
18. Extensions of representations, Whitehead’s theorem,
compete reducibility

18.1. Extensions. Let g be a Lie algebra and U,W be representations
of g. We would like to classify all representations V which fit into a
short exact sequence

(18.1) 0→ U → V → W → 0,

i.e., U ⊂ V is a subrepresentation such that the surjection p : V → W
has kernel U and thus defines an isomorphism V/U ∼= W . In other
words, V is endowed with a 2-step filtration with F0V = U and F1V =
V such that F1V/F0V = W , so gr(V ) = U ⊕ W . To do so, pick a
splitting of this sequence as a sequence of vector spaces, i.e. an injection
i : W → V (not a homomorphism of representations, in general) such

that p ◦ i = IdW . This defines a linear isomorphism ĩ : U ⊕W → V
given by (u,w) 7→ u + i(w), which allows us to rewrite the action of g

on V as an action on U ⊕W . Since ĩ is not in general a morphism of
representations, this action is given by

ρ(x)(u,w) = (xu+ a(x)w, xw)

where a : g → Homk(W,U) is a linear map, and ĩ is a morphism of
representations iff a = 0.

What are the conditions on a to give rise to a representation? We
compute:

ρ([x, y])(u,w) = ([x, y]u+ a([x, y])w, [x, y]w),

[ρ(x), ρ(y)](u,w) = ([x, y]u+ ([x, a(y)] + [a(x), y])w, [x, y]w).

Thus the condition to give a representation is the Leibniz rule

a([x, y]) = [x, a(y)] + [a(x), y] = [x, a(y)]− [y, a(x)].

In general, if E is a representation of g then a linear function a : g→ E
such that

a([x, y]) = x ◦ a(y)− y ◦ a(x)

is called a 1− cocycle of g with values in E. The space of 1-cocycles
is denoted by Z1(g, E).

Example 18.1. We have Z1(g,k) = (g/[g, g])∗ and Z1(g, g) = Derg.

Thus we see that in our setting a : g → Homk(W,U) defines a
representation if and only if a ∈ Z1(g,Homk(W,U)). Denote the rep-
resentation V attached to such a by Va. Then we have a natural short
exact sequence

0→ U → Va → W → 0.
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It may, however, happen that some a 6= 0 defines a trivial extension
V ∼= U ⊕ W , i.e., Va ∼= V0, and more generally Va ∼= Vb for a 6= b.
Let us determine when this happens. More precisely, let us look for
isomorphisms f : Va → Vb preserving the structure of the short exact
sequences, i.e., such that gr(f) = Id. Then

f(u,w) = (u+ Aw,w)

where A : W → U is a linear map. Then we have

xf(u,w) = x(u+ Aw,w) = (xu+ xAw + b(x)w, xw)

and

fx(u,w) = f(xu+ a(x)w, xw) = (xu+ a(x)w + Axw, xw),

so we get that xf = fx iff

[x,A] = a(x)− b(x).

In particular, setting b = 0, we see that V is a trivial extension if and
only if a(x) = [x,A] for some A.

More generally, if E is a g-module, the linear function a : g → E
given by a(x) = xv for some v ∈ E is called the 1-coboundary of
v, and one writes a = dv. The space of 1-coboundaries is denoted
by B1(g, E); it is easy to see that it is a subspace of Z1(g, E), i.e., a
1-coboundary is always a 1-cocycle. Thus in our setting f : Va → Vb is
an isomorphism of representations iff

a− b = dA,

i.e., there is an isomorphism f : Va ∼= Vb with gr(f) = Id if and only if
a = b in the quotient space

Ext1(W,U) := Z1(g,Homk(W,U))/B1(g,Homk(W,U)).

The notation is justified by the fact that this space parametrizes ex-
tensions of W by U . More precisely, every short exact sequence (18.1)
gives rise to a class [V ] ∈ Ext1(W,U), and the extension defined by
this sequence is trivial iff [V ] = 0.

More generally, for a g-module E the space

H1(g, E) := Z1(g, E)/B1(g, E)

is called the first cohomology of g with coefficients in E. Thus,

Ext1(W,U) = H1(g,Homk(W,U)).

Lemma 18.2. A short exact sequence 0 → U → V → W → 0 gives
rise to an exact sequence

H1(g, U)→ H1(g, V )→ H1(g,W ).
96



Exercise 18.3. Prove Lemma 18.2.

18.2. Whitehead’s theorem. We have shown in Corollary 17.6 and
Proposition 17.9 that for a semisimple g over a field of characteristic
zero, H1(g,k) = (g/[g, g])∗ = 0, and H1(g, g) = Derg/g = 0. In fact,
these are special cases of a more general theorem.

Theorem 18.4. (Whitehead) If g is semisimple in characteristic zero
then for every finite dimensional representation V of g, H1(g, V ) = 0.

18.3. Proof of Theorem 18.4. We will use the following lemma,
which holds over any field.

Lemma 18.5. Let E be a representation of a Lie algebra g and C ∈
U(g) be a central element which acts by 0 on the trivial representation
of g and by some scalar λ 6= 0 on E. Then H1(g, E) = 0.

Proof. We have seen that H1(g, E) = Ext1(k, E), so our job is to show
that any extension

0→ E → V → k→ 0

splits. Let p : V → k be the projection. We claim that there exists
a unique vector v ∈ V such that p(v) = 1 and Cv = 0. Indeed, pick
some w ∈ V with p(w) = 1. Then Cw ∈ E, so set v = w − λ−1Cw.
Since C2w = λCw, we have Cv = 0. Also if v′ is another such vector
then v − v′ ∈ E so C(v − v′) = λ(v − v′) = 0, hence v = v′.

Thus kv ⊂ V is a g-invariant complement to E (as C is central),
which implies the statement. �

It remains to construct a central element of U(g) for a semisimple
Lie algebra g to which we can apply Lemma 18.5. This can be done
as follows. Let ai be a basis of g and ai the dual basis under an
invariant inner product on g (for example, the Killing form). Define
the (quadratic) Casimir element

C :=
∑
i

aia
i.

It is easy to show that C is independent on the choice of the basis
(although it depends on the choice of the inner product). Also C is
central: for y ∈ g,

[y, C] =
∑
i

([y, ai]a
i + ai[y, a

i]) = 0

since ∑
i

([y, ai]⊗ ai + ai ⊗ [y, ai]) = 0.
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Finally, note that for g = sl2, C is proportional to the Casimir element
2fe+ h2

2
+ h = ef + fe+ h2

2
considered previously, as the basis f, e, h√

2

is dual to the basis e, f, h√
2

under an invariant inner product of g.

The key lemma used in the proof of Theorem 18.4 is the following.

Lemma 18.6. Let g be semisimple in characteristic zero and V be
a nontrivial finite dimensional irreducible g-module. Then there is a
central element C ∈ U(g) such that C|k = 0 and C|V 6= 0.

Proof. Consider the invariant symmetric bilinear form on g

BV (x, y) = Tr|V (xy).

We claim that BV 6= 0. Indeed, let ḡ ⊂ gl(V ) be the image of g.
By Lemma 17.1, if BV = 0 then ḡ is solvable, so, being the quotient
of a semisimple Lie algebra g, it must be zero, hence V is trivial, a
contradiction.

Let I = Ker(BV ). Then I ⊂ g is an ideal, so by Proposition 17.7,
g = I⊕g′ for some semisimple Lie algebra g′, and BV is nondegenerate
on g′. Let C be the Casimir element of U(g′) corresponding to the
inner product BV . Then TrV (C) =

∑
iBV (ai, a

i) = dim g′, so C|V =
dim g′

dimV
6= 0. Also it is clear that C|k = 0, so the lemma follows. �

Corollary 18.7. For any irreducible finite dimensional representation
V of a semisimple Lie algebra g over a field k of characteristic zero,
we have H1(g, V ) = 0.

Proof. If V is nontrivial, this follows from Lemmas 18.5 and 18.6. On
the other hand, if V = k then H1(g, V ) = (g/[g, g])∗ = 0. �

Now we can prove Theorem 18.4. By Lemma 18.2, it suffices to prove
the theorem for irreducible V , which is guaranteed by Corollary 18.7.

Corollary 18.8. A reductive Lie algebra g in characteristic zero is
uniquely a direct sum of a semisimple and abelian Lie algebra.

Proof. Consider the adjoint representation of g. It is a representation
of g′ = g/z(g), which fits into a short exact sequence

0→ z(g)→ g→ g′ → 0.

By complete reducibility, this sequence splits, i.e. we have a decompo-
sition g = g′⊕z(g) as a direct sum of ideals, and it is clearly unique. �

18.4. Complete reducibility of representations of semisimple
Lie algebras.
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Theorem 18.9. Every finite dimensional representation of a semisim-
ple Lie algebra g over a field of characteristic zero is completely re-
ducible, i.e., isomorphic to a direct sum of irreducible representations.

Proof. Theorem 18.4 implies that for any finite dimensional representa-
tions W,U of g one has Ext1(W,U) = 0. Thus any short exact sequence

0→ U → V → W → 0

splits, which implies the statement. �
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