8. Lie algebras

8.1. The Jacobi identity. The matrix commutator [z,y] = xy — yx
obviously satisfies the identity

HL y]’ Z] + Hya Z]?d + [[Zv$]7y] =0
called the Jacobi identity. Thus it is satisfied for any Lie subgroup
of GL,(K).
Proposition 8.1. The Jacobi identity holds for any Lie group G.

Proof. Let g = T1G. The Jacobi identity is equivalent to adz being a
derivation of the commutator:

adz([y, 2]) = [adz(y), 2] + [y, ada(2)], #,9,2 € g.
To show that it is indeed a derivation, let g(t) = exp(tx), then

Adyy([y, 2]) = [Adg)(y), Adg (2))-

The desired identity is then obtained by differentiating this equality by
t at t = 0 and using the Leibniz rule and Proposition 7.11(iv). O

Corollary 8.2. We have ad[z, y] = [adz, ady].
Proof. This is also equivalent to the Jacobi identity. U
Proposition 8.3. For x € g one has exp(adz) = Adexpz) € GL(g).

Proof. We will show that exp(tadz) = Adexpe) for ¢t € R. Let v, (t) =
exp(tadzr) and 75(t) = Adexp(tz). Then 1,7 both satisfy the differen-
tial equation +/(t) = v(t)adz and equal 1 at ¢ = 0. Thus 13 = . O

8.2. Lie algebras.

Definition 8.4. A Lie algebra over a field k is a vector space g
over k equipped with bilinear operation [,] : g X g — g, called the
commutator or (Lie) bracket which satisfies the following identities:

(i) [z,z] = 0 for all = € g;

(ii) the Jacobi identity: [[x,y], z] + [[y, 2], z] + [[z, z],y] = 0.

A (homo)morphism of Lie algebras is a linear map between Lie
algebras that preserves the commutator.

Remark 8.5. If k has characteristic # 2 then the condition [z, z] =0
is equivalent to skew-symmetry [z,y] = —[y, x], but in characteristic 2
it is stronger.

Example 8.6. Any subspace of gl,(k) closed under [z,y]| := 2y — yx

is a Lie algebra.
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Example 8.7. The map ad : g — End(g) is a morphism of Lie alge-
bras.

Thus we have

Theorem 8.8. IfG is a K-Lie group (forK =R,C) then g :== T1G has
a natural structure of a Lie algebra over K. Moreover, if ¢ : G — K is
a morphism of Lie groups then ¢, : T'G — TV K is a morphism of Lie
algebras.

We will denote the Lie algebra g = T1G by LieG or Lie(G) and call
it the Lie algebra of G. We see that the assignment G +— LieG
is a functor from the category of Lie groups to the category of Lie
algebras. Thus we have a map Hom(G, K') — Hom(LieG, LieK), which
is injective if GG is connected.

Motivated by Proposition 7.11(v), a Lie algebra g is said to be com-
mutative or abelian if [z,y] = 0 for all z,y € g.

8.3. Lie subalgebras and ideals. A Lie subalgebra of a Lie algebra
g is a subspace h C g closed under the commutator. It is called a Lie
ideal if moreover [g, h] C b.

Proposition 8.9. Let H C G be a Lie subgroup. Then:

(1) LieH C LieG is a Lie subalgebra;

(11) If H is normal then LieH is a Lie ideal in LieG;

(iii) If G, H are connected and LieH C LieG is a Lie ideal then H
is normal in G.

Proof. (i) If x,y € b then exp(tx),exp(sy) € H, so by Proposition
7.11(iv)

2.y = lim log(exp(tx) exp(sy) exp(—tz) exp(—sy))
t,5—0 ts

€ h.

(i) We have ghg™' € H for ¢ € G and h € H. Thus, taking
h = exp(sy), y € b and taking the derivative in s at zero, we get
Ad,(y) € h. Now taking g = exp(tz), x € g and taking the derivative
in t at zero, by Proposition 7.11(iv) we get [x,y] € b, i.e., b is a Lie
ideal.

(iii) If x € g, y € h are small then

exp(z) exp(y) exp(x) " =

adx)”

exp(Adexp()y) = exp(exp(adz)y) = exp Z
n=0
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since Y 7, (ad:f# € h. So G acting on itself by conjugation maps a

small neighborhood of 1 in H into H (as G is generated by its neigh-
borhood of 1 by Proposition 3.15, since it is connected). But H is also
connected, so is generated by its neighborhood of 1, again by Proposi-
tion 3.15. Hence H is normal. 0

8.4. The Lie algebra of vector fields. Recall that a vector field on
a manifold X is a compatible family of derivations v : O(U) — O(U)
for open subsets U C X.

Proposition 8.10. If v,w are derivations of an algebra A then so is
v, w| :=vw — wv.

Proof. We have
(vw —wv)(ab) = v(w(a)b+ aw(b)) — w(v(a)b + av(b)) =
vw(a)b+ w(a)v(b) + v(a)w(b) + avw(b)
—wv(a)b —v(a)w(b) — w(a)v(b) — awv(b) =
(vw —wv)(a)b+ a(vw — wv)(b).
U

Thus, the space Vect(X) of vector fields on X is a Lie algebra under
the operation

v, W — [v, W],

called the Lie bracket of vector fields [
In local coordinates we have

0 0
VS NS

SO

vl =5 (St i) &
i J

This implies that if vector fields v, w are tangent to a k-dimensional

submanifold Y C X then so is their Lie bracket [v, w|. Indeed, in local

coordinates Y is given by equations xy.; = ... = x, = 0, and in such

coordinates a vector field is tangent to Y iff it does not contain terms

with % for j > k.

6Note that this Lie algebra is infinite dimensional for all real manifolds and many
(but not all) complex manifolds of positive dimension.
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Exercise 8.11. Let U C R™ be an open subset, v,w € Vect(U) and
gi, hy be the associated flows, defined in a neighborhood of every point
of U for small t. Show that for any x € U

lim gthsgglhgl(x) —X
t,s—0 ts

Now let G be a Lie group and Vect(G), Vectgr(G) C Vect(G) be the
subspaces of left and right invariant vector fields.

Proposition 8.12. Vect(G), Vectr(G) C Vect(G) are Lie subalgebras
which are both canonically isomorphic to g = LieG.

= [v, w](x).

Proof. The first statement is obvious, so we prove only the second state-
ment. Let x,y € Vect,(G). Then x =L,, y =L, for z = x(1),y =
y(1) € g, where L, denotes the vector field on G obtained by right
translations of z € g. Then [L,,L,| = L,, where z = [L,,L,|(1). So
let us compute z.

Let f be a regular function on a neighborhood of 1 € G. We have
shown that for u € g

(Luf)(g9) = gli=of (g exp(tu)).
Thus,
2(f) = oLy f)—y(Lof) = 2(F |- of(° exp(sy)))—y(5;le—of (o exp(tz))) =
sile=05; ls=of (exp(tx) exp(sy)) — 5 sz li=0.f (exp(sy) exp(tx)) =
v li=sm0 (Pt + sy + gts[z,y] + ) = Flta + sy — jts[z,y] + ...)),

where F'(u) := f(exp(u)). It is easy to see by using Taylor expansion
that this expression equals to [z, y](f). Thus z = [z,y], i.e., the map

g — Vecty(G) given by = — L, is a Lie algebra isomorphism. Sim-

ilarly, the map g — Vectgr(G) given by x — —R, is a Lie algebra
isomorphism, as claimed. U
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