18. Extensions of representations, Whitehead's theorem, compete reducibility

18.1. Extensions. Let \mathfrak{g} be a Lie algebra and U, W be representations of \mathfrak{g}. We would like to classify all representations V which fit into a short exact sequence

$$
\begin{equation*}
0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0, \tag{18.1}
\end{equation*}
$$

i.e., $U \subset V$ is a subrepresentation such that the surjection $p: V \rightarrow W$ has kernel U and thus defines an isomorphism $V / U \cong W$. In other words, V is endowed with a 2-step filtration with $F_{0} V=U$ and $F_{1} V=$ V such that $F_{1} V / F_{0} V=W$, so $\operatorname{gr}(V)=U \oplus W$. To do so, pick a splitting of this sequence as a sequence of vector spaces, i.e. an injection $i: W \rightarrow V$ (not a homomorphism of representations, in general) such that $p \circ i=\mathrm{Id}_{W}$. This defines a linear isomorphism $\widetilde{i}: U \oplus W \rightarrow V$ given by $(u, w) \mapsto u+i(w)$, which allows us to rewrite the action of \mathfrak{g} on V as an action on $U \oplus W$. Since \widetilde{i} is not in general a morphism of representations, this action is given by

$$
\rho(x)(u, w)=(x u+a(x) w, x w)
$$

where $a: \mathfrak{g} \rightarrow \operatorname{Hom}_{\mathbf{k}}(W, U)$ is a linear map, and \widetilde{i} is a morphism of representations iff $a=0$.

What are the conditions on a to give rise to a representation? We compute:

$$
\begin{gathered}
\rho([x, y])(u, w)=([x, y] u+a([x, y]) w,[x, y] w) \\
{[\rho(x), \rho(y)](u, w)=([x, y] u+([x, a(y)]+[a(x), y]) w,[x, y] w) .}
\end{gathered}
$$

Thus the condition to give a representation is the Leibniz rule

$$
a([x, y])=[x, a(y)]+[a(x), y]=[x, a(y)]-[y, a(x)] .
$$

In general, if E is a representation of \mathfrak{g} then a linear function $a: \mathfrak{g} \rightarrow E$ such that

$$
a([x, y])=x \circ a(y)-y \circ a(x)
$$

is called a $\mathbf{1}$ - cocycle of \mathfrak{g} with values in E. The space of 1 -cocycles is denoted by $Z^{1}(\mathfrak{g}, E)$.

Example 18.1. We have $Z^{1}(\mathfrak{g}, \mathbf{k})=(\mathfrak{g} /[\mathfrak{g}, \mathfrak{g}])^{*}$ and $Z^{1}(\mathfrak{g}, \mathfrak{g})=$ Derg.
Thus we see that in our setting $a: \mathfrak{g} \rightarrow \operatorname{Hom}_{\mathbf{k}}(W, U)$ defines a representation if and only if $a \in Z^{1}\left(\mathfrak{g}, \operatorname{Hom}_{\mathbf{k}}(W, U)\right)$. Denote the representation V attached to such a by V_{a}. Then we have a natural short exact sequence

$$
0 \rightarrow U \rightarrow \underset{95}{V_{a}} \rightarrow W \rightarrow 0 .
$$

It may, however, happen that some $a \neq 0$ defines a trivial extension $V \cong U \oplus W$, i.e., $V_{a} \cong V_{0}$, and more generally $V_{a} \cong V_{b}$ for $a \neq b$. Let us determine when this happens. More precisely, let us look for isomorphisms $f: V_{a} \rightarrow V_{b}$ preserving the structure of the short exact sequences, i.e., such that $\operatorname{gr}(f)=\mathrm{Id}$. Then

$$
f(u, w)=(u+A w, w)
$$

where $A: W \rightarrow U$ is a linear map. Then we have

$$
x f(u, w)=x(u+A w, w)=(x u+x A w+b(x) w, x w)
$$

and

$$
f x(u, w)=f(x u+a(x) w, x w)=(x u+a(x) w+A x w, x w),
$$

so we get that $x f=f x$ iff

$$
[x, A]=a(x)-b(x)
$$

In particular, setting $b=0$, we see that V is a trivial extension if and only if $a(x)=[x, A]$ for some A.

More generally, if E is a \mathfrak{g}-module, the linear function $a: \mathfrak{g} \rightarrow E$ given by $a(x)=x v$ for some $v \in E$ is called the 1-coboundary of v, and one writes $a=d v$. The space of 1 -coboundaries is denoted by $B^{1}(\mathfrak{g}, E)$; it is easy to see that it is a subspace of $Z^{1}(\mathfrak{g}, E)$, i.e., a 1 -coboundary is always a 1 -cocycle. Thus in our setting $f: V_{a} \rightarrow V_{b}$ is an isomorphism of representations iff

$$
a-b=d A
$$

i.e., there is an isomorphism $f: V_{a} \cong V_{b}$ with $\operatorname{gr}(f)=\operatorname{Id}$ if and only if $a=b$ in the quotient space

$$
\operatorname{Ext}^{1}(W, U):=Z^{1}\left(\mathfrak{g}, \operatorname{Hom}_{\mathbf{k}}(W, U)\right) / B^{1}\left(\mathfrak{g}, \operatorname{Hom}_{\mathbf{k}}(W, U)\right)
$$

The notation is justified by the fact that this space parametrizes extensions of W by U. More precisely, every short exact sequence (18.1) gives rise to a class $[V] \in \operatorname{Ext}^{1}(W, U)$, and the extension defined by this sequence is trivial iff $[V]=0$.

More generally, for a \mathfrak{g}-module E the space

$$
H^{1}(\mathfrak{g}, E):=Z^{1}(\mathfrak{g}, E) / B^{1}(\mathfrak{g}, E)
$$

is called the first cohomology of \mathfrak{g} with coefficients in E. Thus,

$$
\operatorname{Ext}^{1}(W, U)=H^{1}\left(\mathfrak{g}, \operatorname{Hom}_{\mathbf{k}}(W, U)\right)
$$

Lemma 18.2. A short exact sequence $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ gives rise to an exact sequence

$$
H^{1}(\mathfrak{g}, U) \rightarrow H^{1} \underset{96}{(\mathfrak{g}, V)} \rightarrow H^{1}(\mathfrak{g}, W)
$$

Exercise 18.3. Prove Lemma 18.2 ,
18.2. Whitehead's theorem. We have shown in Corollary 17.6 and Proposition 17.9 that for a semisimple \mathfrak{g} over a field of characteristic zero, $H^{1}(\mathfrak{g}, \mathbf{k})=(\mathfrak{g} /[\mathfrak{g}, \mathfrak{g}])^{*}=0$, and $H^{1}(\mathfrak{g}, \mathfrak{g})=\operatorname{Derg} / \mathfrak{g}=0$. In fact, these are special cases of a more general theorem.

Theorem 18.4. (Whitehead) If \mathfrak{g} is semisimple in characteristic zero then for every finite dimensional representation V of $\mathfrak{g}, H^{1}(\mathfrak{g}, V)=0$.
18.3. Proof of Theorem $\mathbf{1 8 . 4}$. We will use the following lemma, which holds over any field.

Lemma 18.5. Let E be a representation of a Lie algebra \mathfrak{g} and $C \in$ $U(\mathfrak{g})$ be a central element which acts by 0 on the trivial representation of \mathfrak{g} and by some scalar $\lambda \neq 0$ on E. Then $H^{1}(\mathfrak{g}, E)=0$.
Proof. We have seen that $H^{1}(\mathfrak{g}, E)=\operatorname{Ext}^{1}(\mathbf{k}, E)$, so our job is to show that any extension

$$
0 \rightarrow E \rightarrow V \rightarrow \mathbf{k} \rightarrow 0
$$

splits. Let $p: V \rightarrow \mathbf{k}$ be the projection. We claim that there exists a unique vector $v \in V$ such that $p(v)=1$ and $C v=0$. Indeed, pick some $w \in V$ with $p(w)=1$. Then $C w \in E$, so set $v=w-\lambda^{-1} C w$. Since $C^{2} w=\lambda C w$, we have $C v=0$. Also if v^{\prime} is another such vector then $v-v^{\prime} \in E$ so $C\left(v-v^{\prime}\right)=\lambda\left(v-v^{\prime}\right)=0$, hence $v=v^{\prime}$.

Thus $\mathbf{k} v \subset V$ is a \mathfrak{g}-invariant complement to E (as C is central), which implies the statement.

It remains to construct a central element of $U(\mathfrak{g})$ for a semisimple Lie algebra \mathfrak{g} to which we can apply Lemma 18.5 . This can be done as follows. Let a_{i} be a basis of \mathfrak{g} and a^{i} the dual basis under an invariant inner product on \mathfrak{g} (for example, the Killing form). Define the (quadratic) Casimir element

$$
C:=\sum_{i} a_{i} a^{i}
$$

It is easy to show that C is independent on the choice of the basis (although it depends on the choice of the inner product). Also C is central: for $y \in \mathfrak{g}$,

$$
[y, C]=\sum_{i}\left(\left[y, a_{i}\right] a^{i}+a_{i}\left[y, a^{i}\right]\right)=0
$$

since

$$
\sum_{i}\left(\left[y, a_{i}\right] \otimes a^{i}+a_{i} \otimes\left[y, a^{i}\right]\right)=0
$$

Finally, note that for $\mathfrak{g}=\mathfrak{s l}_{2}, C$ is proportional to the Casimir element $2 f e+\frac{h^{2}}{2}+h=e f+f e+\frac{h^{2}}{2}$ considered previously, as the basis $f, e, \frac{h}{\sqrt{2}}$ is dual to the basis $e, f, \frac{h}{\sqrt{2}}$ under an invariant inner product of \mathfrak{g}.

The key lemma used in the proof of Theorem 18.4 is the following.
Lemma 18.6. Let \mathfrak{g} be semisimple in characteristic zero and V be a nontrivial finite dimensional irreducible \mathfrak{g}-module. Then there is a central element $C \in U(\mathfrak{g})$ such that $\left.C\right|_{\mathbf{k}}=0$ and $\left.C\right|_{V} \neq 0$.

Proof. Consider the invariant symmetric bilinear form on \mathfrak{g}

$$
B_{V}(x, y)=\left.\operatorname{Tr}\right|_{V}(x y)
$$

We claim that $B_{V} \neq 0$. Indeed, let $\overline{\mathfrak{g}} \subset \mathfrak{g l}(V)$ be the image of \mathfrak{g}. By Lemma 17.1, if $B_{V}=0$ then $\overline{\mathfrak{g}}$ is solvable, so, being the quotient of a semisimple Lie algebra \mathfrak{g}, it must be zero, hence V is trivial, a contradiction.

Let $I=\operatorname{Ker}\left(B_{V}\right)$. Then $I \subset \mathfrak{g}$ is an ideal, so by Proposition 17.7, $\mathfrak{g}=I \oplus \mathfrak{g}^{\prime}$ for some semisimple Lie algebra \mathfrak{g}^{\prime}, and B_{V} is nondegenerate on \mathfrak{g}^{\prime}. Let C be the Casimir element of $U\left(\mathfrak{g}^{\prime}\right)$ corresponding to the inner product B_{V}. Then $\operatorname{Tr}_{V}(C)=\sum_{i} B_{V}\left(a_{i}, a^{i}\right)=\operatorname{dim} \mathfrak{g}^{\prime}$, so $\left.C\right|_{V}=$ $\frac{\operatorname{dim} \mathfrak{g}^{\prime}}{\operatorname{dim} V} \neq 0$. Also it is clear that $\left.C\right|_{\mathbf{k}}=0$, so the lemma follows.
Corollary 18.7. For any irreducible finite dimensional representation V of a semisimple Lie algebra \mathfrak{g} over a field \mathbf{k} of characteristic zero, we have $H^{1}(\mathfrak{g}, V)=0$.

Proof. If V is nontrivial, this follows from Lemmas 18.5 and 18.6. On the other hand, if $V=\mathbf{k}$ then $H^{1}(\mathfrak{g}, V)=(\mathfrak{g} /[\mathfrak{g}, \mathfrak{g}])^{*}=0$.

Now we can prove Theorem 18.4, By Lemma 18.2, it suffices to prove the theorem for irreducible V, which is guaranteed by Corollary 18.7.

Corollary 18.8. A reductive Lie algebra \mathfrak{g} in characteristic zero is uniquely a direct sum of a semisimple and abelian Lie algebra.

Proof. Consider the adjoint representation of \mathfrak{g}. It is a representation of $\mathfrak{g}^{\prime}=\mathfrak{g} / \mathfrak{z}(\mathfrak{g})$, which fits into a short exact sequence

$$
0 \rightarrow \mathfrak{z}(\mathfrak{g}) \rightarrow \mathfrak{g} \rightarrow \mathfrak{g}^{\prime} \rightarrow 0
$$

By complete reducibility, this sequence splits, i.e. we have a decomposition $\mathfrak{g}=\mathfrak{g}^{\prime} \oplus \mathfrak{z}(\mathfrak{g})$ as a direct sum of ideals, and it is clearly unique.
18.4. Complete reducibility of representations of semisimple Lie algebras.

Theorem 18.9. Every finite dimensional representation of a semisimple Lie algebra \mathfrak{g} over a field of characteristic zero is completely reducible, i.e., isomorphic to a direct sum of irreducible representations.

Proof. Theorem 18.4 implies that for any finite dimensional representations W, U of \mathfrak{g} one has $\operatorname{Ext}^{1}(W, U)=0$. Thus any short exact sequence

$$
0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0
$$

splits, which implies the statement.

MIT OpenCourseWare
https://ocw.mit.edu

18.745 Lie Groups and Lie Algebras I

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

