16. Semisimple and reductive Lie algebras, the Cartan criteria

16.1. Semisimple and reductive Lie algebras, the radical. Let \mathfrak{g} be a finite dimensional Lie algebra over a field \mathbf{k}.

Proposition 16.1. \mathfrak{g} contains the largest solvable ideal which contains all solvable ideals of \mathfrak{g}.

Definition 16.2. This ideal is called the radical of \mathfrak{g} and denoted $\operatorname{rad}(\mathfrak{g})$.

Proof. Let I, J be solvable ideals of \mathfrak{g}. Then $I+J \subset \mathfrak{g}$ is an ideal, and $(I+J) / I=J /(I \cap J)$ is solvable, so $I+J$ is solvable. Thus the sum of finitely many solvable ideals is solvable. Hence the sum of all solvable ideals in \mathfrak{g} is a solvable ideal, as desired.

Definition 16.3. (i) \mathfrak{g} is called semisimple if $\operatorname{rad}(\mathfrak{g})=0$, i.e., \mathfrak{g} does not contain nonzero solvable ideals.
(ii) A non-abelian \mathfrak{g} is called simple if it contains no ideals other than $0, \mathfrak{g}$. In other words, a non-abelian \mathfrak{g} is simple if its adjoint representation is irreducible (=simple).

Thus if \mathfrak{g} is both solvable and semisimple then $\mathfrak{g}=0$.
Proposition 16.4. (i) We have $\operatorname{rad}(\mathfrak{g} \oplus \mathfrak{h})=\operatorname{rad}(\mathfrak{g}) \oplus \operatorname{rad}(\mathfrak{h})$. In particular, the direct sum of semisimple Lie algebras is semisimple.
(ii) A simple Lie algebra is semisimple. Thus a direct sum of simple Lie algebras is semisimple.

Proof. (i) The images of $\operatorname{rad}(\mathfrak{g} \oplus \mathfrak{h})$ in \mathfrak{g} and in \mathfrak{h} are solvable, hence contained in $\operatorname{rad}(\mathfrak{g})$, respectively $\operatorname{rad}(\mathfrak{h})$. Thus

$$
\operatorname{rad}(\mathfrak{g} \oplus \mathfrak{h}) \subset \operatorname{rad}(\mathfrak{g}) \oplus \operatorname{rad}(\mathfrak{h}) .
$$

But $\operatorname{rad}(\mathfrak{g}) \oplus \operatorname{rad}(\mathfrak{h})$ is a solvable ideal in $\mathfrak{g} \oplus \mathfrak{h}$, so

$$
\operatorname{rad}(\mathfrak{g} \oplus \mathfrak{h})=\operatorname{rad}(\mathfrak{g}) \oplus \operatorname{rad}(\mathfrak{h})
$$

(ii) The only nonzero ideal in \mathfrak{g} is \mathfrak{g}, and $[\mathfrak{g}, \mathfrak{g}]=\mathfrak{g}$ since \mathfrak{g} is not abelian. Hence \mathfrak{g} is not solvable. Thus \mathfrak{g} is semisimple.

Example 16.5. The Lie algebra $\mathfrak{s l}_{2}(\mathbf{k})$ is simple if $\operatorname{char}(\mathbf{k}) \neq 2$. Likewise, $\mathfrak{5 0}_{3}(\mathbf{k})$ is simple.

Theorem 16.6. (weak Levi decomposition) The Lie algebra $\mathfrak{g}_{\mathrm{ss}}=$ $\mathfrak{g} / \operatorname{rad}(\mathfrak{g})$ is semisimple. Thus any \mathfrak{g} can be included in an exact sequence

$$
0 \rightarrow \operatorname{rad}(\mathfrak{g}) \underset{86}{\rightarrow} \underset{\mathfrak{g}}{\mathrm{~g}} \rightarrow \mathfrak{g}_{\mathrm{ss}} \rightarrow 0
$$

where $\operatorname{rad}(\mathfrak{g})$ is a solvable ideal and $\mathfrak{g}_{\mathrm{ss}}$ is semisimple. Moreover, if $\mathfrak{h} \subset \mathfrak{g}$ is a solvable ideal such that $\mathfrak{g} / \mathfrak{h}$ is semisimple then $\mathfrak{h}=\operatorname{rad}(\mathfrak{g})$.

Proof. Let $I \subset \mathfrak{g}_{\text {ss }}$ be a solvable ideal, and let \widetilde{I} be its preimage in \mathfrak{g}. Then \widetilde{I} is a solvable ideal in \mathfrak{g}. Thus $\widetilde{I}=\operatorname{rad}(\mathfrak{g})$ and $I=0$.

In fact, in characteristic zero there is a stronger statement, which says that the extension in Theorem 16.6 splits. Namely, given a Lie algebra \mathfrak{h} and another Lie algebra \mathfrak{a} acting on \mathfrak{h} by derivations, we may form the semidirect product Lie algebra $\mathfrak{a} \ltimes \mathfrak{h}$ which is $\mathfrak{a} \oplus \mathfrak{h}$ as a vector space with commutator defined by

$$
\left[\left(a_{1}, h_{1}\right),\left(a_{2}, h_{2}\right)\right]=\left(\left[a_{1}, a_{2}\right], a_{1} \circ h_{2}-a_{2} \circ h_{1}+\left[h_{1}, h_{2}\right]\right) .
$$

Note that a special case of this construction has already appeared in Example 15.23.

Theorem 16.7. (Levi decomposition) If $\operatorname{char}(\mathbf{k})=0$ then we have $\mathfrak{g} \cong \operatorname{rad}(\mathfrak{g}) \oplus \mathfrak{g}_{\mathrm{ss}}$, where $\mathfrak{g}_{\mathrm{ss}} \subset \mathfrak{g}$ is a semisimple subalgebra (but not necessarily an ideal); i.e., \mathfrak{g} is isomorphic to the semidirect product $\mathfrak{g}_{\mathrm{ss}} \ltimes \operatorname{rad}(\mathfrak{g})$. In other words, the projection $p: \mathfrak{g} \rightarrow \mathfrak{g}_{\mathrm{ss}}$ admits an (in general, non-unique) splitting $q: \mathfrak{g}_{\mathrm{ss}} \rightarrow \mathfrak{g}$, i.e., a Lie algebra map such that $p \circ q=\mathrm{Id}$.

Theorem 16.7 will be proved in Subsection 48.2.
Example 16.8. Let G be the group of motions of the Euclidean space \mathbb{R}^{3} (generated by rotations and translations). Then $G=S O_{3}(\mathbb{R}) \ltimes \mathbb{R}^{3}$, so $\mathfrak{g}=\operatorname{Lie} G=\mathfrak{s o}_{3}(\mathbb{R}) \ltimes \mathbb{R}^{3}$, hence $\operatorname{rad}(\mathfrak{g})=\mathbb{R}^{3}$ (abelian Lie algebra) and $\mathfrak{g}_{\mathrm{ss}}=\mathfrak{s o}_{3}(\mathbb{R})$.

Proposition 16.9. Let char $(\mathbf{k})=0$, \mathbf{k} algebraically closed, and V be an irreducible representation of \mathfrak{g}. Then $\operatorname{rad}(\mathfrak{g})$ acts on V by scalars, and $[\mathfrak{g}, \operatorname{rad}(\mathfrak{g})]$ by zero.

Proof. By Lie's theorem, there is a nonzero $v \in V$ and $\lambda \in \operatorname{rad}(\mathfrak{g})^{*}$ such that $a v=\lambda(a) v$ for $a \in \operatorname{rad}(\mathfrak{g})$. Let $x \in \mathfrak{g}$ and $\mathfrak{g}_{x} \subset \mathfrak{g}$ be the Lie subalgebra spanned by $\operatorname{rad}(\mathfrak{g})$ and x. Let W be the span of $x^{n} v$ for $n \geq 0$. By Lemma 15.18(i), W is a \mathfrak{g}_{x}-subrepresentation of V on which $a \in \operatorname{rad}(\mathfrak{g})$ has the only eigenvalue $\lambda(a)$. Thus by Lemma 15.18(iii), for $a \in \operatorname{rad}(\mathfrak{g})$ we have $\lambda([x, a])=0$, so the λ-eigenspace V_{λ} of $\operatorname{rad}(\mathfrak{g})$ in V is a \mathfrak{g}-subrepresentation of V, which implies that $V_{\lambda}=V$ since V is irreducible.

Definition 16.10. \mathfrak{g} is called reductive if $\operatorname{rad}(\mathfrak{g})$ coincides with the center $\mathfrak{z}(\mathfrak{g})$ of \mathfrak{g}.

In other words, \mathfrak{g} is reductive if $[\mathfrak{g}, \operatorname{rad}(\mathfrak{g})]=0$.
The Levi decomposition theorem implies that a reductive Lie algebra in characteristic zero is a direct sum of a semisimple Lie algebra and an abelian Lie algebra (its center). We will also prove this in Corollary 18.8.
16.2. Invariant inner products. Let B be a bilinear form on a Lie algebra \mathfrak{g}. Recall that B is invariant if $B([x, y], z)=B(x,[y, z])$ for any $x, y, z \in \mathfrak{g}$.
Example 16.11. If $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ is a finite dimensional representation of \mathfrak{g} then the form

$$
B_{V}(x, y):=\operatorname{Tr}(\rho(x) \rho(y))
$$

is an invariant symmetric bilinear form on \mathfrak{g}. Indeed, the symmetry is obvious and

$$
B_{V}([x, y], z)=B_{V}(x,[y, z])=\left.\operatorname{Tr}\right|_{V}(\rho(x) \rho(y) \rho(z)-\rho(x) \rho(z) \rho(y))
$$

Proposition 16.12. If B is a symmetric invariant bilinear form on \mathfrak{g} and $I \subset \mathfrak{g}$ is an ideal then the orthogonal complement $I^{\perp} \subset \mathfrak{g}$ is also an ideal. In particular, $\mathfrak{g}^{\perp}=\operatorname{Ker}(B)$ is an ideal in \mathfrak{g}.
Exercise 16.13. Prove Proposition 16.12 ,
Proposition 16.14. If B_{V} is nondegenerate for some V then \mathfrak{g} is reductive.

Proof. Let V_{1}, \ldots, V_{n} be the simple composition factors of V; i.e., V has a filtration by subrepresentations such that $F_{i} V / F_{i-1} V=V_{i}, F_{0} V=0$ and $F_{n} V=V$. Then $B_{V}(x, y)=\sum_{i} B_{V_{i}}(x, y)$. Now, if $x \in[\mathfrak{g}, \operatorname{rad}(\mathfrak{g})]$ then $\left.x\right|_{V_{i}}=0$, so $B_{V_{i}}(x, y)=0$ for all $y \in \mathfrak{g}$, hence $B_{V}(x, y)=0$.
Example 16.15. It is clear that if $\mathfrak{g}=\mathfrak{g l}_{n}(\mathbf{k})$ and $V=\mathbf{k}^{n}$ then the form B_{V} is nondegenerate, as $B_{V}\left(E_{i j}, E_{k l}\right)=\delta_{i l} \delta_{j k}$. Thus \mathfrak{g} is reductive. Also if n is not divisible by the characteristic of \mathbf{k} then $\mathfrak{s l}_{n}(\mathbf{k})$ is semisimple, since it is orthogonal to scalars under B_{V} (hence reductive), and has trivial center. In fact, it is easy to show that in this case $\mathfrak{s l}_{n}(\mathbf{k})$ is a simple Lie algebra (another way to see that it is semisimple).

In fact, we have the following proposition.
Proposition 16.16. All classical Lie algebras over $\mathbb{K}=\mathbb{R}$ and \mathbb{C} are reductive.

Proof. Let \mathfrak{g} be a classical Lie algebra and V its standard matrix representation. It is easy to check that the form B_{V} on \mathfrak{g} is nondegenerate, which implies that \mathfrak{g} is reductive.

For example, the Lie algebras $\mathfrak{s o}_{n}(\mathbb{K}), \mathfrak{s p}_{2 n}(\mathbb{K}), \mathfrak{s u}(p, q)$ have trivial center and therefore are semisimple.

16.3. The Killing form and the Cartan criteria.

Definition 16.17. The Killing form of a Lie algebra \mathfrak{g} is the form $B_{\mathfrak{g}}(x, y)=\operatorname{Tr}(\operatorname{ad} x \cdot \operatorname{ad} y)$.

The Killing form is denoted by $K_{\mathfrak{g}}(x, y)$ or shortly by $K(x, y)$.
Theorem 16.18. (Cartan criterion of solvability) A Lie algebra \mathfrak{g} over a field \mathbf{k} of characteristic zero is solvable if and only if $[\mathfrak{g}, \mathfrak{g}] \subset \operatorname{Ker}(K)$.

Theorem 16.19. (Cartan criterion of semisimplicity) A Lie algebra \mathfrak{g} over a field \mathbf{k} of characteristic zero is semisimple if and only if its Killing form is nondegenerate.
16.4. Jordan decomposition. To prove the Cartan criteria, we will use the Jordan decomposition of a square matrix. Let us recall it.

Proposition 16.20. A square matrix $A \in \mathfrak{g l}_{N}(\mathbf{k})$ over a field \mathbf{k} of characteristic zero can be uniquely written as $A_{s}+A_{n}$, where $A_{s} \in$ $\mathfrak{g l}_{N}(\mathbf{k})$ is semisimple (i.e. diagonalizes over the algebraic closure of \mathbf{k}) and $A_{n} \in \mathfrak{g l}_{N}(\mathbf{k})$ is nilpotent in such a way that $A_{s} A_{n}=A_{n} A_{s}$. Moreover, $A_{s}=P(A)$ for some $P \in \mathbf{k}[x]$.

Proof. By the Chinese remainder theorem, there exists a polynomial $P \in \overline{\mathbf{k}}[x]$ such that for every eigenvalue λ of A we have $P(x)=\lambda$ modulo $(x-\lambda)^{N}$, i.e.,

$$
P(x)-\lambda=(x-\lambda)^{N} Q_{\lambda}(x)
$$

for some polynomial Q_{λ}. Then on the generalized eigenspace $V(\lambda)$ for A, we have

$$
P(A)-\lambda=(A-\lambda)^{N} Q_{\lambda}(A)=0
$$

so $A_{s}:=P(A)$ is semisimple and $A_{n}=A-P(A)$ is nilpotent, with $A_{n} A_{s}=A_{s} A_{n}$. If $A=A_{s}^{\prime}+A_{n}^{\prime}$ is another such decomposition then $A_{s}^{\prime}, A_{n}^{\prime}$ commute with A, hence with A_{s} and A_{n}. Also we have

$$
A_{s}-A_{s}^{\prime}=A_{n}^{\prime}-A_{n} .
$$

Thus this matrix is both semisimple and nilpotent, so it is zero. Finally, since A_{s}, A_{n} are unique, they are invariant under the Galois group of $\overline{\mathbf{k}}$ over \mathbf{k} and therefore have entries in \mathbf{k}.

Remark 16.21. 1. If \mathbf{k} is algebraically closed, then A admits a basis in which it is upper triangular, and A_{s} is the diagonal part while A_{n} is the off-diagonal part of A.
2. Proposition 16.20 holds with the same proof in characteristic p if the field \mathbf{k} is perfect, i.e., the Frobenius map $x \rightarrow x^{p}$ is surjective on \mathbf{k}. However, if \mathbf{k} is not perfect, the proof fails: the fact that A_{s}, A_{n} are Galois invariant does not imply that their entries are in \mathbf{k}. Also the statement fails: if $\mathbf{k}=\mathbb{F}_{p}(t)$ and $A e_{i}=e_{i+1}$ for $i=1, . ., p-1$ while $A e_{p}=t e_{1}$ then A has only one eigenvalue $t^{1 / p}$, so $A_{s}=t^{1 / p}$. Id, i.e., does not have entries in \mathbf{k}.

MIT OpenCourseWare
https://ocw.mit.edu

18.745 Lie Groups and Lie Algebras I

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

