12. The universal enveloping algebra of a Lie algebra

12.1. The definition of the universal enveloping algebra. Let V be a vector space over a field k. Recall that the tensor algebra of V is the \mathbb{Z}-graded associative algebra $TV := \oplus_{n \geq 0} V^\otimes n$ (with $\deg(V^\otimes n) = n$), with multiplication given by $a \cdot b = a \otimes b$ for $a \in V^\otimes m$ and $b \in V^\otimes n$. If $\{x_i\}$ is a basis of V then TV is just the free algebra with generators x_i (i.e., without any relations). Its basis consists of various words in the letters x_i.

Let g be a Lie algebra over k.

Definition 12.1. The universal enveloping algebra of g, denoted $U(g)$, is the quotient of Tg by the ideal I generated by the elements $xy - yx - [x, y]$, $x, y \in g$.

Recall that any associative algebra A is also a Lie algebra with operation $[a, b] := ab - ba$. The following proposition follows immediately from the definition of $U(g)$.

Proposition 12.2. (i) Let $J \subset Tg$ be an ideal, and $\rho : g \to Tg/J$ the natural linear map. Then ρ is a homomorphism of Lie algebras if and only if $J \supset I$, so that Tg/J is a quotient of $Tg/I = U(g)$. In other words, $U(g)$ is the largest quotient of Tg for which ρ is a homomorphism of Lie algebras.

(ii) Let A be any associative algebra over k. Then the map

$$\text{Hom}_{\text{associative}}(U(g), A) \to \text{Hom}_{\text{Lie}}(g, A)$$

given by $\phi \mapsto \phi \circ \rho$ is a bijection.

Part (ii) of this proposition implies that any Lie algebra map $\psi : g \to A$ can be uniquely extended to an associative algebra map $\phi : U(g) \to A$ so that $\psi = \phi \circ \rho$. This is the universal property of $U(g)$ which justifies the term “universal enveloping algebra”.

In particular, it follows that a representation of g on a vector space V is the same thing as an algebra map $U(g) \to \text{End}(V)$ (i.e., a representation of $U(g)$ on V). Thus, to understand the representation theory of g, it is helpful to understand the structure of $U(g)$; for example, every central element $C \in U(g)$ gives rise to a morphism of representations $V \to V$ (note that this has already come in handy in studying representations of \mathfrak{sl}_2).

In terms of the basis $\{x_i\}$ of g, we can write the bracket as

$$[x_i, x_j] = \sum_k c^i_{ij} x_k,$$
where \(c_{ij}^k \in k \) are the **structure constants**. Then the algebra \(U(g) \)
can be described as the quotient of the free algebra \(k\langle\{x_i\}\rangle \) by the relations
\[
x_i x_j - x_j x_i = \sum_k c_{ij}^k x_k.
\]

Example 12.3. 1. If \(g \) is abelian (i.e., \(c_{ij}^k = 0 \)) then \(U(g) = Sg = k\langle\{x_i\}\rangle \) is the symmetric algebra of \(g \), \(Sg = \oplus_{n \geq 0} S^n g \), which in terms of
the basis is the polynomial algebra in \(x_i \).
2. \(U(sl_2(k)) \) is generated by \(e, f, h \) with defining relations
\[
he - eh = 2e, \quad hf - fh = -2f, \quad ef - fe = h.
\]
Recall that \(g \) acts on \(Tg \) by derivations via the adjoint action. Moreover, using the Jacobi identity, we have
\[
ad(z(yx - yx - [x, y])) = [z, x]y + x[z, y] - [z, y]x - y[z, x] - [z, [x, y]] = ([z, x]y - y[z, x] - [z, x], y]) + (x[z, y] - [z, y]x - [x, [z, y]])).
\]
Thus \(ad(I) \subset I \), and hence the action of \(g \) on \(Tg \) descends to its action on \(U(g) \) by derivations (also called the adjoint action). It is easy to see that these derivations are in fact inner:
\[
ad(z(a) = za - az
\]
for \(a \in U(g) \) (although this is not so for \(Tg \)). Indeed, it suffices to note that this holds for \(a \in g \) by the definition of \(U(g) \).

Thus we get

Proposition 12.4. The center \(Z(U(g)) \) of \(U(g) \) coincides with the subalgebra of invariants \(U(g)^{ad} \).

Example 12.5. The Casimir operator \(C = 2fe + \frac{h^2}{2} + h \) which we used to study representations of \(g = sl_2 \) is in fact a central element of \(U(g) \).

12.2. **Graded and filtered algebras.** Recall that a \(\mathbb{Z}_{\geq 0} \)-**filtered** algebra is an algebra \(A \) equipped with a filtration
\[
0 = F_{-1}A \subset F_0A \subset F_1A \subset \ldots \subset F_nA \subset \ldots
\]
such that \(1 \in F_0A, \cup_{n \geq 0} F_nA = A \) and \(F_iA \cdot F_jA \subset F_{i+j}A \). In particular, if \(A \) is generated by \(\{x_\alpha\} \) then a filtration on \(A \) can be obtained by declaring \(x_\alpha \) to be of degree \(1 \); i.e., \(F_nA = (F_1A)^n \) is the span of all words in \(x_\alpha \) of degree \(\leq n \).

If \(A = \bigoplus_{i \geq 0} A_i \) is \(\mathbb{Z}_{\geq 0} \)-graded then we can define a filtration on \(A \) by setting \(F_nA := \bigoplus_{i = n}^\infty A_i \); however, not any filtered algebra is obtained in this way, and having a filtration is a weaker condition than having a grading. Still, if \(A \) is a filtered algebra, we can define its **associated graded algebra** \(gr(A) := \bigoplus_{n \geq 0} gr_n(A) \), where \(gr_n(A) := F_nA/F_{n-1}A \).
The multiplication in $\text{gr}(A)$ is given by the “leading terms” of multiplication in A: for $a \in F_i A$, $b \in F_j A$, pick their representatives $\tilde{a} \in F_i A$, $\tilde{b} \in F_j A$ and let ab be the projection of $\tilde{a} \tilde{b}$ to $\text{gr}_{i+j}(A)$.

Proposition 12.6. If $\text{gr}(A)$ is a domain (has no zero divisors) then so is A.

Exercise 12.7. Prove Proposition 12.6.

12.3. **The coproduct of $U(g)$**. For a vector space g define the algebra homomorphism $\Delta : Tg \to Tg \otimes Tg$ given for $x \in g \subset Tg$ by $\Delta(x) = x \otimes 1 + 1 \otimes x$ (it exists and is unique since Tg is freely generated by g).

Lemma 12.8. If g is a Lie algebra then the kernel I of the map $Tg \to U(g)$ satisfies the property $\Delta(I) \subset I \otimes Tg + Tg \otimes I \subset Tg \otimes Tg$. Thus Δ descends to an algebra homomorphism $U(g) \to U(g) \otimes U(g)$.

Proof. For $x, y \in g$ and $a = a(x, y) := xy - yx - [x, y]$ we have $\Delta(a) = a \otimes 1 + 1 \otimes a$. The lemma follows since the ideal I is generated by elements of the form $a(x, y)$.

The homomorphism Δ is called the **coproduct** (of Tg or $U(g)$).

Example 12.9. Let $g = V$ be abelian (a vector space). Then $U(g) = SV$, which for $\dim V < \infty$ can be viewed as the algebra of polynomial functions on V^*. Similarly, $SV \otimes SV$ is the algebra of polynomial functions on $V^* \times V^*$. In terms of this identification, we have $\Delta(f)(x, y) = f(x + y)$.