
17. Proofs of the Cartan criteria, properties of semisimple
Lie algebras

17.1. Proof of the Cartan solvability criterion. It is clear that
g is solvable if and only if so is g ⊗k k, so we may assume that k is
algebraically closed.

For the “only if” part, note that by Lie’s theorem, g has a basis in
which the operators adx, x ∈ g, are upper triangular. Then [g, g] acts
in this basis by strictly upper triangular matrices, so K(x, y) = 0 for
x ∈ [g, g] and y ∈ g.

To prove the “if” part, let us prove the following lemma.

Lemma 17.1. Let g ⊂ gl(V ) be a Lie subalgebra such that for any
x ∈ [g, g] and y ∈ g we have Tr(xy) = 0. Then g is solvable.

Proof. Let x ∈ [g, g]. Let λi, i = 1, ...,m, be the distinct eigenvalues
of x. Let E ⊂ k be a Q-span of λi. Let b : E → Q be a linear
functional. There exists an interpolation polynomial Q ∈ k[t] such
that Q(λi − λj) = b(λi − λj) = b(λi)− b(λj) for all i, j.

By Proposition 16.20, we can write x as x = xs + xn. Then the
operator adxs is diagonalizable with eigenvalues λi − λj. So

Q(adxs) = adb,

where b : V → V is the operator acting by b(λj) on the generalized
λj-eigenspace of x.

Also we have

adx = adxs + adxn

a sum of commuting semisimple and nilpotent operators. Thus

adxs = (adx)s = P (adx),

and P (0) = 0 since 0 is an eigenvalue of adx. Thus

adb = R(adx),

where R(t) = Q(P (t)) and R(0) = 0.
Let x =

∑
j[yj, zj], yj, zj ∈ g, and dj be the dimension of the gener-

alized λj-eigenspace of x. Then∑
j

djb(λj)λj = Tr(bx) =

Tr(
∑
j

b[yj, zj]) = Tr(
∑
j

[b, yj]zj) = Tr(
∑
j

R(adx)(yj)zj).
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Since R(0) = 0, we have R(adx)(yj) ∈ [g, g], so by assumption we get∑
j

djb(λj)λj = 0.

Applying b, we get
∑

j djb(λj)
2 = 0. Thus b(λj) = 0 for all j. Hence

b = 0, so E = 0.
Thus, the only eigenvalue of x is 0, i.e., x is nilpotent. But then by

Engel’s theorem, [g, g] is nilpotent. Thus g is solvable. Thus proves
the lemma. �

Now the “if” part of the Cartan solvability criterion follows easily by
applying Lemma 17.1 to V = g and replacing g by the quotient g/z(g).

17.2. Proof of the Cartan semisimplicity criterion. Assume that
g is semisimple, and let I = Ker(Kg), an ideal in g. Then KI =
(Kg)|I = 0. Thus by Cartan’s solvability criterion I is solvable. Hence
I = 0.

Conversely, suppose Kg is nondegenerate. Then g is reductive. More-
over, the center of g is contained in the kernel of Kg, so it must be
trivial. Thus g is semisimple.

17.3. Properties of semisimple Lie algebras.

Proposition 17.2. Let char(k) = 0 and g be a finite dimensional Lie
algebra over k. Then g is semisimple iff g⊗k k is semisimple.

Proof. Immediately follows from Cartan’s criterion of semisimplicity.
Here is another proof (of the nontrivial direction): if g is semisimple
and I is a nonzero solvable ideal in g ⊗k k then it has a finite Galois
orbit I1, ..., In and I1 + ...+ In is a Galois invariant solvable ideal, so it
comes from a solvable ideal in g. �

Remark 17.3. This theorem fails if we replace the word “semisimple”
by “simple”: e.g., if g is a simple complex Lie algebra regarded as a
real Lie algebra then gC ∼= g⊕ g is semisimple but not simple.

Theorem 17.4. Let g be a semisimple Lie algebra and I ⊂ g an ideal.
Then there is an ideal J ⊂ g such that g = I ⊕ J .

Proof. Let I⊥ be the orthogonal complement of I with respect to the
Killing form, an ideal in g. Consider the intersection I ∩ I⊥. It is an
ideal in g with the zero Killing form. Thus, by the Cartan solvability
criterion, it is solvable. By definition of a semisimple Lie algebra, this
means that I ∩ I⊥ = 0, so we may take J = I⊥. �

We will see below (in Proposition 17.7) that J is in fact unique and
must equal I⊥.
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Corollary 17.5. A Lie algebra g is semisimple iff it is a direct sum of
simple Lie algebras.

Proof. We have already shown that a direct sum of simple Lie algebras
is semisimple. The opposite direction easily follows by induction from
Theorem 17.4. �

Corollary 17.6. If g is a semisimple Lie algebra, then [g, g] = g.

Proof. For a simple Lie algebra it is clear because [g, g] is an ideal in
g which cannot be zero (otherwise, g would be abelian). So the result
follows from Corollary 17.5. �

Proposition 17.7. Let g = g1 ⊕ ...⊕ gk be a semisimple Lie algebra,
with gi being simple. Then any ideal I in g is of the form I = ⊕i∈Sgi
for some subset S ⊂ {1, ..., k}.

Proof. The proof goes by induction in k. Let pk : g → gk be the
projection. Consider pk(I) ⊂ gk. Since gk is simple, either pk(I) = 0, in
which case I ⊂ g1⊕ ...⊕gk−1 and we can use the induction assumption,
or pk(I) = gk. Then [gk, I] = [gk, pk(I)] = gk. Since I is an ideal,
I ⊃ gk, so I = I ′ ⊕ gk for some subspace I ′ ⊂ g1 ⊕ ⊕ gk−1. It is
immediate that then I ′ is an ideal in g1 ⊕ ⊕ gk−1 and the result again
follows from the induction assumption. �

Corollary 17.8. Any ideal in a semisimple Lie algebra is semisimple.
Also, any quotient of a semisimple Lie algebra is semisimple.

Let Derg be the Lie algebra of derivations of a Lie algebra g. We
have a homomorphism ad : g → Derg whose kernel is the center z(g).
Thus if g has trivial center (e.g., is semisimple) then the map ad is
injective and identifies g with a Lie subalgebra of Derg. Moreover, for
d ∈ Derg and x ∈ g, we have

[d, adx](y) = d[x, y]− [x, dy] = [dx, y] = ad(dx)(y).

Thus g ⊂ Derg is an ideal.

Proposition 17.9. If g is semisimple then g = Derg.

Proof. Consider the invariant symmetric bilinear form

K(a, b) = Tr|g(ab)
on Derg. This is an extension of the Killing form of g to Derg, so
its restriction to g is nondegenerate. Let I = g⊥ be the orthogonal
complement of g in Derg underK. It follows that I is an ideal, I∩g = 0,
and I ⊕ g = Derg. Since both I and g are ideals, we have [g, I] = 0.
Thus for d ∈ I and x ∈ g, [d, adx] = ad(dx) = 0, so dx belongs to
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the center of g. Thus dx = 0, i.e., d = 0. It follows that I = 0, as
claimed. �

Corollary 17.10. Let g be a real or complex semisimple Lie algebra,
and G = Aut(g) ⊂ GL(g). Then G is a Lie group with LieG = g.
Thus G acts on g by the adjoint action.

Proof. It is easy to show that for any finite dimensional real or complex
Lie algebra g, Aut(g) is a Lie group with Lie algebra Der(g), so the
statement follows from Proposition 17.9. �
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