8. Lie algebras

8.1. The Jacobi identity. The matrix commutator [x, y] = xy - yx obviously satisfies the identity

$$[[x, y], z] + [[y, z], x] + [[z, x], y] = 0$$

called the **Jacobi identity**. Thus it is satisfied for any Lie subgroup of $GL_n(\mathbb{K})$.

Proposition 8.1. The Jacobi identity holds for any Lie group G.

Proof. Let $\mathfrak{g} = T_1G$. The Jacobi identity is equivalent to $\mathrm{ad}x$ being a derivation of the commutator:

$$adx([y,z]) = [adx(y), z] + [y, adx(z)], \ x, y, z \in \mathfrak{g}.$$

To show that it is indeed a derivation, let $g(t) = \exp(tx)$, then

$$Ad_{q(t)}([y, z]) = [Ad_{q(t)}(y), Ad_{q(t)}(z)].$$

The desired identity is then obtained by differentiating this equality by t at t = 0 and using the Leibniz rule and Proposition 7.11(iv).

Corollary 8.2. We have ad[x, y] = [adx, ady].

Proof. This is also equivalent to the Jacobi identity. \Box

Proposition 8.3. For $x \in \mathfrak{g}$ one has $\exp(\operatorname{ad} x) = \operatorname{Ad}_{\exp(x)} \in GL(\mathfrak{g})$.

Proof. We will show that $\exp(t \operatorname{ad} x) = \operatorname{Ad}_{\exp(tx)}$ for $t \in \mathbb{R}$. Let $\gamma_1(t) = \exp(t \operatorname{ad} x)$ and $\gamma_2(t) = \operatorname{Ad}_{\exp(tx)}$. Then γ_1, γ_2 both satisfy the differential equation $\gamma'(t) = \gamma(t) \operatorname{ad} x$ and equal 1 at t = 0. Thus $\gamma_1 = \gamma_2$. \square

8.2. Lie algebras.

Definition 8.4. A **Lie algebra** over a field **k** is a vector space \mathfrak{g} over **k** equipped with bilinear operation $[,]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$, called the **commutator** or **(Lie) bracket** which satisfies the following identities:

- (i) [x, x] = 0 for all $x \in \mathfrak{g}$;
- (ii) the Jacobi identity: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

A (homo)morphism of Lie algebras is a linear map between Lie algebras that preserves the commutator.

Remark 8.5. If **k** has characteristic $\neq 2$ then the condition [x, x] = 0 is equivalent to skew-symmetry [x, y] = -[y, x], but in characteristic 2 it is stronger.

Example 8.6. Any subspace of $\mathfrak{gl}_n(\mathbf{k})$ closed under [x,y] := xy - yx is a Lie algebra.

Example 8.7. The map ad : $\mathfrak{g} \to \operatorname{End}(\mathfrak{g})$ is a morphism of Lie algebras.

Thus we have

Theorem 8.8. If G is a \mathbb{K} -Lie group (for $\mathbb{K} = \mathbb{R}, \mathbb{C}$) then $\mathfrak{g} := T_1G$ has a natural structure of a Lie algebra over \mathbb{K} . Moreover, if $\phi : G \to K$ is a morphism of Lie groups then $\phi_* : T_1G \to T_1K$ is a morphism of Lie algebras.

We will denote the Lie algebra $\mathfrak{g} = T_1G$ by LieG or LieG and call it the **Lie algebra of** G. We see that the assignment $G \mapsto \text{Lie}G$ is a functor from the category of Lie groups to the category of Lie algebras. Thus we have a map $\text{Hom}(G, K) \to \text{Hom}(\text{Lie}G, \text{Lie}K)$, which is injective if G is connected.

Motivated by Proposition 7.11(v), a Lie algebra \mathfrak{g} is said to be **commutative** or **abelian** if [x, y] = 0 for all $x, y \in \mathfrak{g}$.

8.3. Lie subalgebras and ideals. A Lie subalgebra of a Lie algebra \mathfrak{g} is a subspace $\mathfrak{h} \subset \mathfrak{g}$ closed under the commutator. It is called a Lie ideal if moreover $[\mathfrak{g},\mathfrak{h}] \subset \mathfrak{h}$.

Proposition 8.9. Let $H \subset G$ be a Lie subgroup. Then:

- (i) $LieH \subset LieG$ is a Lie subalgebra;
- (ii) If H is normal then LieH is a Lie ideal in LieG;
- (iii) If G, H are connected and $LieH \subset LieG$ is a Lie ideal then H is normal in G.

Proof. (i) If $x, y \in \mathfrak{h}$ then $\exp(tx), \exp(sy) \in H$, so by Proposition 7.11(iv)

$$[x,y] = \lim_{t,s \to 0} \frac{\log(\exp(tx)\exp(sy)\exp(-tx)\exp(-sy))}{ts} \in \mathfrak{h}.$$

- (ii) We have $ghg^{-1} \in H$ for $g \in G$ and $h \in H$. Thus, taking $h = \exp(sy)$, $y \in \mathfrak{h}$ and taking the derivative in s at zero, we get $\mathrm{Ad}_g(y) \in \mathfrak{h}$. Now taking $g = \exp(tx)$, $x \in \mathfrak{g}$ and taking the derivative in t at zero, by Proposition 7.11(iv) we get $[x, y] \in \mathfrak{h}$, i.e., \mathfrak{h} is a Lie ideal.
 - (iii) If $x \in \mathfrak{g}$, $y \in \mathfrak{h}$ are small then

$$\exp(x) \exp(y) \exp(x)^{-1} =$$

$$\exp(\mathrm{Ad}_{\exp(x)}y) = \exp(\exp(\mathrm{ad}x)y) = \exp(\sum_{n=0}^{\infty} \tfrac{(\mathrm{ad}x)^n y}{n!}) \in H$$

since $\sum_{n=0}^{\infty} \frac{(\operatorname{ad} x)^n y}{n!} \in \mathfrak{h}$. So G acting on itself by conjugation maps a small neighborhood of 1 in H into H (as G is generated by its neighborhood of 1 by Proposition 3.15, since it is connected). But H is also connected, so is generated by its neighborhood of 1, again by Proposition 3.15. Hence H is normal.

8.4. The Lie algebra of vector fields. Recall that a vector field on a manifold X is a compatible family of derivations $\mathbf{v}: O(U) \to O(U)$ for open subsets $U \subset X$.

Proposition 8.10. If \mathbf{v}, \mathbf{w} are derivations of an algebra A then so is $[\mathbf{v}, \mathbf{w}] := \mathbf{v}\mathbf{w} - \mathbf{w}\mathbf{v}$.

Proof. We have

$$(\mathbf{v}\mathbf{w} - \mathbf{w}\mathbf{v})(ab) = \mathbf{v}(\mathbf{w}(a)b + a\mathbf{w}(b)) - \mathbf{w}(\mathbf{v}(a)b + a\mathbf{v}(b)) =$$

$$\mathbf{v}\mathbf{w}(a)b + \mathbf{w}(a)\mathbf{v}(b) + \mathbf{v}(a)\mathbf{w}(b) + a\mathbf{v}\mathbf{w}(b)$$

$$-\mathbf{w}\mathbf{v}(a)b - \mathbf{v}(a)\mathbf{w}(b) - \mathbf{w}(a)\mathbf{v}(b) - a\mathbf{w}\mathbf{v}(b) =$$

$$(\mathbf{v}\mathbf{w} - \mathbf{w}\mathbf{v})(a)b + a(\mathbf{v}\mathbf{w} - \mathbf{w}\mathbf{v})(b).$$

Thus, the space Vect(X) of vector fields on X is a Lie algebra under the operation

$$\mathbf{v}, \mathbf{w} \mapsto [\mathbf{v}, \mathbf{w}],$$

called the Lie bracket of vector fields.⁶

In local coordinates we have

$$\mathbf{v} = \sum_{i} v_i \frac{\partial}{\partial x_i}, \ \mathbf{w} = \sum_{i} w_j \frac{\partial}{\partial x_j},$$

SO

$$[\mathbf{v}, \mathbf{w}] = \sum_{i} \left(\sum_{j} (v_j \frac{\partial w_i}{\partial x_j} - w_j \frac{\partial v_i}{\partial x_j}) \right) \frac{\partial}{\partial x_i}.$$

This implies that if vector fields \mathbf{v} , \mathbf{w} are tangent to a k-dimensional submanifold $Y \subset X$ then so is their Lie bracket $[\mathbf{v}, \mathbf{w}]$. Indeed, in local coordinates Y is given by equations $x_{k+1} = \dots = x_n = 0$, and in such coordinates a vector field is tangent to Y iff it does not contain terms with $\frac{\partial}{\partial x_j}$ for j > k.

⁶Note that this Lie algebra is infinite dimensional for all real manifolds and many (but not all) complex manifolds of positive dimension.

Exercise 8.11. Let $U \subset \mathbb{R}^n$ be an open subset, $\mathbf{v}, \mathbf{w} \in \text{Vect}(U)$ and g_t, h_t be the associated flows, defined in a neighborhood of every point of U for small t. Show that for any $\mathbf{x} \in U$

$$\lim_{t,s\to 0} \frac{g_t h_s g_t^{-1} h_s^{-1}(\mathbf{x}) - \mathbf{x}}{ts} = [\mathbf{v}, \mathbf{w}](\mathbf{x}).$$

Now let G be a Lie group and $\operatorname{Vect}_L(G)$, $\operatorname{Vect}_R(G) \subset \operatorname{Vect}(G)$ be the subspaces of left and right invariant vector fields.

Proposition 8.12. $\operatorname{Vect}_L(G), \operatorname{Vect}_R(G) \subset \operatorname{Vect}(G)$ are Lie subalgebras which are both canonically isomorphic to $\mathfrak{g} = \operatorname{Lie} G$.

Proof. The first statement is obvious, so we prove only the second statement. Let $\mathbf{x}, \mathbf{y} \in \mathrm{Vect}_L(G)$. Then $\mathbf{x} = \mathbf{L}_x$, $\mathbf{y} = \mathbf{L}_y$ for $x = \mathbf{x}(1), y = \mathbf{y}(1) \in \mathfrak{g}$, where \mathbf{L}_z denotes the vector field on G obtained by right translations of $z \in \mathfrak{g}$. Then $[\mathbf{L}_x, \mathbf{L}_y] = \mathbf{L}_z$, where $z = [\mathbf{L}_x, \mathbf{L}_y](1)$. So let us compute z.

Let f be a regular function on a neighborhood of $1 \in G$. We have shown that for $u \in \mathfrak{g}$

$$(\mathbf{L}_u f)(g) = \frac{d}{dt}|_{t=0} f(g \exp(tu)).$$

Thus,

$$z(f) = x(\mathbf{L}_y f) - y(\mathbf{L}_x f) = x(\frac{\partial}{\partial s}|_{s=0} f(\bullet \exp(sy))) - y(\frac{\partial}{\partial t}|_{t=0} f(\bullet \exp(tx))) = \frac{\partial}{\partial t}|_{t=0} \frac{\partial}{\partial s}|_{s=0} f(\exp(tx) \exp(sy)) - \frac{\partial}{\partial s}|_{s=0} \frac{\partial}{\partial t}|_{t=0} f(\exp(sy) \exp(tx)) = \frac{\partial^2}{\partial t\partial s}|_{t=s=0} (F(tx+sy+\frac{1}{2}ts[x,y]+...) - F(tx+sy-\frac{1}{2}ts[x,y]+...)),$$
 where $F(u) := f(\exp(u))$. It is easy to see by using Taylor expansion that this expression equals to $[x,y](f)$. Thus $z = [x,y]$, i.e., the map $\mathfrak{g} \to \operatorname{Vect}_L(G)$ given by $x \mapsto \mathbf{L}_x$ is a Lie algebra isomorphism. Similarly, the map $\mathfrak{g} \to \operatorname{Vect}_R(G)$ given by $x \mapsto -\mathbf{R}_x$ is a Lie algebra isomorphism, as claimed.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.