
15. Solvable and nilpotent Lie algebras, theorems of Lie and
Engel

15.1. Ideals and commutant. Let g be a Lie algebra. Recall that an
ideal in g is a subspace h such that [g, h] ⊂ h. If h ⊂ g is an ideal then
g/h has a natural structure of a Lie algebra. Moreover, if φ : g1 → g2

is a homomorphism of Lie algebras then Kerφ is an ideal in g1, Imφ is
a Lie subalgebra in g2, and φ induces an isomorphism g1/Kerφ ∼= Imφ
(check it!).

Lemma 15.1. If I1, I2 ⊂ g are ideals then so are I1 ∩ I2, I1 + I2 and
[I1, I2] (the set of linear combinations of [a1, a2], am ∈ Im,m = 1, 2).

Exercise 15.2. Prove Lemma 15.1.

Definition 15.3. The commutant of g is the ideal [g, g].

Lemma 15.4. The quotient g/[g, g] is abelian; moreover, if I ⊂ g is
an ideal such that g/I is abelian then I ⊃ [g, g].

Exercise 15.5. Prove Lemma 15.4.

Example 15.6. The commutant of gln(k) is sln(k) (check it!).

Exercise 15.7. (i) Prove that if G is a connected Lie group with
Lie algebra g then the group commutant [G,G] (the subgroup of G
generated by elements ghg−1h−1, g, h ∈ G) is a Lie subgroup of G with
Lie algebra [g, g].

(ii) Let G̃ = R × H, where H is the Heisenberg group of real
matrices of the form

M(a, b, c) :=

1 a b
0 1 c
0 0 1

 , a, b, c ∈ R.

Let Γ ∼= Z2 ⊂ G̃ be the (closed) central subgroup generated by the

pairs (1,M(0, 0, 0) = Id) and (
√

2,M(0, 0, 1)). Let G = G̃/Γ. Show
that [G,G] is not closed in G (although by (i) it is a Lie subgroup).

(iii) Does [G,G] have to be closed in G if G is simply connected?
(Consider Hom(G,R) and apply the second fundamental theorem of
Lie theory).

15.2. Solvable Lie algebras. For a Lie algebra g define its derived
series recursively by the formulasD0(g) = g, Dn+1(g) = [Dn(g), Dn(g)].
This is a descending sequence of ideals in g.

Definition 15.8. A Lie algebra g is said to be solvable if Dn(g) = 0
for some n.
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Proposition 15.9. The following conditions on g are equivalent:
(i) g is solvable;
(ii) There exists a sequence of ideals g = g0 ⊃ g1 ⊃ ... ⊃ gm = 0

such that gi/gi+1 is abelian.

Proof. It is clear that (i) implies (ii), since we can take gi = Dig.
Conversely, by induction we see that Dig ⊂ gi, as desired. �

Proposition 15.10. (i) Any Lie subalgebra or quotient of a solvable
Lie algebra is solvable.

(ii) If I ⊂ g is an ideal and I, g/I are solvable then g is solvable.

Exercise 15.11. Prove Proposition 15.10.

15.3. Nilpotent Lie algebras. For a Lie algebra g define its lower
central series recursively by the formulas D0(g) = g, Dn+1(g) =
[g, Dn(g)]. This is a descending sequence of ideals in g.

Definition 15.12. A Lie algebra g is said to be nilpotent if Dn(g) = 0
for some n.

Proposition 15.13. The following conditions on g are equivalent:
(i) g is nilpotent;
(ii) There exists a sequence of ideals g = g0 ⊃ g1 ⊃ ... ⊃ gm = 0

such that [g, gi] ⊂ gi+1.

Proof. It is clear that (i) implies (ii), since we can take gi = Dig.
Conversely, by induction we see that Dig ⊂ gi, as desired. �

Remark 15.14. Any nilpotent Lie algebra is solvable since [g, gi] ⊂
gi+1 implies [gi, gi] ⊂ gi+1, hence gi/gi+1 is abelian.

Proposition 15.15. Any Lie subalgebra or quotient of a nilpotent Lie
algebra is nilpotent.

Exercise 15.16. Prove Proposition 15.15.

Example 15.17. (i) The Lie algebra of upper triangular matrices of
size n is solvable, but it is not nilpotent for n ≥ 2.

(ii) The Lie algebra of strictly upper triangular matrices is nilpotent.
(iii) The Lie algebra of all matrices of size n ≥ 2 is not solvable.

15.4. Lie’s theorem. One of the main technical tools of the structure
theory of finite dimensional Lie algebras is Lie’s theorem for solvable
Lie algebras. Before stating and proving this theorem, we will prove
the following auxiliary lemma, which will be used several times.
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Lemma 15.18. Let g = kx⊕h be a Lie algebra over a field k in which
h is an ideal (but [x, h] need not be 0). Let V be a finite dimensional
g-module and v ∈ V a common eigenvector of h:

av = λ(a)v, a ∈ h

where λ : h→ k is a character. Then:
(i) W := k[x]v is a g-submodule of V on which a− λ(a) is nilpotent

for all a ∈ h.
(ii) If in addition λ vanishes on [g, h] (i.e., λ([a, x]) = 0 for all

a ∈ h) then every a ∈ h acts on W by the scalar λ(a). Thus the
common eigenspace Vλ ⊂ V of h is a g-submodule.

(iii) The assumption (hence the conclusion) of (ii) always holds if
char(k) = 0.

Proof. (i) For a ∈ h we have

(15.1) axiv = xaxi−1v + [a, x]xi−1v.

Therefore, it follows by induction in i that axiv is a linear combination
of v, xv, ..., xiv, hence W ⊂ V is a submodule.

Let n be the smallest integer such that xnv is a linear combination
of xiv with i < n. Then vi := xi−1v for i = 1, ..., n is a basis of W and
dimW = n. It follows from (15.1) that the element a acts in this basis
by an upper triangular matrix with all diagonal entries equal λ(a), as
claimed.

(ii) It follows from (15.1) by induction in i that for every a ∈ h,
axiv = λ(a)xiv, as desired.

(iii) By (i), Tr(a|W ) = nλ(a) for all a ∈ h. On the other hand, if
a ∈ [g, g] then Tr(a|W ) = 0, thus nλ(a) = 0 in k. Since char(k) = 0,
this implies that λ(a) = 0. �

Theorem 15.19. (Lie’s theorem) Let k be an algebraically closed field
of characteristic zero, and g a finite dimensional solvable Lie algebra
over k. Then any irreducible finite dimensional representation of g is
1-dimensional.

Proof. Let V be a finite dimensional representation of g. It suffices to
show that V contains a common eigenvector of g. The proof is by in-
duction in dim g. The base is trivial so let us justify the induction step.
Since g is solvable, g 6= [g, g], so fix a subspace h ⊂ g of codimension 1
containing [g, g]. Since g/[g, g] is abelian, h is an ideal in g, hence solv-
able. Thus by the induction assumption, there is a nonzero common
eigenvector v ∈ V for h, i.e., there is a linear functional λ : h→ k such
that av = λ(a)v for all a ∈ h.
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Let x ∈ g be an element not belonging to h and W be the subspace of
V spanned by v, xv, x2v, .... By Lemma 15.18(i), W is a g-submodule of
V and a−λ(a) is nilpotent on W . Thus by Lemma 15.18(ii),(iii) every
a ∈ h acts on W by λ(a), in particular [g, g] acts by zero. Hence W is
a representation of the abelian Lie algebra g/[g, g]. Now the statement
follows since every finite dimensional representation of an abelian Lie
algebra has a common eigenvector. �

Remark 15.20. Lemma 15.18(iii) and Lie’s theorem do not hold in
characteristic p > 0. Indeed, let g be the Lie algebra with basis x, y
and [x, y] = y, and let V be the space with basis v0, ..., vp−1 and action
of g given by

xvi = ivi, yvi = vi+1,

where i+ 1 is taken modulo p. It is easy to see that V is irreducible.

Here is another formulation of Lie’s theorem:

Corollary 15.21. Every finite dimensional representation V of a finite
dimensional solvable Lie algebra g over an algebraically closed field k
of characteristic zero has a basis in which all elements of g act by upper
triangular matrices. In other words, there is a sequence of subrepre-
sentations 0 = V0 ⊂ V1 ⊂ ... ⊂ Vn = V such that dim(Vk+1/Vk) = 1.

In the case dim g = 1, this recovers the well known theorem in lin-
ear algebra that any linear operator on a finite dimensional k-vector
space is upper triangular in some basis (which is actually true in any
characteristic).

Proof. The proof is by induction in dimV (where the base is obvious).
By Lie’s theorem, there is a common eigenvector v0 ∈ V for g. Let
V ′ := V/kv0. Then by the induction assumption V ′ has a basis v′1, ..., v

′
n

in which g acts by upper triangular matrices. Let v1, ..., vn be any lifts
of v′1, ..., v

′
n to V . Then v0, v1, ..., vn is a basis of V in which g acts by

upper triangular matrices. �

Corollary 15.22. Over an algebraically closed field of characteristic
zero, the following hold.

(i) A solvable finite dimensional Lie algebra g admits a sequence of
ideals 0 = I0 ⊂ I1 ⊂ ... ⊂ In = g such that dim(Ik+1/Ik) = 1.

(ii) A finite dimensional Lie algebra g is solvable if and only if [g, g]
is nilpotent.

Proof. (i) Apply Corollary 15.21 to the adjoint representation of g.
(ii) If [g, g] is nilpotent then it is solvable and g/[g, g] is abelian, so g

is solvable. Conversely, if g is solvable then by Corollary 15.21 elements
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of [g, g] act on g, hence on [g, g] by strictly upper triangular matrices,
which implies the statement. �

Example 15.23. Let g, V be as in Remark 15.20 and h = g n V be
the semidirect product, i.e. h = g⊕ V as a space with

[(g1, v1), (g2, v2)] = ([g1, g2], g1v2 − g2v1).

Then h is a counterexample to Corollary 15.22 both (i) and (ii) in
characteristic p > 0.

15.5. Engel’s theorem. Another key tool of the structure theory of
finite dimensional Lie algebras is Engel’s theorem. Before stating
and proving this theorem, we prove an auxiliary result.

Theorem 15.24. Let V 6= 0 be a finite dimensional vector space over
any field k, and g ⊂ gl(V ) be a Lie algebra consisting of nilpotent
operators. Then there exists a nonzero vector v ∈ V such that gv = 0.

Proof. The proof is by induction on the dimension of g. The base case
g = 0 is trivial and we assume the dimension of g is positive.

First we find an ideal h of codimension one in g. Let h be a maximal
(proper) subalgebra of g, which exists by finite-dimensionality of g. We
claim that h ⊂ g is an ideal and has codimension one.

Indeed, for each a ∈ h, the operator ada induces a linear operator
g/h → g/h, and this operator is nilpotent (since a acts nilpotently
on V , it also acts nilpotently on gl(V ) = V ⊗ V ∗, hence the operator
ada : g → g is nilpotent). Thus, by the inductive hypothesis, there
exists a nonzero element x in g/h such that ada · x = 0 for each a ∈ h.
Let x be a lift of x to g. Then [a, x] ∈ h for all a ∈ h. Let h′ be the
span of h and x. Then h′ ⊂ g is a Lie subalgebra in which h is an ideal.
Hence, by maximality, h′ = g. This proves the claim.

Now let W = V h ⊂ V . By the inductive hypothesis, W 6= 0. Also
by Lemma 15.18(ii) (with λ = 0), W is a g-subrepresentation of V .

Now take w 6= 0 in W . Let k be the smallest positive integer such
that xkw = 0; it exists since x acts nilpotently on V . Let v = xk−1w ∈
W . Then v 6= 0 but hv = xv = 0, so gv = 0, as desired. �

Definition 15.25. An element x ∈ g is said to be nilpotent if the
operator adx : g→ g is nilpotent.

Corollary 15.26. (Engel’s theorem) A finite dimensional Lie algebra
g is nilpotent if and only if every element x ∈ g is nilpotent.

Proof. The “only if” direction is easy. To prove the “if” direction, note
that by Theorem 15.24, in some basis vi of g all elements adx act by
strictly upper triangular matrices. Let Im be the subspace of g spanned
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by the vectors v1, ..., vm. Then Im ⊂ Im+1 and [g, Im+1] ⊂ Im, hence g
is nilpotent. �
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