12. The universal enveloping algebra of a Lie algebra

12.1. The definition of the universal enveloping algebra. Let V/
be a vector space over a field k. Recall that the tensor algebra of V'
is the Z-graded associative algebra TV := @,V ®" (with deg(V®") =
n), with multiplication given by a-b = a®b for a € V™ and b € V",
If {x;} is a basis of V' then T'V is just the free algebra with generators
x; (i.e., without any relations). Its basis consists of various words in
the letters z;.
Let g be a Lie algebra over k.

Definition 12.1. The universal enveloping algebra of g, denoted
U(g), is the quotient of T'g by the ideal I generated by the elements

vy —yr — [z,y], v,y € g.

Recall that any associative algebra A is also a Lie algebra with op-
eration [a, b] := ab— ba. The following proposition follows immediately
from the definition of U(g).

Proposition 12.2. (i) Let J C T'g be an ideal, and p : g — Tg/J
the natural linear map. Then p is a homomorphism of Lie algebras
if and only if J D I, so that T'g/J is a quotient of Tg/I = Ul(g).
In other words, U(g) is the largest quotient of T'g for which p is a
homomorphism of Lie algebras.

(ii) Let A be any associative algebra over k. Then the map

Homassociative(U<g)7 A) — HomLie(g; A)
given by ¢ — ¢ o p is a bijection.

Part (ii) of this proposition implies that any Lie algebra map
¥ : g — A can be uniquely extended to an associative algebra map
¢ :U(g) — A so that ¢ = ¢ o p. This is the universal property of U(g)
which justifies the term “universal enveloping algebra’”.

In particular, it follows that a representation of g on a vector space V'
is the same thing as an algebra map U(g) — End(V) (i.e., a represen-
tation of U(g) on V). Thus, to understand the representation theory
of g, it is helpful to understand the structure of U(g); for example,
every central element C' € U(g) gives rise to a morphism of represen-
tations V' — V' (note that this has already come in handy in studying
representations of sly).

In terms of the basis {z;} of g, we can write the bracket as

[z, z;] = Z cfj:z:k,
k
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where ¢}; € k are the structure constants. Then the algebra U(g)
can be described as the quotient of the free algebra k{{z;}) by the
relations

Lilj — Tjly = ZCZ.Z’k
k
Example 12.3. 1. If g is abelian (i.e., ¢}; = 0) then U(g) = Sg =
k[{z;}] is the symmetric algebra of g, Sg = ®,>05™g, which in terms
of the basis is the polynomial algebra in x;.
2. Ul(sly(k)) is generated by e, f, h with defining relations

he —eh =2e, hf — fh=—=2f, ef — fe=h.

Recall that g acts on T'g by derivations via the adjoint action. More-
over, using the Jacobi identity, we have

adz(zy —yo —[z,y]) = |z, 2ly + 22, 4] = [z, 4] —ylz, 2] = [2, [z, 9]] =

([z, 2ly = ylz, ] = [z, 2], y) + (2]z, 9] = [2,9]x = [z, [z, 4]))-
Thus adz(/) C I, and hence the action of g on T'g descends to its action
on U(g) by derivations (also called the adjoint action). It is easy to see
that these derivations are in fact inner:

adz(a) = za — az
for a € U(g) (although this is not so for T'g). Indeed, it suffices to note

that this holds for a € g by the definition of U(g).
Thus we get

Proposition 12.4. The center Z(U(g)) of U(g) coincides with the
subalgebra of invariants U(g)®®.

Example 12.5. The Casimir operator C' = 2fe+ %2 -+ h which we used
to study representations of g = sl, is in fact a central element of U(g).

12.2. Graded and filtered algebras. Recall that a Zx-filtered al-
gebra is an algebra A equipped with a filtration

such that 1 € FyA, Up>oF, A = Aand F;A-F;A C FijA. In particular,
if A is generated by {z,} then a filtration on A can be obtained by
declaring z,, to be of degree 1; i.e., F,,A = (F1A)™ is the span of all
words in z, of degree < n.

If A= ®;>0A; is Z>p-graded then we can define a filtration on A by
setting F,A := @ ,A;; however, not any filtered algebra is obtained
in this way, and having a filtration is a weaker condition than having
a grading. Still, if A is a filtered algebra, we can define its associated
graded algebra gr(A) := @®,>o0gr,,(A4), where gr, (A) := F,A/F,_1A.
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The multiplication in gr(A) is given by the “leading terms” of mul-
tiplication in A: for a € F;A, b € F;A, pick their representatives
a € F;A, b€ F;A and let ab be the projection of ab to gr;, ;(A).

Proposition 12.6. If gr(A) is a domain (has no zero divisors) then
s0 is A.

Exercise 12.7. Prove Proposition [12.6]

12.3. The coproduct of U(g). For a vector space g define the algebra
homomorphism A : T'g — Tg ® T'g given for x € g C T'g by A(x) =
r® 1+ 1®x (it exists and is unique since T'g is freely generated by g).

Lemma 12.8. If g is a Lie algebra then the kernel I of the map T'g —
U(g) satisfies the property A(I) CI@Tg+Tg® I C Tg® Tg. Thus
A descends to an algebra homomorphism U(g) — U(g) @ U(g).

Proof. For z,y € g and a = a(z,y) := vy — yx — [z, y] we have A(a) =
a®14+1®a. The lemma follows since the ideal I is generated b
elements of the form a(x,y). O

The homomorphism A is called the coproduct (of T'g or U(g)).

Example 12.9. Let g = V be abelian (a vector space). Then U(g) =
SV, which for dimV < oo can be viewed as the algebra of polyno-
mial functions on V*. Similarly, SV ® SV is the algebra of polyno-
mial functions on V* x V*. In terms of this identification, we have

A(f)(z,y) = f(z+y).
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