13. The Poincaré-Birkhoff-Witt theorem

13.1. The statement of the Poincaré-Birkhoff-Witt theorem.
Let g be a Lie algebra over a field k. Recall from Example 12.8 that
we have a surjective algebra homomorphism

¢:Sg— grU(g).

Theorem 13.1. (Poincaré-Birkhoff- Witt theorem) The homomorphism
¢ 1s an isomorphism.

We will prove Theorem 13.1 in Subsection 13.2. Now let us discuss
its reformulation in terms of a basis and corollaries.

Given a basis {x;} of g, fix an ordering on this basis and consider
ordered monomials [, 2", where the product is ordered according to
the ordering of the basis. The statement that ¢ is surjective is equiv-
alent to saying that ordered monomials span U(g). This is also easy
to see directly: any monomial can be ordered using the commutation
relations at the cost of an error of lower degree, so proceeding recur-
sively, we can write any monomial as a linear combination of ordered

ones. Thus the PBW theorem can be formulated as follows:

Theorem 13.2. The ordered monomials are linearly independent, hence

form a basis of U(g).

For instance, if k = R or C and g = Lie(G) where G is a Lie group,
this theorem is easy to deduce from Exercise 12.12 (do this!).

Corollary 13.3. The map p: g — U(g) is injective. Thus g C U(g).

Remark 13.4. Let g be a vector space equipped with a bilinear map
L] : 9 xg — g Then one can define the algebra U(g) as above.
However, if the map p : g — U(g) is injective then we clearly must
have [z,z] = 0 for « € g and the Jacobi identity, i.e., g has to be a Lie
algebra. Thus the PBW theorem and even Corollary 13.3 fail without
the axioms of a Lie algebra.

Corollary 13.5. Let g;, 1 < i < n, be Lie subalgebras of g such that
g = @;0; as a vector space (but [g;, g;] need not be zero). Then the mul-
tiplication map @;U(g;) — U(g) in any order is a linear isomorphism.

Proof. The corollary follows immediately from the PBW theorem by
choosing a basis of each g;. 0

Remark 13.6. 1. Corollary 13.5 applies to the case of infinitely many
g; if we understand the tensor product accordingly: the span of tensor
products of elements of U(g;) where almost all of these elements are

equal to 1.
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2. Note that if dim g; = 1, this recovers the PBW theorem itself, so
Corollary 13.5 is in fact a generalization of the PBW theorem.

Let char(k) = 0. Define the symmetrization map o : Sg — U(g)
given by

1
oYy @ ... QYp) = nl Z Ys(1)---Ys(n)-

SESH

It is easy to see that this map commutes with the adjoint action of g.
Corollary 13.7. ¢ is an isomorphism.

Proof. 1t is easy to see that gro (the induced map on the associated
graded algebra) coincides with ¢, so the result follows from the PBW
theorem. 0

Let Z(U(g)) denote the center of U(g).

Corollary 13.8. The map o defines a filtered vector space isomor-
phism oo : (Sg)*® — Z(U(g)) whose associated graded is the algebra
isomorphism | (ggpas 1 (59)*® — grZ(U(g)).

In the case when g = LieG for a connected Lie group G, we thus
obtain a filtered vector space isomorphism of the center of U(g) with

(Sg)AdG.

Remark 13.9. The map oy is not, in general, an algebra homomor-
phism; however, a nontrivial theorem of M. Duflo says that if g is finite
dimensional then there exists a canonical filtered algebra isomorphism
n: Z(U(g)) — (Sg)*® (a certain twisted version of o) whose associ-
ated graded is ¢|zw(g)). A construction of the Duflo isomorphism can

be found in [CR].

Example 13.10. Let g = sl = so3. Then g has a basis x,y, 2z with
[z, y] = z, [y,2] = z, [z,2] = y, and G = SO(3) acts on these ele-
ments by ordinary rotations of the 3-dimensional space. So the only
G-invariant polynomials of z,y, z are polynomials of r? = 2 + y? + 2%
Thus we get that Z(U(g)) = Cl[z? + y* + 2*]. In terms of e, f, h, we
have

W2m  C

2 2 2
+ + — — — -,
T Yy z fe 5

where C' is the Casimir element.

13.2. Proof of the PBW theorem. The proof of Theorem 13.1 is

based on the following key lemma.
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Lemma 13.11. There exists a unique linear map ¢ : T'g — Sg such
that

(i) for an ordered monomial X = x;..r;, € g™ one has
p(X) = X;

(i1) one has o(I) = 0; in other words, ¢ descends to a linear map

p:U(g) — Sg.

Remark 13.12. The map ¢ is not canonical and depends on the choice
of the ordered basis x; of g.

Note that Lemma 13.11 immediately implies the PBW theorem,
since by this lemma the images of ordered monomials under ¢ are
linearly independent in Sg, implying that these monomials themselves
are linearly independent in U(g).

Proof. Tt is clear that ¢ is unique if exists since ordered monomials
span U(g). We will construct ¢ by defining it inductively on F,,T'g for
n > 0.

Suppose ¢ is already defined on F, 1T'g and let us extend it to
F,Tg = F, 1Tg ® g®". So we should define ¢ on g®". Since ¢ is
already defined on ordered monomials X (by ¢(X) = X), we need to
extend this definition to all monomials.

Namely, let X be an ordered monomial of degree n, and let us define
¢ on monomials of the form s(X) for s € S,,, where

S(Y1.-Yn) = Ys(1)---Ys(n)-
To this end, fix a decomposition D of s into a product of transpositions
of neighbors:
5=8j...5j,
and define ¢(s(X)) by the formula
p(s(X)) ==X + Op(s, X),

where
Op(s,X) = @[ Jjr (Sj55 (X)),
and -

L1y yn) = Y11y, Yisa ] Yo
We need to show that ¢(s(X)) is well defined, i.e., ®p(s, X) does
not really depend on the choice of D and s but only on s(X). We first
show that ®p(s, X) is independent on D.
To this end, recall that the symmetric group S, is generated by
55,1 < j <n —1 with defining relations

2 =

5j

1; sk = SkSj, [J — k| > 2; 5jSj115; = Sj415jSj+1-
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Thus any two decompositions of s into a product of transpositions of
neighbors can be related by a sequence of applications of these relations
somewhere inside the decomposition.

Now, the first relation does not change the outcome by the identity
{I,y] = _[yv J,’]

For the second relation, suppose that j < k and we have two decom-
positions Dy, Dy of s given by s = ps;spq and s = psys;q, where ¢ is a
product of m transpositions of neighbors. Let ¢(X) = YabZcdT where
a,b,c,d € g stand in positions 5,7 + 1,k, k + 1. Let & := &p, (s, X),
Oy := Pp,(s,X). Then the sums defining ®; and P, differ only in the
m-th and m + 1-th term, so we get

¢ — Py =
e(YabZlc,d|T) + ¢(Yla,b|ZdcT) — p(Ya,b)ZcdT) — o(YbaZlc,d|T),
which equals zero by the induction assumption.

For the third relation, suppose that we have two decompositions
Dy, Dy of s given by s = ps;s;y15;q and s = psj;15j5;41¢9, where ¢ is
a product of k transpositions of neighbors. Let ¢(X) = YabcZ where
a,b,c € g stand in positions j,7 + 1,5 + 2. Let &; := ®&p, (s, X),
Oy := Pp,(s,X). Then the sums defining ®; and P, differ only in the
k-th, k + 1-th, and k£ + 2-th terms, so we get

(I)l — (I)Q =
(p(Ya,blcZ) + o(Ybla,c)Z) + p(Yb, claZ)) —
(p(Yalb,c|Z) + o(Y]a,c]pZ) + p(Yec[a,b]Z)) .
So the Jacobi identity
[[b7 C]v CL] + [b’ [a’ CH + Hav b]’ C] =0

combined with property (ii) in degree n—1 implies that ®;—®, = 0, i.e.,
®; = &y, as claimed. Thus we will denote ®p(s, X) just by (s, X).

It remains to show that ®(s, X)) does not depend on the choice of
s and only depends on s(X). Let X = z;,...z; ; then s(X) = §/(X)
if and only if s = s't, where t is the product of transpositions s, for
which iy, = ix41. Thus, it suffices to show that ®(s, X) = ®(ssy, X) for
such k. But this follows from the the fact that [z, z] = 0.

Now, it follows from the construction of ¢ that for any monomial X
of degree n (not necessarily ordered), ¢(s;(X)) = ©(X) + ([, |;(X)).
Thus ¢ satisfies property (ii) in degree n. This concludes the proof of
Lemma 13.11 and hence Theorem 13.1. U
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