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4. The Macdonald-Mehta integral


4.1. Finite Coxeter groups and the Macdonald-Mehta integral. Let W be a finite 
Coxeter group of rank r with real reflection representation hR equipped with a Euclidean 
W -invariant inner product (·, ). Denote by h the complexification of hR. The reflection ·
hyperplanes subdivide hR into |W | chambers; let us pick one of them to be the dominant 
chamber and call its interior D. For each reflection hyperplane, pick the perpendicular vector 
α ∈ hR with (α, α) = 2 which has positive inner products with elements of D, and call it 
the positive root corresponding to this hyperplane. The walls of D are then defined by the 
equations (αi, v) = 0, where αi are simple roots. Denote by S the set of reflections in W , 
and for a reflection s ∈ S denote by αs the corresponding positive root. Let 

δ(x) = (αs, x) 
s∈S 

be the corresponding discriminant polynomial. Let di, i = 1, . . . , r, be the degrees of the 
generators of the algebra C[h]W . Note that W = i di.| | 

−kLet H1,c(W, h) be the rational Cherednik algebra of W . Here we choose c = as a 
constant function. Let Mc = Mc(C) be the polynomial representation of H1,c(W, h), and βc 
be the contravariant form on Mc defined in Section 3.12. We normalize it by the condition 
βc(1, 1) = 1. 

Theorem 4.1. (i) (The Macdonald-Mehta integral) For Re (k) ≥ 0, one has � r� Γ(1 + kdi)
(4.1) (2π)−r/2 

hR 

e−(x,x)/2|δ(x)|2kdx = 
Γ(1 + k) 

. 
i=1 

(ii) Let b(k) := βc(δ, δ). Then 

r di−1

b(k) = |W | (kdi + m). 
i=1 m=1 

For Weyl groups, this theorem was proved by E. Opdam [Op1]. The non-crystallographic 
cases were done by Opdam in [Op2] using a direct computation in the rank 2 case (reducing 
(4.1) to the beta integral by passing to polar coordinates), and a computer calculation by F. 
Garvan for H3 and H4. 

Example 4.2. In the case W = Sn, we have the following integral (the Mehta integral): � n

(2π)−(n−1)/2 e−(x,x)/2 
� 

2kdx = 
� Γ(1 + kd) 

. 
{x∈Rn| 

P 
i xi=0} �

|xi − xj |
Γ(1 + k)

i=j d=2 

In the next subsection, we give a uniform proof of Theorem 4.1 which is given in [E2]. We 
emphasize that many parts of this proof are borrowed from Opdam’s previous proof of this 
theorem. 

4.2. Proof of Theorem 4.1. 

Proposition 4.3. The function b is a polynomial of degree at most |S|, and the roots of b 
are negative rational numbers. 

26 



�

� � 

� 

� 

� 

Proof. Since δ has degree |S|, it follows from the definition of b that it is a polynomial of 
degree ≤ |S|. 

Suppose that b(k) = 0 for some k ∈ C. Then βc(δ, P ) = 0 for any polynomial P . Indeed, 
if there exists a P such that βc(δ, P ) = 0, then there exists such a P which is antisymmetric 
of degree |S|. Then P must be a multiple of δ which contradicts the equality βc(δ, δ) = 0. 

Thus, Mc is reducible and hence has a singular vector, i.e. a nonzero homogeneous poly
nomial f of positive degree d living in an irreducible representation τ of W killed by ya. 
Applying the element h = i xai yai + r/2 + k s to f , we get s∈S 

d 
,k = −

mτ 

where mτ is the eigenvalue of the operator T := (1 − s) on τ . But it is clear (by s∈S
computing the trace of T ) that mτ ≥ 0 and mτ ∈ Q. This implies that any root of b is 
negative rational. � 

Denote the Macdonald-Mehta integral by F (k). 

Proposition 4.4. One has 

F (k + 1) = b(k)F (k). 

Proof. Let F = i ya
2 

i 
/2. Introduce the Gaussian inner product on Mc as follows: 

Definition 4.5. The Gaussian inner product γc on Mc is given by the formula 

γc(v, v
�) = βc(exp(F)v, exp(F)v�). 

This makes sense because the operator F is locally nilpotent on Mc. Note that δ is a 
nonzero W -antisymmetric polynomial of the smallest possible degree, so ( ya

2 
i 
)δ = 0 and 

hence 

(4.2) γc(δ, δ) = βc(δ, δ) = b(k). 

For a ∈ h, let xa ∈ h∗ ⊂ H1,c(W, h), ya ∈ h ⊂ H1,c(W, h) be the corresponding generators 
of the rational Cherednik algebra. 

Proposition 4.6. Up to scaling, γc is the unique W -invariant symmetric bilinear form on 
Mc satisfying the condition 

γc((xa − ya)v, v
�) = γc(v, yav

�), a ∈ h. 

Proof. We have 

γc((xa − ya)v, v
�) = βc(exp(F)(xa − ya)v, exp(F)v�) = βc(xa exp(F)v, exp(F)v�) 

= βc(exp(F)v, ya exp(F)v�) = βc(exp(F)v, exp(F)yav
�) = γc(v, yav

�). 

Let us now show uniqueness. If γ is any W -invariant symmetric bilinear form satisfying 
the condition of the Proposition, then let β(v, v�) = γ(exp(−F)v, exp(−F)v�). Then β is 
contravariant, so it’s a multiple of βc, hence γ is a multiple of γc. � 

Now we will need the following known result (see [Du2], Theorem 3.10). 
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Proposition 4.7. For Re (k) ≥ 0 we have 

(4.3) γc(f, g) = F (k)−1 f(x)g(x)dµc(x) 
hR 

where 
dµc(x) := e−(x,x)/2|δ(x)|2kdx. 

Proof. It follows from Proposition 4.6 that γc is uniquely, up to scaling, determined by the 
condition that it is W -invariant, and y† = xa − ya. These properties are easy to check for the a 
right hand side of (4.3), using the fact that the action of ya is given by Dunkl operators. � 

Now we can complete the proof of Proposition 4.4. By Proposition 4.7, we have 

F (k + 1) = F (k)γc(δ, δ), 

so by (4.2) we have 
F (k + 1) = F (k)b(k). 

Let �

b(k) = b0 (k + ki)

ni .


We know that ki > 0, and also b0 > 0 (because the inner product β0 on real polynomials is 
positive definite). 

Corollary 4.8. We have � �ni� Γ(k + ki)
F (k) = bk 

0 . 
Γ(ki)i 

Proof. Denote the right hand side by F∗(k) and let φ(k) = F (k)/F∗(k). Clearly, φ(0) = 1. 
Proposition 4.4 implies that φ(k) is a 1-periodic positive function on [0, ∞). Also by the 
Cauchy-Schwarz inequality, 

F (k)F (k�) ≥ F ((k + k�)/2)2 , 

so log F (k) is convex for k ≥ 0. This implies that φ = 1, since (log F∗(k))�� → 0 as k →
+∞. � 

Remark 4.9. The proof of this corollary is motivated by the standard proof of the following 
well known characterization of the Γ function. 

Proposition 4.10. The Γ function is determined by three properties: 
(i) Γ(x) is positive on [1, +∞) and Γ(1) = 1; 
(ii) Γ(x + 1) = xΓ(x); 
(iii) log Γ(x) is a convex function on [1, +∞). 

Proof. It is easy to see from the definition Γ(x) = 
0 
∞ 
tx−1e−tdt that the Γ function has 

properties (i) and (ii); property (iii) follows from this definition and the Cauchy-Schwarz 
inequality. 

Conversely, suppose we have a function F (x) satisfying the above properties, then we have 
F (x) = φ(x)Γ(x) for some 1-periodic function φ(x) with φ(x) > 0. Thus, we have 

(log F )�� = (log φ)�� + (log Γ)��. 
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Since limx +∞(log Γ)�� = 0, (log F )�� ≥ 0, and φ is periodic, we have (log φ)�� ≥ 0. Since� n+1 
→

(log φ)��dx = 0, we see that (log φ)�� ≡ 0. So we have φ(x) ≡ 1. � 
n 

In particular, we see from Corollary 4.8 and the multiplication formulas for the Γ function 
that part (ii) of Theorem 4.1 implies part (i). 

It remains to establish (ii). 

Proposition 4.11. The polynomial b has degree exactly |S|. 

Proof. By Proposition 4.3, b is a polynomial of degree at most |S|. To see that the degree is 
precisely |S|, let us make the change of variable x = k1/2y in the Macdonald-Mehta integral 
and use the steepest descent method. We find that the leading term of the asymptotics of 
log F (k) as k → +∞ is |S|k log k. This together with the Stirling formula and Corollary 4.8 
implies the statement. � 

Proposition 4.12. The function 
r� 1 − e2πikdj 

G(k) := F (k) 
2πik1 − e

j=1 

analytically continues to an entire function of k. 

Proof. Let ξ ∈ D be an element. Consider the real hyperplane Ct = itξ + hR, t > 0. Then 
Ct does not intersect reflection hyperplanes, so we have a continuous branch of δ(x)2k on 
Ct which tends to the positive branch in D as t 0. Then, it is easy to see that for any → 

2πik�(w)w ∈ W , the limit of this branch in the chamber w(D) will be e |δ(x)|2k, where �(w) is 
the length of w. Therefore, by letting t = 0, we get 

1 � 
(2π)−r/2 e−(x,x)/2δ(x)2kdx = F (k)( e 2πik�(w)) 

Ct 
|W | 

w∈W 

(as this integral does not depend on t by Cauchy’s theorem). But it is well known that 

2πik�(w) 
r

1 − e2πikdj 

e = ,
1 − e2πik 

w∈W j=1 

([Hu], p.73), so � 
(2π)−r/2|W | 

Ct 

e−(x,x)/2δ(x)2kdx = G(k). 

Since 
Ct 

e−(x,x)/2δ(x)2kdx is clearly an entire function, the statement is proved. 

Corollary 4.13. For every k0 ∈ [−1, 0] the total multiplicity of all the roots of b of the 
form k0 − p, p ∈ Z+, equals the number of ways to represent k0 in the form −m/di, m = 
1, . . . , di − 1. In other words, the roots of b are ki,m = −m/di − pi,m, 1 ≤ m ≤ di − 1, where 
pi,m ∈ Z+. 

Proof. We have 

G(k − p) = 
F (k) 

r
1 − e2πikdj 

,
b(k − 1) b(k − p) 

j=1 
1 − e2πik · · · 
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Now plug in k = 1 + k0 and a large positive integer p. Since by Proposition 4.12 the left 
hand side is regular, so must be the right hand side, which implies the claimed upper bound 
for the total multiplicity, as F (1 + k0) > 0. The fact that the bound is actually attained 
follows from the fact that the polynomial b has degree exactly |S| (Proposition 4.11), and 
the fact that all roots of b are negative rational (Proposition 4.3). � 

It remains to show that in fact in Corollary 4.13, pi,m = 0 for all i, m; this would imply 
(ii) and hence (i). 

Proposition 4.14. Identity (4.1) of Theorem 4.1 is satisfied in C[k]/k2 . 

Proof. Indeed, we clearly have F (0) = 1. Next, a rank 1 computation gives F �(0) = −γ|S|, 
where γ is the Euler constant (i.e. γ = limn +∞(1 + + 1/n − log n)), while the derivative → · · · 
of the right hand side of (4.1) at zero equals to 

r

−γ (di − 1). 
i=1 

But it is well known that 
r

(di − 1) = |S|, 
i=1 

([Hu], p.62), which implies the result. � 

Proposition 4.15. Identity (4.1) of Theorem 4.1 is satisfied in C[k]/k3 . 

Note that Proposition 4.15 immediately implies (ii), and hence the whole theorem. Indeed, 
it yields that 

r di−1

(log F )��(0) = (log Γ)��(m/di), 
i=1 m=1 

so by Corollary 4.13 

r � r di−1� di−1 �� 
(log Γ)��(m/di + pi,m) = (log Γ)��(m/di), 

i=1 m=1 i=1 m=1 

which implies that pi,m = 0 since (log Γ)�� is strictly decreasing on [0, ∞). 
To prove Proposition 4.15, we will need the following result about finite Coxeter groups. 
Let ψ(W ) = 3|S|2 − r (d2 − 1).i=1 i 

Lemma 4.16. One has 

(4.4) ψ(W ) = ψ(G), 
G∈Par2(W ) 

where Par2(W ) is the set of parabolic subgroups of W of rank 2. 

Proof. Let 
r

Q(q) = |W | 
1

1 
−
− 
q

q 
. 

di 
i=1 
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It follows from Chevalley’s theorem that


Q(q) = (1 − q)r det(1 − qw|h)−1 . 
w∈W 

Let us subtract the terms for w = 1 and w ∈ S from both sides of this equation, divide both 
sides by (q − 1)2, and set q = 1 (cf. [Hu], p.62, formula (21)). Let W2 be the set of elements 
of W that can be written as a product of two different reflections. Then by a straightforward 
computation we get 

1 � 1 
ψ(W ) = . 

24 
w∈W2 

r − Tr h(w) 

In particular, this is true for rank 2 groups. The result follows, as any element w ∈ W2 

belongs to a unique parabolic subgroup Gw of rank 2 (namely, the stabilizer of a generic 
point hw, [Hu], p.22). � 

Proof of Proposition 4.15. Now we are ready to prove the proposition. By Proposition 4.14, 
it suffices to show the coincidence of the second derivatives of (4.1) at k = 0. The second 
derivative of the right hand side of (4.1) at zero is equal to 

π2 r

6
(d2 − 1) + γ2|S|2 .i 

i=1 

On the other hand, we have 

F ��(0) = (2π)−r/2 e−(x,x)/2 log α2(x) log β2(x)dx. 
α,β∈S hR 

Thus, from a rank 1 computation we see that our job is to establish the equality � r

(2π)−r/2 
� 

e−(x,x)/2 log α2(x) log 
α

β2

2

(

(

x

x

)

)
dx = 

π

6 

2 

( 
� 

(di 
2 − 1) − 3|S|2) = − 

π

6 

2 

ψ(W ). 
α=β∈S hR i=1 

Since this equality holds in rank 2 (as in this case (4.1) reduces to the beta integral), in 
general it reduces to equation (4.4) (as for any α �= β ∈ S, sα and sβ are contained in a 
unique parabolic subgroup of W of rank 2). The proposition is proved. � 

4.3. Application: the supports of Lc(C). In this subsection we will use the Macdonald-
Mehta integral to computation of the support of the irreducible quotient of the polynoamial 
representation of a rational Cherednik algebra (with equal parameters). We will follow the 
paper [E3]. 

First note that the vector space h has a stratification labeled by parabolic subgroups of W . 
Indeed, for a parabolic subgroup W � ⊂ W , let hW � be the set of points in h whose stabilizer reg 

is W �. Then � 
h = hW � ,reg 

W �∈Par(W ) 

where Par(W ) is the set of parabolic subgroups in W . 
For a finitely generated module M over C[h], denote the support of M by supp (M). 
The following theorem is proved in [Gi1], Section 6 and in [BE] with different method. We 

will recall the proof from [BE] later. 
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Theorem 4.17. Consider the stratification of h with respect to stabilizers of points in W . 
Then the support supp (M) of any object M of Oc(W, h) in h is a union of strata of this 
stratification. 

This makes one wonder which strata occur in supp (Lc(τ)), for given c and τ . In [VV], 
Varagnolo and Vasserot gave a partial answer for τ = C. Namely, they determined (for W 
being a Weyl group) when Lc(C) is finite dimensional, which is equivalent to supp (Lc(C)) = 
0. For the proof (which is quite complicated), they used the geometry affine Springer fibers. 
Here we will give a different (and simpler) proof. In fact, we will prove a more general result. 

Recall that for any Coxeter group W , we have the Poincaré polynomial: 
r

PW (q) = 
� 

q �(w) = 
� 1 − qdi(W ) 

, where di(W ) are the degrees of W. 
w∈W i=1 

1 − q 

Lemma 4.18. If W � ⊂ W is a parabolic subgroup of W , then PW is divisible by PW � . 

Proof. By Chevalley’s theorem, C[h] is a free module over C[h]W and C[h]W � is a direct 
summand in this module. So C[h]W � is a projective module, thus free (since it is graded). 

Hence, there exists a polynomial Q(q) such that we have 

Q(q)hC[h]W (q) = hC[h]W � (q), 

where hV (q) denotes the Hilbert series of a graded vector space V . Notice that we have 
1 

hC[h]W (q) = , so we have 
PW (q)(1 − q)r 

Q(q) 
PW (q) 

= 
1 

PW � (q)
, i.e. Q(q) = PW (q)/PW � (q). 

� 

Corollary 4.19. If m ≥ 2 then we have the following inequality: 

#{i|m divides di(W )} ≥ #{i|m divides di(W �)}. 

Proof. This follows from Lemma 4.18 by looking at the roots of the polynomials PW and 
PW � . � 

Our main result is the following theorem. 

Theorem 4.20. [E3] Let c ≥ 0. Then a ∈ supp (Lc(C)) if and only if 

PW 
(e 2πic) = 0. 

PWa 

�

We can obtain the following corollary easily. 

Corollary 4.21. (i) Lc(C) �= Mc(C) if and only if c ∈ Q>0 and the denominator m of 
c divides di for some i; 

(ii) Lc(C) is finite dimensional if and only if 
PW 

(e2πic) = 0, i.e., iff 
PW � 

#{i|m divides di(W )} > #{i|m divides di(W �)}. 
for any maximal parabolic subgroup W � ⊂ W . 
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Remark 4.22. Varagnolo and Vasserot prove that Lc(C) is finite dimensional if and only if 
there exists a regular elliptic element in W of order m. Case-by-case inspection shows that 
this condition is equivalent to the combinatorial condition of (2). Also, a uniform proof of 
this equivalence is given in the appendix to [E3], written by S. Griffeth. 

Example 4.23. For type An−1, i.e., W = Sn, we get that Lc(C) is finite dimensional if and 
only if the denominator of c is n. This agrees with our previous results in type An−1. 

Example 4.24. Suppose W is the Coxeter group of type E7. Then we have the following 
list of maximal parabolic subgroups and the degrees (note that E7 itself is not a maximal 
parabolic). 

Subgroups E7 D6 A3 × A2 × A1 A6 

Degrees 2,6,8,10,12,14,18 2,4,6,6,8,10 2,3,4,2,3,2 2,3,4,5,6,7 

Subgroups A4 × A2 E6 D5 × A1 A5 × A1 

Degrees 2,3,4,5,2,3 2,5,6,8,9,12 2,4,5,6,8,2 2,3,4,5,6,2 

So Lc(C) is finite dimensional if and only if the denominator of c is 2, 6, 14, 18. 

The rest of the subsection is dedicated to the proof of Theorem 4.20. First we recall some 
basic facts about the Schwartz space and tempered distributions. 

Let S(Rn) be the set of Schwartz functions on Rn, i.e. 

S(Rn) = {f ∈ C∞(Rn)|∀α, β, sup |x α∂β f(x)| < ∞}. 
This space has a natural topology. 

A tempered distribution on Rn is a continuous linear functional on S(Rn). Let S�(Rn) 
denote the space of tempered distributions. 

We will use the following well known lemma. 

Lemma 4.25. (i) C[x]e−x2/2 ⊂ S(Rn) is a dense subspace. 
(ii)	 Any tempered distribution ξ has finite order, i.e., ∃N = N(ξ) such that if f ∈ S(Rn) 

satisfying f = df = = dN−1f = 0 on supp ξ, then �ξ, f� = 0.· · · 
Proof of Theorem 4.20. Recall that on Mc(C), we have the Gaussian form γc from Section 
4.2. We have for Re (c) ≤ 0, 

(P, Q) = 
(2π)−r/2 

e−x2/2 δ(x) −2cP (x)Q(x)dx,γc
FW (−c) hR 

| |

where P, Q are polynomials and 

FW (k) = (2π)−r/2 e−x2/2|δ(x)|2kdx 
hR 

is the Macdonald-Mehta integral. 
Consider the distribution: 

ξc
W = 

(2π)−r/2 

δ(x) −2c . 
FW (−c) 

| |

It is well-known that this distribution is meromorphic in c (Bernstein’s theorem). Moreover, 
since γc(P, Q) is a polynomial in c for any P and Q, this distribution is in fact holomorphic 
in c ∈ C. 
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Proposition 4.26. 

supp (ξc
W ) = {a ∈ hR

FWa (−c) = 0} = {a ∈ hR
PW 

(e 2πic) = 0}| 
FW 

� |
PWa 

�

= {a ∈ hR|#{i|denominator of c divides di(W )}
= #{i|denominator of c divides di(Wa)}}. 

Proof. First note that the last equality follows from the product formula for the Poincaré 
polynomial, and the second equality from the Macdonald-Mehta identity. Now let us prove 
the first equality. 

Look at ξW near a ∈ h. Equivalently, we can consider c 

(2π)−r/2


ξW (x + a) = 
FW (−c) 

|δ(x + a)|−2c

c 

with x near 0. We have 

δW (x + a) = αs(x + a) = (αs(x) + αs(a)) 
s∈S� 

s∈S� 
= αs(x) (αs(x) + αs(a))· 

s∈S∩Wa s∈S\S∩Wa 

= δWa (x) Ψ(x),· 
where Ψ is a nonvanishing function near a (since αs(a) = 0 if � s /∈ S ∩ Wa). 

So near a, we have 

ξW FWa ξWa −2c 
c (x + a) = 

FW 
(−c) · (x) · |Ψ| ,c 

and the last factor is well defined since Ψ is nonvanishing. Thus ξc
W (x) is nonzero near a if 

and only if 
FWa (−c) = 0 which finishes the proof. � 
FW 

�

Proposition 4.27. For c ≥ 0, 

supp (ξc
W ) = supp Lc(C)R, 

where the right hand side stands for the real points of the support. 

Proof. Let a /∈ supp Lc(C) and assume a ∈ supp ξW . Then we can find a P ∈ Jc(C) = ker γcc 
such that P (a) = 0. Pick a compactly supported test function � φ ∈ C∞(hR) such that P does c 
not vanish anywhere on supp φ, and �ξW , φ� �= 0 (this can be done since P (a) �= 0 and ξW 

c c 
is nonzero near a). Then we have φ/P ∈ S(hR). Thus from Lemma 4.25 (i) it follows that 
there exists a sequence of polynomials Pn such that 

Pn(x)e−x2/2 → 
P

φ 
in S(hR), when n →∞. 

So PPne−x2/2 → φ in S(hR), when n →∞. 
But we have �ξcW , PPne

−x2/2� = γc(P, Pn) = 0 which is a contradiction. This implies that 
supp ξc

W ⊂ (supp Lc(C))R. 
To show the opposite inclusion, let P be a polynomial on h which vanishes identically on 

supp ξW . By Lemma 4.25 (ii), there exists N such that �ξW , P N (x)Q(x)e−x2/2� = 0. Thus, c c 
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for any polynomial Q, γc(P N , Q) = 0, i.e. P N ∈ Ker γc. Thus, P |supp Lc(C) = 0. This implies 
the required inclusion, since supp ξc

W is a union of strata. � 

Theorem 4.20 follows from Proposition 4.26 and Proposition 4.27. � 

4.4. Notes. Our exposition in Sections 4.1 and 4.2 follows the paper [E2]; Section 4.3 follows 
the paper [E3]. 

35 



MIT OpenCourseWare
http://ocw.mit.edu 

18.735 Double Affine Hecke Algebras in Representation Theory, Combinatorics, Geometry, 
and Mathematical Physics 
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



