one also has the following more complicated theorem. 

Theorem 9.5 (G. Wilson, [Wi]). The Calogero-Moser space is connected. 

We will give a proof of this theorem later, in Subsection 9.4. 
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9.3. The Calogero-Moser integrable system. Let M be a symplectic variety, and let 
H1, . . . , Hn be regular functions on M such that {Hi, Hj } = 0 and Hi’s are algebraically 
independent everywhere. Assume that M carries a symplectic action of a reductive algebraic 
group G with moment map µ : M → g∗, which preserves the functions Hi, and let O be 
a coadjoint orbit of G. Assume that G acts freely on µ−1(O), and so the Calogero-Moser 
space R(M, G, O) is symplectic. The functions Hi descend to R(M, G, O). If they are still 
algebraically independent and n = dim R(M, G, O)/2, then we get an integrable system on 
R(M, G, O). 

A vivid example of this is the Kazhdan-Kostant-Sternberg construction of the Calogero-
Moser system. In this case M = T ∗Matn(C) (regarded as the set of pairs of matrices (X, Y ) 
as in Section 9.2), with the usual symplectic form ω = Tr (dY ∧ dX). Let Hi = Tr (Y i), 
i = 1, . . . , n. Let G = PGLn(C) act on M by conjugation, and let O be the coadjoint 
orbit of G considered in Subsection 9.2. Then the system H1, . . . , Hn descends to a system 
of functions in involution on R(M, G, O), which is the Calogero-Moser space Cn. Since 
this space is 2n-dimensional, H1, . . . , Hn form an integrable system on Cn. It is called the 
(rational) Calogero-Moser system. 

The Calogero-Moser flow is, by definition, the Hamiltonian flow on Cn defined by the 
Hamiltonian H = H2 = Tr (Y 2). Thus this flow is integrable, in the sense that it can be 
included in an integrable system. In particular, its solutions can be found in quadratures 
using the inductive procedure of reduction of order. However (as often happens with systems 
obtained by reduction), solutions can also be found by a much simpler procedure, since 
they can be found already on the “non-reduced” space M: indeed, on M the Calogero-
Moser flow is just the motion of a free particle in the space of matrices, so it has the form 
gt(X, Y ) = (X + 2Y t, Y ). The same formula is valid on Cn. In fact, we can use the same 
method to compute the flows corresponding to all the Hamiltonians Hi = Tr (Y i), i ∈ N: 
these flows are given by the formulas 

gt 
(i)

(X, Y ) = (X + iY i−1t, Y ). 

Let us write the Calogero-Moser system explicitly in coordinates. To do so, we first need 
to introduce local coordinates on the Calogero-Moser space Cn. 

To this end, let us restrict our attention to the open set Un which consists of ⊂ Cn 

conjugacy classes of those pairs (X, Y ) for which the matrix X is diagonalizable, with distinct 
eigenvalues; by Wilson’s Theorem 9.5, this open set is dense in Cn. 

A point P ∈ Un may be represented by a pair (X, Y ) such that X = diag(x1, . . . , xn), 
xi = xj . In this case, the entries of T := XY − Y X are (xi − xj )yij . In particular, the 
diagonal entries are zero. Since the matrix T + 1 has rank 1, its entries κij have the form 
aibj for some numbers ai, bj . On the other hand, κii = 1, so bj = a−j 

1 and hence κij = aia
−
j 

1 . 
By conjugating (X, Y ) by the matrix diag(a1, . . . , an), we can reduce to the situation when 
ai = 1, so κij = 1. Hence the matrix T has entries 1 − δij (zeros on the diagonal, ones off 
the diagonal). Moreover, the representative of P with diagonal X and T as above is unique 
up to the action of the symmetric group Sn. Finally, we have (xi − xj )yij = 1 for i =� j, so 
the entries of the matrix Y are yij = 1/(xi − xj) if i =� j. On the other hand, the diagonal 
entries yii of Y are unconstrained. Thus we have obtained the following result. 

Proposition 9.6. Let Cn be the open set of (x1, . . . , xn) ∈ Cn such that xi =� xj for i =� j.reg 

Then there exists an isomorphism of algebraic varieties ξ : T ∗(Cn /Sn) Un given by the reg →
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formula 
(x1, . . . , xn, p1, . . . , pn) �→ (X, Y ), 

where X = diag(x1, . . . , xn), and Y = Y (x, p) := (yij ), 

1 
yij = , i = j, yii = pi. 

xi − xj 
�

In fact, we have a stronger result: 

Proposition 9.7. ξ is an isomorphism of symplectic varieties (where the cotangent bundle 
is equipped with the usual symplectic structure). 

For the proof of Proposition 9.7, we will need the following general and important but 
easy theorem. 

Theorem 9.8 (The necklace bracket formula). Let a1, . . . , ar and b1, . . . , bs be either X or 
Y . Then on M we have 

{Tr (a1 · · · ar), Tr (b1 · · · bs)} =	 Tr (ai+1 · · · ara1 · · · ai−1bj+1 · · · bsb1 · · · bj−1) − 
(i,j):ai=Y,bj =X 

Tr (ai+1 · · · ara1 · · · ai−1bj+1 · · · bsb1 · · · bj−1). 
(i,j):ai=X,bj =Y 

Proof of Proposition 9.7. Let ak = Tr (Xk), bk = Tr (XkY ). It is easy to check using the 
necklace bracket formula that on M we have 

{am, ak} = 0, {bm, ak} = kam+k−1, {bm, bk} = (k − m)bm+k−1. 

On the other hand, ξ∗ak = xi
k , ξ∗bk = xi

kpi. Thus we see that 

{f, g} = {ξ∗f, ξ∗g}, 
where f, g are either ak or bk. But the functions ak, bk, k = 0, . . . , n − 1, form a local 
coordinate system near a generic point of Un, so we are done. � 

Now let us write the Hamiltonian of the Calogero-Moser system in coordinates. It has the 
form � � 1 
(9.1)	 H = Tr (Y (x, p)2) = pi 

2 − 
(xi − xj )2 

. 
i i=j 

Thus the Calogero-Moser Hamiltonian describes the motion of a system of n particles on the 
line with interaction potential −1/x2, which we considered in Section 2. 

Now we finally see the usefulness of the Hamiltonian reduction procedure. The point is 
that it is not clear at all from formula (9.1) why the Calogero-Moser Hamiltonian should be 
completely integrable. However, our reduction procedure implies the complete integrability 
of H, and gives an explicit formula for the first integrals: 7 

Hi = Tr (Y (x, p)i). 

Moreover, this procedure immediately gives us an explicit solution of the system. Namely, 
assume that x(t), p(t) is the solution with initial condition x(0), p(0). Let (X0, Y0) = 

7Thus, for type A we have two methods of proving the integrability of the Calogero-Moser system - one 
using Dunkl operators and one using Hamiltonian reduction. 
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ξ(x(0), p(0)). Then xi(t) are the eigenvalues of the matrix Xt := X0 + 2tY0, and pi(t) = 
x�i(t)/2. 

9.4. Proof of Wilson’s theorem. Let us now give a proof of Theorem 9.5. 
We have already shown that all components of Cn are smooth and have dimension 2n. 

Also, we know that there is at least one component (the closure of Un), and that the other 
components, if they exist, do not contain pairs (X, Y ) in which X is regular semisimple. 

contained in the hypersurface Δ(X) 
Δ(X) stands for the discriminant of X (i.e., Δ(X) := (xi − xj ), where xi are thei=j 

eigenvalues of X). 
Thus, to show that such additional components don’t in fact exist, it suffices to show that 

the dimension of the subscheme Cn(0) cut out in Cn by the equation Δ(X) = 0 is 2n − 1. 
To do so, first notice that the condition rank ([X, Y ] + 1) = 1 is equivalent to the equa

tion ∧2([X, Y ] + 1) = 0; thus, the latter can be used as the equation defining Cn inside 
T ∗Matn/P GLn. 

0 (we use the filtration on O(Cn
0C

This means that these components
 0, where
are
 =


Define C
 := Spec(grO(Cn)) to be the degeneration of Cn )
n 

defined by deg(X) = 0, deg(Y ) = 1). Then C0 is a closed subscheme in the schemen 
out by the equations ∧2([X, Y ]) = 0 in T ∗Matn

0 0 0 
n
�CC C

cut
n 
/PGLn. 

Let (
 )red be the reduced part of Then (
 )red coincides with the categorical quotient .
n n

{(X, Y )|rank ([X, Y ]) ≤ 1}/PGLn.

Our proof is based on the following proposition.


Proposition 9.9. The categorical quotient {(X, Y )|rank ([X, Y ]) ≤ 1}/PGLn coincides with 
the categorical quotient {(X, Y )|[X, Y ] = 0}/PGLn. 

Proof. It is clear that {(X, Y )|[X, Y ] = 0}/PGLn is contained in {(X, Y )|rank ([X, Y ]) ≤
1}/PGLn. For the proof of the opposite inclusion we need to show that any regular function 
on {(X, Y )|rank ([X, Y ]) ≤ 1}/PGLn is completely determined by its values on the subvariety 
{(X, Y )|[X, Y ] = 0}/PGLn, i.e. that any invariant polynomial on the set of pairs of matrices 
with commutator of rank at most 1 is completely determined by its values on pairs of 
commuting matrices. To this end, we need the following lemma from linear algebra. 

Lemma 9.10. If A, B are square matrices such that [A, B] has rank ≤ 1, then there exists 
a basis in which both A, B are upper triangular. 

Proof. Without loss of generality, we can assume ker A =� 0 (by replacing A with A − λ if 
needed) and that A = 0. It suffices to show that there exists a proper nonzero subspace 
invariant under A, B; then the statement will follow by induction in dimension. 

Let C = [A, B] and suppose rank C = 1 (since the case rank C = 0 is trivial). If ker A ⊂
ker C, then ker A is B-invariant: if Av = 0 then ABv = BAv + Cv = 0. Thus ker A is the 
required subspace. If ker A � ker C, then there exists a vector v such that Av = 0 but Cv = 0. �
So ABv = Cv =� 0. Thus ImC ⊂ ImA. So ImA is B-invariant: BAv = ABv + Cv ∈ ImA. 
So ImA is the required subspace. 

This proves the lemma. � 

Now we are ready to prove Proposition 9.9. By the fundamental theorem of invariant 
theory, the ring of invariants of X and Y is generated by traces of words of X and Y : 
Tr(w(X, Y )). If X and Y are upper triangular with eigenvalues xi, yi, then any such trace 
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m rhas the form xi yi , i.e. coincides with the value of the corresponding invariant on the 
diagonal parts Xdiag, Ydiag of X and Y , which commute. The proposition is proved. � 

We will also need the following proposition: 

Proposition 9.11. The categorical quotient {(X, Y ) [X, Y ] = 0}/PGLn is isomorphic to 
(Cn × Cn)/Sn, i.e. its function algebra is C[x1, . . . , xn

|
, y1, . . . , yn]

Sn . 

Proof. Restriction to diagonal matrices defines a homomorphism 

ξ : O({(X, Y )|[X, Y ] = 0}/PGLn) → C[x1, . . . , xn, y1, . . . , yn]
Sn . 

Since (as explained in the proof of Proposition 9.9), any invariant polynomial of entries of 
commuting matrices is determined by its values on diagonal matrices, this map is injective. 

m rAlso, ξ(Tr (XmY r)) = xi yi , where xi, yi are the eigenvalues of X and Y . 
Now we use the following well known theorem of H. Weyl (from his book “Classical 

groups”). 

Theorem 9.12. Let B be an algebra over C. Then the algebra SnB is generated by elements 
of the form 

b ⊗ 1 ⊗ · · · ⊗ 1 + 1 ⊗ b ⊗ · · · ⊗ 1 + · · · + 1 ⊗ 1 ⊗ · · · ⊗ b. 

Proof. Since SnB is linearly spanned by elements of the form x ⊗ · · · ⊗ x, x ∈ B, it suffices 
to prove the theorem in the special case B = C[x]. In this case, the result is simply the fact 
that the ring of symmetric functions is generated by power sums, which is well known. � 

]Sn m rCorollary 9.13. The ring C[x1, . . . , xn, y1, . . . , yn is generated by the polynomials xi yi 
for m, r ≥ 0, m + r > 0. 

Proof. Apply Theorem 9.12 in the case B = C[x, y]. � 

Corollary 9.13 implies that ξ is surjective. Proposition 9.11 is proved. � 

Now we are ready to prove Wilson’s theorem. Let Cn(0)0 be the degeneration of Cn(0), i.e. 
the subscheme of C0 cut out by the equation Δ(X) = 0. According to Propositions 9.9 and n 
9.11, the reduced part (Cn(0)0)red is contained in the hypersurface in (Cn × Cn)/Sn cut out 
by the equation (xi − xj ) = 0. This hypersurface has dimension 2n − 1, so we are done. i<j 

9.5. The Gan-Ginzburg theorem. Let Comm(n) be the commuting scheme defined in 
T ∗Matn = Matn × Matn by the equations [X, Y ] = 0, X, Y ∈ Matn. Let G = PGLn, and 
consider the categorical quotient Comm(n)/G (i.e., the Hamiltonian reduction µ−1(0)/G of 
T ∗Matn by the action of G), whose algebra of regular functions is A = C[Comm(n)]G . 

It is not known whether the commuting scheme Comm(n) is reduced (i.e. whether the 
corresponding ideal is a radical ideal); this is a well known open problem. The underlying 
variety is irreducible (as was shown by Gerstenhaber [Ge1]), but very singular, and has a 
very complicated structure. However, we have the following result. 

Theorem 9.14 (Gan, Ginzburg, [GG]). Comm(n)/G is reduced, and isomorphic to C2n/Sn. 
Thus A = C[x1, . . . , xn, y1, . . . , yn]

Sn . The Poisson bracket on this algebra is induced from 
the standard symplectic structure on C2n . 
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Sketch of the proof. Look at the almost commuting variety Mn ⊂ gl × gl × Cn × (Cn)∗ 
n n 

defined by 
Mn = {(X, Y, v, f)|[X, Y ] + v ⊗ f = 0}. 

Gan and Ginzburg proved the following result. 

Theorem 9.15. Mn is a complete intersection. It has n +1 irreducible components denoted 
by Mi , labeled by i = dim C�X, Y �v. Also, Mn is generically reduced. n

Since Mn is generically reduced and is a complete intersection, by a standard result of 
commutative algebra it is reduced. Thus C[Mn] has no nonzero nilpotents. This implies 
C[Mn]

G has no nonzero nilpotents. 
However, it is easy to show that the algebra C[Mn]

G is isomorphic to the algebra of 
invariant polynomials of entries of X and Y modulo the “rank 1” relation ∧2[X, Y ] = 0. By 
a scheme-theoretic version of Proposition 9.9 (proved in [EG]), the latter is isomorphic to 
A. This implies the theorem (the statement about Poisson structures is checked directly in 
coordinates on the open part where X is regular semisimple). � 

9.6. The space Mc for Sn and the Calogero-Moser space. Let H0,c = H0,c[Sn, V ] be 
the symplectic reflection algebra of the symmetric group Sn and space V = h ⊕ h∗, where 
h = Cn (i.e., the rational Cherednik algebra H0,c(Sn, h)). Let Mc = Spec B0,c[Sn, V ] be the 
Calogero-Moser space defined in Section 8.5. It is a symplectic variety for c = 0. 

Theorem 9.16. For c = 0 � the space Mc is isomorphic to the Calogero-Moser space Cn as a 
symplectic variety. 

Proof. To prove the theorem, we will first construct a map f : Mc , and then prove that → Cn
f is an isomorphism. 

Without loss of generality, we may assume that c = 1. As we have shown before, the 
algebra H0,c is an Azumaya algebra. Therefore, Mc can be regarded as the moduli space of 
irreducible representations of H0,c. 

Let E ∈ Mc be an irreducible representation of H0,c. We have seen before that E has 
dimension n! and is isomorphic to the regular representation as a representation of Sn. Let 
Sn−1 ⊂ Sn be the subgroup which preserves the element 1. Then the space of invariants 
ESn−1 has dimension n. On this space we have operators X, Y : ESn−1 ESn−1 obtained→
by restriction of the operators x1, y1 on E to the subspace of invariants. We have 

n

[X, Y ] = T := s1i. 
i=2 

Let us now calculate the right hand side of this equation explicitly. Let e be the symmetrizer 
of Sn−1. Let us realize the regular representation E of Sn as C[Sn] with action of Sn by 
left multiplication. Then v1 = e, v2 = es12, . . . , vn = es1n is a basis of ESn−1 . The element 
T commutes with e, so we have � 

Tvi = vj . 
j=i 

This means that T +1 has rank 1, and hence the pair (X, Y ) defines a point on the Calogero-
Moser space Cn. 8 

8Note that the pair (X, Y ) is well defined only up to conjugation, because the representation E is well 
defined only up to an isomorphism. 
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We now set (X, Y ) = f(E). It is clear that f : Mc is a regular map. So it remains to → Cn 

show that f is an isomorphism. This is equivalent to showing that the corresponding map 
of function algebras f ∗ : O(Cn) → B0,c is an isomorphism. 

Let us calculate f and f ∗ more explicitly. To do so, consider the open set U in Mc consisting 
of representations in which xi −xj acts invertibly. These are exactly the representations that 
are obtained by restricting representations of Sn � C[x1, . . . , xn, p1, . . . , pn, δ(x)−1] using the 
classical Dunkl embedding. Thus representations E ∈ U are of the form E = Eλ,µ (λ, µ ∈ Cn , 
and λ has distinct coordinates), where Eλ,µ is the space of complex valued functions on the 
orbit Oλ,µ ⊂ C2n, with the following action of H0,c: � (sijF )(a, b)

(xiF )(a, b) = aiF (a, b), (yiF )(a, b) = biF (a, b) + . 
ai − aj

j=i 

(the group Sn acts by permutations). 
Now let us consider the space ESn−1 . A basis of this space is formed by characteristic λ,µ 

functions of Sn−1-orbits on Oλ,µ. Using the above presentation, it is straightforward to 
calculate the matrices of the operators X and Y in this basis: 

X = diag(λ1, . . . , λn), 

and 
1 

Yij = µi if j = i, Yij = if j = i. 
λi − λj 

�

This shows that f induces an isomorphism f |U : U → Un, where Un is the subset of Cn 

consisting of pairs (X, Y ) for which X has distinct eigenvalues. 
From this presentation, it is straigtforward that f∗(Tr (Xp)) = xp 

1 + + xpn for every · · · 
positive integer p. Also, f commutes with the natural SL2(C)-action on Mc and Cn (by 
(X, Y ) (aX + bY, cX + dY )), so we also get f ∗(Tr (Y p)) = y1 

p + + yn
p , and → · · · 

1 
p

m p−mf ∗(Tr (XpY )) = xi yixi . 
p + 1 

m=0 i 

Now, using the necklace bracket formula on Cn and the commutation relations of H0,c, we 
find, by a direct computation, that f ∗ preserves Poisson bracket on the elements Tr (Xp), 
Tr (XqY ). But these elements are a local coordinate system near a generic point, so it follows 
that f is a Poisson map. Since the algebra B0,c is Poisson generated by xi

p and yi
p for 

all p, we get that f ∗ is a surjective map. 
Also, f ∗ is injective. Indeed, by Wilson’s theorem the Calogero-Moser space is connected, 

and hence the algebra O(Cn) has no zero divisors, while Cn has the same dimension as Mc. 
This proves that f ∗ is an isomorphism, so f is an isomorphism. � 

9.7. The Hilbert scheme Hilbn(C2) and the Calogero-Moser space. The Hilbert 
scheme Hilbn(C2) is defined to be 

Hilbn(C2) = { ideals I ⊂ C[x, y]|codimI = n} 
= {(E, v)|E is a C[x, y]-module of dimension n, v is a cyclic vector of E}. 

The second equality can be easily seen from the short exact sequence 

0 I C[x, y] E 0.→ → 
82 
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Let S(n)C2 = C2 × · · · × C2 , where Sn acts by permutation. We have a natural map � �� � /Sn

n times 

Hilbn(C2) S(n)C2 which sends every ideal I to its zero set (with multiplicities). This map →
is called the Hilbert-Chow map. 

Theorem 9.17 (Fogarty, [F]). (i) Hilbn(C2) is a smooth quasiprojective variety. 
(ii) The Hilbert-Chow map Hilbn(C2) S(n)C2 is projective. It is a resolution of singu→

larities. 

Proof. Proof can be found in [Na]. � 

Now consider the Calogero-Moser space Cn defined in Section 9.2. 

Theorem 9.18 (see [Na]). The Hilbert Scheme Hilbn(C2) is C∞-diffeomorphic to Cn. 

Remark 9.19. More precisely there exists a family of algebraic varieties over A1, say Xt, 
t ∈ A1, such that Xt is isomorphic to Cn if t = 0 and � X0 is the Hilbert scheme; and also if we 
denote by Xt the deformation of C2n/Sn into the Calogero-Moser space, then there exists 
a map ft : Xt � Xt, such that for t =� 0, ft is an isomorphism and f0 is the Hilbert-Chow 
map. 

Remark 9.20. Consider the action of G = PGLn on T ∗Matn. As we have discussed, the 
corresponding moment map is µ(X, Y ) = [X, Y ], so µ−1(0) = {(X, Y )|[X, Y ] = 0} is the 
commuting variety. We can consider two kinds of quotient µ−1(0)/G (i.e., of Hamiltonian 
reduction): 

(1) The categorical quotient, i.e., 

= (CnSpec(C[xij , yij]/�[X, Y ] = 0�)G ∼ × Cn)/Sn. 

It is a reduced (by Gan-Ginzburg Theorem 9.14), affine but singular variety. 
(2) The GIT quotient, in which the stability condition is that there exists a cyclic vector 

for X, Y . This quotient is Hilbn(C2), which is smooth but not affine. 
Both of these reductions are degenerations of the reduction along the orbit of matrices T 

such that T + 1 has rank 1, which yields the space Cn. This explains why Theorem 9.18 and 
the results mentioned in Remark 9.19 are natural to expect. 

9.8. The cohomology of Cn. We also have the following result describing the cohomology 
of Cn (and hence, by Theorem 9.18, of Hilbn(C2)). Define the age filtration for the symmetric 
group Sn by setting 

age(transposition) = 1. 

Then one can show that for any σ ∈ Sn, age(σ) = rank (1 − σ)|reflection representation. It is easy 
to see that 0 ≤ age ≤ n−1. Notice also that the age filtration can be defined for any Coxeter 
group. 

Theorem 9.21 (Lehn-Sorger, Vasserot). The cohomology ring H∗(Cn, C) lives in even degrees 
only and is isomorphic to gr(Center(C[Sn])) under the age filtration (with doubled degrees). 

Proof. Let us sketch a noncommutative-algebraic proof of this theorem, given in [EG]. This 
proof is based on the following result. 
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Theorem 9.22 (Nest-Tsygan, [NT]). If M is an affine symplectic variety and A is a quan
tization of M , then 

HH∗(A[�−1], A[�−1]) ∼= H∗(M, C((�))) 
as an algebra over C((�)). 

Now, we know that the algebra Bt,c is a quantization of Cn. Therefore by above theorem, 
the cohomology algebra of Cn is the cohomology of Bt,c (for generic t). But Bt,c is Morita 
equivalent to Ht,c, so this cohomology is the same as the Hochschild cohomology of Ht,c. 
However, the latter can be computed by using that Ht,c is given by generators and relations 
(by producing explicit representatives of cohomology classes and computing their product), 
which gives the result. � 

9.9. Notes. Sections 9.1–9.6 follow Section 1, 2, 4 of [E4]; the parts about the Hilbert 
scheme and its relation to Calogero-Moser spaces follow the book [Na] (see also [GS]); the 
other parts follow the paper [EG]. 
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