7. The exponential map of a Lie group

7.1. The exponential map. We will now generalize the exponential
and logarithm maps from matrix groups to arbitrary Lie groups.
Let G be a real Lie group, g = T1G.

Proposition 7.1. Let x € g. There is a unique morphism of Lie
groups v =7, : R — G such that v'(0) = z.

Proof. For such a morphism we should have

V(t+s) =7()y(s), t,s €R,
so differentiating by s at s = 0, we getﬂ

V() = (t)x.
Thus 7(t) is a solution of the ODE defined by the left-invariant vector
field L, corresponding to x € g with initial condition (0) = 1. By the
existence and uniqueness theorem for solutions of ODE, this equation
has a unique solution with this initial condition defined for |¢| < ¢ for
some ¢ > 0. Moreover, if |s| + [t| < e, both v (t) := v(s + ) and
Y2(t) == ~y(s)y(t) satisfy this differential equation with initial condition
71(0) = 72(0) = 7(s), so y1 = v2. Thus
V(s +1) =y(s)v(1), |s| + [t <&

hence v(t)x = z7(t) for || < e.

We claim that the solution 7(t) extends to all values of ¢ € R. Indeed,
let us prove that it extends to [t| < 2" for all n > 0 by induction in
n. The base of induction (n = 0) is already known, so we only need to

justify the induction step from n — 1 to n. Given ¢ with |t| < 2"¢, we
define

HOESRIE
This agrees with the previously defined solution for |t| < 2" le, and
we have

V() =37 EE)+FEY(E) = 37B) v (E)+37(5) % = v()*z = y(b)z,
as desired.

Thus, we have a regular map v : R — G with y(s+1t) = v(s)y(¢) and
7'(0) = x, which is unique by the uniqueness of solutions of ODE. [

Definition 7.2. The exponential map exp : g — G is defined by the
formula exp(z) = v, (1).

Thus 7, (t) = exp(tz). So we have

SFor brevity for g € G, z € g we denote Lgyx by gxr and Ryx by xg.
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Proposition 7.3. The flow defined by the right-invariant vector field
R, is given by g — exp(tx)g, and the flow defined by the left-invariant
vector field L, is given by g — gexp(tx).

Example 7.4. 1. Let G = K". Then exp(z) = z.
2. Let G = GL,(K) or its Lie subgroup. Then ~,() satisfies the
matrix differential equation

with v(0) =1, so

/yw (t) = et:b’
the matrix exponential. For example, if n = 1, this is the usual expo-
nential function.

The following theorem describes the basic properties of the exponen-
tial map. Let G be a real or complex Lie group.

Theorem 7.5. (i) exp : g — G is a reqular map which is a diffeomor-
phism of a neighborhood of 0 € g onto a neighborhood of 1 € G, with
exp(0) =1, exp’(0) = Id,.

(i1) exp((s + t)x) = exp(sx) exp(tz) for xz € g, s,t € K.

(111) For any morphism of Lie groups ¢ : G — K and v € T1'G we
have

¢(exp(z)) = exp(¢.);

i.e., the exponential map commutes with morphisms.
(iv) For any g € G, x € g, we have

gexp(z)g~! = exp(Ad,7).

Proof. (i) The regularity of exp follows from the fact that if a differen-
tial equation depends regularly on parameters then so do its solutions.
Also 7(t) = 1 so exp(0) = 1. We have exp/(0)z = & exp(tz)|i—o = =,
so exp/(0) = Id. By the inverse function theorem this implies that exp
is a diffeomorphism near the origin.

(ii) Holds since exp(tx) = v, (t).

(iii) Both ¢(exp(tx)) and exp(¢.(tz)) satisfy the equation /() =
v(t)p«(x) with the same initial conditions.

(iv) is a special case of (iii) with ¢ : G — G, ¢(h) = ghg™". O

Thus exp has an inverse log : U — g defined on a neighborhood U
of 1 € G with log(1) = 0. This map is called the logarithm. For
GL,(K) and its Lie subgroups it coincides with the matrix logarithm.
The logarithm map defines a canonical coordinate chart on G near 1,

so a choice of a basis of g gives a local coordinate system.
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Proposition 7.6. Let G be a connected Lie group and ¢ : G — K a

morphism of Lie groups. Then ¢ is completely determined by the linear
map ¢, : TG — T1 K.

Proof. We have ¢(exp(x)) = exp(¢.(x)), so since exp is a diffeomor-
phism near 0, ¢ is determined by ¢, on a neighborhood of 1 € G.
This completely determines ¢ since this neighborhood generates G by
Proposition 3.15. 0

Exercise 7.7. (i) Show that a connected compact complex Lie group
is abelian. (Hint: consider the adjoint representation and use that a
holomorphic function on a compact complex manifold is constant, by
the maximum principle.)

(ii) Classify such Lie groups of dimension n up to isomorphism (Show
that they are compact complex tori whose isomorphism classes are
bijectively labeled by elements of the set GL,,(C)\G L, (R)/GLa,(Z).)

(iii) Work out the classification explicitly in the 1-dimensional case
(this is the classification of complex elliptic curves). Namely, show that
isomorphism classes are labeled by points of H/I', where H is the upper
half-plane and I' = SLs(Z) acting on H by Mobius transformations

T = ‘;:Idb (where Im(7) > 0).

7.2. The commutator. In general (say, for G = GL,(K), n > 2),
exp(z + y) # exp(x) exp(y). So let us consider the map

(#,y) = p(z, y) = log(exp(z) exp(y))
which maps U x U — g, where U C g is a neighborhood of 0. This
map expresses the product in G in the coordinate chart coming from
the logarithm map. We have p(x,0) = p(0,2) = z and u.(z,y) = z+y,
SO
p(a,y) =z +y+ gpa(r,y) + ...

where p1o = d’p() is the quadratic part and ... are higher terms.
Moreover, us(z,0) = pus(0,y) = 0, hence ps is a bilinear map g x g — g.
It is easy to see that u(x, —x) = 0, hence us is skew-symmetric.

Definition 7.8. The map pus is called the commutator and denoted
by z,y = [z,y].

Thus we have
exp(z) exp(y) = exp(x +y + 5[z, y] + ...).
Example 7.9. Let G = GL,(K). Then

exp(z) exp(y) = (I+a+5 4. ) (14y+5+..) = T4a4y+Z+ay+L+..
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14 (o4 y) + S0 oowwe o (p oy + S )
Thus
[, y] = vy —ya.
This justifies the term “commutator”: it measures the failure of x and
1y to commute.

Corollary 7.10. If G C GL,(K) is a Lie subgroup then g = T1G C
gl,,(K) is closed under the commutator [x,y] = xy—yx, which coincides
with the commutator of G.

For x € g define the linear map adx : g — g by
adz(y) = [, y].

Proposition 7.11. (i) Let G, K be Lie groups and ¢ : G — K a mor-
phism of Lie groups. Then ¢, : T'G — T1 K preserves the commutator:

O+ ([2,9]) = [0:(2), D:(y)]-
(i1) The adjoint action preserves the commutator.
(iii) We have
exp(z) exp(y) exp(z) "' exp(y) ™" = exp([z,y] + ...)

where ... denotes cubic and higher terms.

(iv) Let X(t),Y(s) be parametrized curves on G such that X (0) =
Y(0)=1, X'(0) =2,Y"(0) =y. Then we have

-1 -1
] 1 PEEOY DXV ()

5,t—0 ts

In particular,

2.y = lim log(exp(tz) exp(sy) exp(tz) ' exp(sy)~)
Yl = s,t—0 ts

and

[$7y] = %|t:DAdX(t)(y)'

Thus ad = Ad,, the differential of Ad at 1 € G.

(v) If G is commutative (=abelian) then [x,y] = 0 for all z,y.
Proof. (i) Follows since ¢ commutes with the exponential map.

(ii) Follows from (i) by setting ¢ = Ad,.

(iii) Modulo cubic and higher terms we have

log(exp(x) exp(y)) = log(exp(y) exp(x)) + [z, y] + ...,

which implies the statement by exponentiation.

(iv) Let log X (t) = z(t), log Y (s) = y(s). Then by (iii) we have

log(X(t)Y(S))igt)_lY(S)_l) =



log(exp(x(t)) exp(y(s)) exp(z () ™" exp(y(s))™") = ts([x, y]+o(1)), t.s — 0.
This implies the first two statements. The last statement follows by
taking the limit in s first, then in ¢.

(v) follows from (iii). O
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