13. The Poincaré-Birkhoff-Witt theorem

13.1. The statement of the Poincaré-Birkhoff-Witt theorem. Let \mathfrak{g} be a Lie algebra. Define a filtration ${ }^{10}$ on $U(\mathfrak{g})$ by setting $\operatorname{deg}(\mathfrak{g})=$ 1. Thus $F_{n} U(\mathfrak{g})$ is the image of $\oplus_{i=0}^{n} \mathfrak{g}^{\otimes i} \subset T \mathfrak{g}$. Note that since

$$
x y-y x=[x, y], x \in \mathfrak{g}
$$

we have $\left[F_{i} U(\mathfrak{g}), F_{j} U(\mathfrak{g})\right] \subset F_{i+j-1} U(\mathfrak{g})$. Thus, $\operatorname{gr} U(\mathfrak{g})$ is commutative; in other words, we have a surjective algebra morpism $\phi: S \mathfrak{g} \rightarrow \operatorname{gr} U(\mathfrak{g})$.

Theorem 13.1. (Poincaré-Birkhoff-Witt theorem) The homomorphism ϕ is an isomorphism.

We will prove Theorem 13.1 in Subsection 13.2. Now let us discuss its reformulation in terms of a basis and corollaries.

Given a basis $\left\{x_{i}\right\}$ of \mathfrak{g}, fix an ordering on this basis and consider ordered monomials $\prod_{i} x_{i}^{n_{i}}$, where the product is ordered according to the ordering of the basis. The statement that ϕ is surjective is equivalent to saying that ordered monomials span $U(\mathfrak{g})$. This is also easy to see directly: any monomial can be ordered using the commutation relations at the cost of an error of lower degree, so proceeding recursively, we can write any monomial as a linear combination of ordered ones. Thus the PBW theorem can be formulated as follows:

Theorem 13.2. The ordered monomials are linearly independent, hence form a basis of $U(\mathfrak{g})$.

Corollary 13.3. The map $\rho: \mathfrak{g} \rightarrow U(\mathfrak{g})$ is injective. Thus $\mathfrak{g} \subset U(\mathfrak{g})$.
Remark 13.4. Let \mathfrak{g} be a vector space equipped with a bilinear map [,] : $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$. Then one can define the algebra $U(\mathfrak{g})$ as above. However, if the map $\rho: \mathfrak{g} \rightarrow U(\mathfrak{g})$ is injective then we clearly must have $[x, x]=0$ for $x \in \mathfrak{g}$ and the Jacobi identity, i.e., \mathfrak{g} has to be a Lie algebra. Thus the PBW theorem and even Corollary 13.3 fail without the axioms of a Lie algebra.

Corollary 13.5. Let $\mathfrak{g}_{i}, 1 \leq i \leq n$, be Lie subalgebras of \mathfrak{g} such that $\mathfrak{g}=\oplus_{i} \mathfrak{g}_{i}$ as a vector space (but $\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right]$ need not be zero). Then the multiplication map $\otimes_{i} U\left(\mathfrak{g}_{i}\right) \rightarrow U(\mathfrak{g})$ in any order is a linear isomorphism.

Proof. The corollary follows immediately from the PBW theorem by choosing a basis of each \mathfrak{g}_{i}.

[^0]Remark 13.6. 1. Corollary 13.5 applies to the case of infinitely many \mathfrak{g}_{i} if we understand the tensor product accordingly: the span of tensor products of elements of $U\left(\mathfrak{g}_{i}\right)$ where almost all of these elements are equal to 1 .
2. Note that if $\operatorname{dim} \mathfrak{g}_{i}=1$, this recovers the PBW theorem itself, so Corollary 13.5 is in fact a generalization of the PBW theorem.

Let $\operatorname{char}(\mathbf{k})=0$. Define the symmetrization map $\sigma: S \mathfrak{g} \rightarrow U(\mathfrak{g})$ given by

$$
\sigma\left(y_{1} \otimes \ldots \otimes y_{n}\right)=\frac{1}{n!} \sum_{s \in S_{n}} y_{s(1)} \ldots y_{s(n)} .
$$

It is easy to see that this map commutes with the adjoint action of \mathfrak{g}.
Corollary 13.7. σ is an isomorphism.
Proof. It is easy to see that gr σ (the induced map on the associated graded algebra) coincides with ϕ, so the result follows from the PBW theorem.

Let $Z(U(\mathfrak{g}))$ denote the center of $U(\mathfrak{g})$.
Corollary 13.8. The map σ defines a filtered vector space isomorphism $\sigma_{0}: Z(U(\mathfrak{g})) \rightarrow(S \mathfrak{g})^{\text {adg }}$ whose associated graded is the algebra isomorphism $\left.\phi\right|_{Z(U(\mathfrak{g}))}: Z(U(\mathfrak{g})) \rightarrow(S \mathfrak{g})^{\text {adg }}$.

In the case when $\mathfrak{g}=\operatorname{Lie} G$ for a connected Lie group G, we thus obtain a filtered vector space isomorphism of the center of $U(\mathfrak{g})$ with $(S \mathfrak{g})^{\operatorname{Ad} G}$.

Remark 13.9. The map σ_{0} is not, in general, an algebra homomorphism; however, a nontrivial theorem of M. Duflo says that if \mathfrak{g} is finite dimensional then there exists a canonical filtered algebra isomorphism $\eta: Z(U(\mathfrak{g})) \rightarrow(S \mathfrak{g})^{\text {adg }}$ (a certain twisted version of σ_{0}) whose associated graded is $\left.\phi\right|_{Z(U(\mathfrak{g}))}$. A construction of the Duflo isomorphism can be found in [CR].

Example 13.10. Let $\mathfrak{g}=\mathfrak{s l}_{2}=\mathfrak{s o}_{3}$. Then \mathfrak{g} has a basis x, y, z with $[x, y]=z,[y, z]=x,[z, x]=y$, and $G=S O(3)$ acts on these elements by ordinary rotations of the 3 -dimensional space. So the only G-invariant polynomials of x, y, z are polynomials of $r^{2}=x^{2}+y^{2}+z^{2}$. Thus we get that $Z(U(\mathfrak{g}))=\mathbb{C}\left[x^{2}+y^{2}+z^{2}\right]$. In terms of e, f, h, we have

$$
x^{2}+y^{2}+z^{2}=-4 f e-h^{2}-2 h=-2 C,
$$

where C is the Casimir element.
13.2. Proof of the PBW theorem. The proof of Theorem 13.1 is based on the following key lemma.

Lemma 13.11. There exists a unique linear map $\varphi: T \mathfrak{g} \rightarrow S \mathfrak{g}$ such that
(i) for an ordered monomial $X:=x_{i_{1}} \ldots x_{i_{m}} \in \mathfrak{g}^{\otimes m}$ one has $\varphi(X)=X$;
(ii) one has $\varphi(I)=0$; in other words, φ descends to a linear map $\bar{\varphi}: U(\mathfrak{g}) \rightarrow S \mathfrak{g}$.

Remark 13.12. The map φ is not canonical and depends on the choice of the ordered basis x_{i} of \mathfrak{g}.

Note that Lemma 13.11 immediately implies the PBW theorem, since by this lemma the images of ordered monomials under φ are linearly independent in $S \mathfrak{g}$, implying that these monomials themselves are linearly independent in $U(\mathfrak{g})$.

Proof. It is clear that φ is unique if exists since ordered monomials span $U(\mathfrak{g})$. We will construct φ by defining it inductively on $F_{n} T \mathfrak{g}$ for $n \geq 0$.

Suppose φ is already defined on $F_{n-1} T \mathfrak{g}$ and let us extend it to $F_{n} T \mathfrak{g}=F_{n-1} T \mathfrak{g} \oplus \mathfrak{g}^{\otimes n}$. So we should define φ on $\mathfrak{g}^{\otimes n}$. Since φ is already defined on ordered monomials X (by $\varphi(X)=X$), we need to extend this definition to all monomials.

Namely, let X be an ordered monomial of degree n, and let us define φ on monomials of the form $s(X)$ for $s \in S_{n}$, where

$$
s\left(y_{1} \ldots y_{n}\right):=y_{s(1)} \ldots y_{s(n)} .
$$

To this end, fix a decomposition D of s into a product of transpositions of neighbors:

$$
s=s_{j_{r}} \ldots s_{j_{1}},
$$

and define $\varphi(s(X))$ by the formula

$$
\varphi(s(X)):=X+\Phi_{D}(s, X)
$$

where

$$
\Phi_{D}(s, X):=\sum_{m=0}^{r-1} \varphi\left([,]_{j_{m+1}}\left(s_{j_{m}} \ldots s_{j_{1}}(X)\right)\right)
$$

and

$$
[,]_{j}\left(y_{1} \ldots y_{j} y_{j+1} \ldots y_{n}\right):=y_{1} \ldots\left[y_{j}, y_{j+1}\right] \ldots y_{n} .
$$

We need to show that $\varphi(s(X))$ is well defined, i.e., $\Phi_{D}(s, X)$ does not really depend on the choice of D and s but only on $s(X)$. We first show that $\Phi_{D}(s, X)$ is independent on D.

To this end, recall that the symmetric group S_{n} is generated by $s_{j}, 1 \leq j \leq n-1$ with defining relations

$$
s_{j}^{2}=1 ; s_{j} s_{k}=s_{k} s_{j},|j-k| \geq 2 ; s_{j} s_{j+1} s_{j}=s_{j+1} s_{j} s_{j+1}
$$

Thus any two decompositions of s into a product of transpositions of neighbors can be related by a sequence of applications of these relations somewhere inside the decomposition.

Now, the first relation does not change the outcome by the identity $[x, y]=-[y, x]$.

For the second relation, suppose that $j<k$ and we have two decompositions D_{1}, D_{2} of s given by $s=p s_{j} s_{k} q$ and $s=p s_{k} s_{j} q$, where q is a product of m transpositions of neighbors. Let $q(X)=Y a b Z c d T$ where $a, b, c, d \in \mathfrak{g}$ stand in positions $j, j+1, k, k+1$. Let $\Phi_{1}:=\Phi_{D_{1}}(s, X)$, $\Phi_{2}:=\Phi_{D_{2}}(s, X)$. Then the sums defining Φ_{1} and Φ_{2} differ only in the m-th and $m+1$-th term, so we get

$$
\begin{gathered}
\Phi_{1}-\Phi_{2}= \\
\varphi(Y a b Z[c, d] T)+\varphi(Y[a, b] Z d c T)-\varphi(Y[a, b] Z c d T)-\varphi(Y b a Z[c, d] T)
\end{gathered}
$$

which equals zero by the induction assumption.
For the third relation, suppose that we have two decompositions D_{1}, D_{2} of s given by $s=p s_{j} s_{j+1} s_{j} q$ and $s=p s_{j+1} s_{j} s_{j+1} q$, where q is a product of k transpositions of neighbors. Let $q(X)=Y a b c Z$ where $a, b, c \in \mathfrak{g}$ stand in positions $j, j+1, j+2$. Let $\Phi_{1}:=\Phi_{D_{1}}(s, X)$, $\Phi_{2}:=\Phi_{D_{2}}(s, X)$. Then the sums defining Φ_{1} and Φ_{2} differ only in the k-th, $k+1$-th, and $k+2$-th terms, so we get

$$
\begin{gathered}
\Phi_{1}-\Phi_{2}= \\
(\varphi(Y[a, b] c Z)+\varphi(Y b[a, c] Z)+\varphi(Y[b, c] a Z))- \\
(\varphi(Y a[b, c] Z)+\varphi(Y[a, c] b Z)+\varphi(Y c[a, b] Z))
\end{gathered}
$$

So the Jacobi identity

$$
[[b, c], a]+[b,[a, c]]+[[a, b], c]=0
$$

combined with property (ii) in degree $n-1$ implies that $\Phi_{1}-\Phi_{2}=0$, i.e., $\Phi_{1}=\Phi_{2}$, as claimed. Thus we will denote $\Phi_{D}(s, X)$ just by $\Phi(s, X)$.

It remains to show that $\Phi(s, X)$ does not depend on the choice of s and only depends on $s(X)$. Let $X=x_{i_{1}} \ldots x_{i_{n}}$; then $s(X)=s^{\prime}(X)$ if and only if $s=s^{\prime} t$, where t is the product of transpositions s_{k} for which $i_{k}=i_{k+1}$. Thus, it suffices to show that $\Phi(s, X)=\Phi\left(s s_{k}, X\right)$ for such k. But this follows from the the fact that $[x, x]=0$.

Now, it follows from the construction of φ that for any monomial X of degree n (not necessarily ordered), $\varphi\left(s_{j}(X)\right)=\varphi(X)+\varphi\left([,]_{j}(X)\right)$.

Thus φ satisfies property (ii) in degree n. This concludes the proof of Lemma 13.11 and hence Theorem 13.1 .

MIT OpenCourseWare
https://ocw.mit.edu

18.745 Lie Groups and Lie Algebras I

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{10}$ The grading on $T \mathfrak{g}$ does not descend to $U(\mathfrak{g})$, in general, since the relation $x y-y x=[x, y]$ is not homogeneous: the right hand side has degree 1 while the left hand side has degree 2 . So $U(\mathfrak{g})$ is not graded but is only filtered.

