
1. Introduction


Double affine Hecke algebras, also called Cherednik algebras, were introduced by Chered
nik in 1993 as a tool in his proof of Macdonald’s conjectures about orthogonal polynomials for 
root systems. Since then, it has been realized that Cherednik algebras are of great indepen
dent interest; they appeared in many different mathematical contexts and found numerous 
applications. 

The present notes are based on a course on Cherednik algebras given by the first author 
at MIT in the Fall of 2009. Their goal is to give an introduction to Cherednik algebras, and 
to review the web of connections between them and other mathematical objects. For this 
reason, the notes consist of many parts that are relatively independent of each other. Also, 
to keep the notes within the bounds of a one-semester course, we had to limit the discussion 
of many important topics to a very brief outline, or to skip them altogether. For a more 
in-depth discussion of Cherednik algebras, we refer the reader to research articles dedicated 
to this subject. 

The notes do not contain any original material. In each section, the sources of the expo
sition are listed in the notes at the end of the section. 

The organization of the notes is as follows. 
In Section 2, we define the classical and quantum Calogero-Moser systems, and their 

analogs for any Coxeter groups introduced by Olshanetsky and Perelomov. Then we intro
duce Dunkl operators, prove the fundamental result of their commutativity, and use them to 
establish integrability of the Calogero-Moser and Olshanetsky-Perelomov systems. We also 
prove the uniqueness of the first integrals for these systems. 

In Section 3, we conceptualize the commutation relations between Dunkl operators and 
coordinate operators by introducing the main object of these notes - the rational Cherednik 
algebra. We develop the basic theory of rational Cherednik algebras (proving the PBW 
theorem), and then pass to the representation theory of rational Cherednik algebras, more 
precisely, study the structure of category O. After developing the basic theory (parallel to 
the case of semisimple Lie algebras), we completely work out the representations in the rank 
1 case, and prove a number of results about finite dimensional representations and about 
representations of the rational Cherednik algebra attached to the symmetric group. 

In Section 4, we evaluate the Macdonald-Mehta integral, and then use it to find the sup
ports of irrieducible modules over the rational Cherednik algebras with the trivial lowest 
weight, in particular giving a simple proof of the theorem of Varagnolo and Vasserot, classi
fying such representations which are finite dimensional. 

In Section 5, we describe the theory of parabolic induction and restriction functors for 
rational Cherednik algebras, developed in [BE], and give some applications of this theory, 
such as the description of the category of Whittaker modules and of possible supports of 
modules lying in category O. 

In Section 6, we define Hecke algebras of complex reflection groups, and the Knizhnik-
Zamolodchikov (KZ) functor from the category O of a rational Cherednik algebra to the 
category of finite dimensional representations of the corresponding Hecke algebra. We use 
this functor to prove the formal flatness of Hecke algebras of complex reflection groups (a 
theorem of Broué, Malle, and Rouquier), and state the theorem of Ginzburg-Guay-Opdam-
Rouquier that the KZ functor is an equivalence from the category O modulo its torsion part 
to the category of representations of the Hecke algebra. 
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In Section 7, we define rational Cherednik algebras for orbifolds. We also define the 
corresponding Hecke algebras, and define the KZ functor from the category of modules over 
the former to that over the latter. This generalizes to the “curved” case the KZ functor 
for rational Cherednik algebras of complex reflection groups, defined in Section 6. We then 
apply the KZ functor to showing that if the universal cover of the orbifold in question has 
a trivial H2 (with complex coefficients), then the orbifold Hecke algebra is formally flat, 
and explain why the condition of trivial H2 cannot be dropped. Next, we list examples of 
orbifold Hecke algebras which satisfy the condition of vanishing H2 (and hence are formally 
flat). These include usual, affine, and double affine Hecke algebras, as well as Hecke algebras 
attached to Fuchsian groups, which include quantizations of del Pezzo surfaces and their 
Hilbert schemes; we work these examples out in some detail, highlighting connections with 
other subjects. Finally, we discuss the issue of algebraic flatness, and prove it in the case of 
algebras of rank 1 attached to Fuchsian groups, using the theory of deformations of group 
algebras of Coxeter groups developed in [ER]. 

In Section 8, we define symplectic reflection algebras (which inlude rational Cherednik al
gebras as a special case), and generalize to them some of the theory of Section 3. Namely, we 
use the theory of deformations of Koszul algebras to prove the PBW theorem for symplectic 
reflection algebras. We also determine the center of symplectic reflection algebras, showing 
that it is trivial when the parameter t is nonzero, and is isomorphic to the shperical subal
gebra if t = 0. Next, we give a deformation-theoretic interpretation of symplectic reflection 
algebras as universal deformations of Weyl algebras smashed with finite groups. Finally, we 
discuss finite dimensional representations of symplectic reflection algebras for t = 0, show
ing that the Azumaya locus on the space of such representations coincides with the smooth 
locus. This uses the theory of Cohen-Macaulay modules and of homological dimension in 
commutative algebra. In particular, we show that for Cherednik algebras of type An−1, the 
whole representation space is smooth and coincides with the spectrum of the center. 

In Section 9, we give another description of the spectrum of the center of the rational 
Cherednik algebra of type An−1 (for t = 0), as a certain space of conjugacy classes of pairs 
of matrices, introduced by Kazhdan, Kostant, and Sternberg, and called the Calogero-Moser 
space (this space is obtained by classical hamiltonian reduction, and is a special case of a 
quiver variety). This yields a new construction of the Calogero-Moser integrable system. 
We also sketch a proof of the Gan-Ginzburg theorem claiming that the quotient of the 
commuting scheme by conjugation is reduced, and hence isomorphic to C2n/Sn. Finally, we 
explain that the Calogero-Moser space is a topologically trivial deformation of the Hilbert 
scheme of the plane, we use the theory of Cherednik algebras to compute the cohomology 
ring of this space. 

In Section 10, we generalize the results of Section 9 to the quantum case. Namely, we 
prove the quantum analog of the Gan-Ginzburg theorem (the Harish Chandra-Levasseur-
Stafford theorem), and explain how to quantize the Calogero-Moser space using quantum 
Hamiltonian reduction. Not surprisingly, this gives the same quantization as was constructed 
in the previous sections, namely, the spherical subalgebra of the rational Cherednik algebra. 
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