## 19. Structure of semisimple Lie algebras, I

19.1. Semisimple elements. Let $x$ be an element of a Lie algebra $\mathfrak{g}$ over an algebraically closed field $\mathbf{k}$. Let $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ be the generalized eigenspace of $\operatorname{ad} x$ with eigenvalue $\lambda$. Then $\mathfrak{g}=\oplus_{\lambda} \mathfrak{g}_{\lambda}$.
Lemma 19.1. We have $\left[\mathfrak{g}_{\lambda}, \mathfrak{g}_{\mu}\right] \subset \mathfrak{g}_{\lambda+\mu}$.
Proof. Let $y \in \mathfrak{g}_{\lambda}, z \in \mathfrak{g}_{\mu}$. We have

$$
\begin{gathered}
(\operatorname{ad} x-\lambda-\mu)^{N}([y, z])= \\
\sum_{p+q+r+s=N}(-1)^{r+s} \frac{N!}{p!q!r!s!} \lambda^{r} \mu^{s}\left[(\operatorname{ad} x)^{p}(y),(\operatorname{ad} x)^{q}(z)\right]= \\
\sum_{k+\ell=N} \frac{N!}{k!\ell!}\left[(\operatorname{ad} x-\lambda)^{k}(y),(\operatorname{ad} x-\mu)^{\ell}(z)\right]
\end{gathered}
$$

Thus if $(\operatorname{ad} x-\lambda)^{n}(y)=0$ and $(\operatorname{ad} x-\mu)^{m}(z)=0$ then

$$
(\operatorname{ad} x-\lambda-\mu)^{m+n}([y, z])=0,
$$

so $[y, z] \in \mathfrak{g}_{\lambda+\mu}$.
Definition 19.2. An element $x$ of a Lie algebra $\mathfrak{g}$ is called semisimple if the operator $\operatorname{ad} x$ is semisimple and nilpotent if this operator is nilpotent.

It is clear that any element which is both semisimple and nilpotent is central, so for a semisimple Lie algebra it must be zero. Note also that for $\mathfrak{g}=\mathfrak{s l}_{n}(\mathbf{k})$ this coincides with the usual definition.

Proposition 19.3. Let $\mathfrak{g}$ be a semisimple Lie algebra over a field of characteristic zero. Then every element $x \in \mathfrak{g}$ has a unique decomposition as $x=x_{s}+x_{n}$, where $x_{s}$ is semisimple, $x_{n}$ is nilpotent and $\left[x_{s}, x_{n}\right]=0$. Moreover, if $y \in \mathfrak{g}$ and $[x, y]=0$ then $\left[x_{s}, y\right]=\left[x_{n}, y\right]=0$.
Proof. Recall that $\mathfrak{g} \subset \mathfrak{g l}(\mathfrak{g})$ via the adjoint representation. So we can consider the Jordan decomposition $x=x_{s}+x_{n}$, with $x_{s}, x_{n} \in \mathfrak{g l}(\mathfrak{g})$. We have $x_{s}(y)=\lambda y$ for $y \in \mathfrak{g}_{\lambda}$. Thus $y \mapsto x_{s}(y)$ is a derivation of $\mathfrak{g}$ by Lemma 19.1. But by Proposition 17.9 every derivation of $\mathfrak{g}$ is inner, which implies that $x_{s} \in \mathfrak{g}$, hence $x_{n} \in \mathfrak{g}$. It is clear that $x_{s}$ is semisimple, $x_{n}$ is nilpotent, and $\left[x_{s}, x_{n}\right]=0$. Also if $[x, y]=0$ then ad $y$ preserves $\mathfrak{g}_{\lambda}$ for all $\lambda$, hence $\left[x_{s}, y\right]=0$ as linear operators on $\mathfrak{g}$ and thus as elements of $\mathfrak{g}$. This also implies that the decomposition is unique since if $x=x_{s}^{\prime}+x_{n}^{\prime}$ then $\left[x_{s}, x_{s}^{\prime}\right]=\left[x_{n}, x_{n}^{\prime}\right]=0$, so $x_{s}-x_{s}^{\prime}=x_{n}^{\prime}-x_{n}$ is both semisimple and nilpotent, hence zero.

Corollary 19.4. Any semisimple Lie algebra $\mathfrak{g} \neq 0$ over a field of characteristic zero contains nonzero semisimple elements.

Proof. Otherwise, by Proposition 19.3, every element $x \in \mathfrak{g}$ is nilpotent, which by Engel's theorem would imply that $\mathfrak{g}$ is nilpotent, hence solvable, hence zero.
19.2. Toral subalgebras. From now on we assume that $\operatorname{char}(\mathbf{k})=0$ unless specified otherwise.

Definition 19.5. An abelian Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}$ is called a toral subalgebra if it consists of semisimple elements.

Proposition 19.6. Let $\mathfrak{g}$ be a semisimple Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a toral subalgebra, and $B$ a nondegenerate invariant symmetric bilinear form on $\mathfrak{g}$ (e.g., the Killing form).
 of $x \in \mathfrak{g}$ such that for $h \in \mathfrak{h}$ we have $[h, x]=\alpha(h) x$, and $\mathfrak{g}_{0} \supset \mathfrak{h}$.
(ii) We have $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right] \subset \mathfrak{g}_{\alpha+\beta}$.
(iii) If $\alpha+\beta \neq 0$ then $\mathfrak{g}_{\alpha}$ and $\mathfrak{g}_{\beta}$ are orthogonal under $B$.
(iv) $B$ restricts to a nondegenerate pairing $\mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha} \rightarrow \mathbf{k}$.

Proof. (i) is just the joint eigenspace decomposition for $\mathfrak{h}$ acting in $\mathfrak{g}$. (ii) is a very easy special case of Lemma 19.1. (iii) and (iv) follow from the fact that $B$ is nondegenerate and invariant.

Corollary 19.7. (i) The Lie subalgebra $\mathfrak{g}_{0} \subset \mathfrak{g}$ is reductive.
(ii) if $x \in \mathfrak{g}_{0}$ then $x_{s}, x_{n} \in \mathfrak{g}_{0}$.

Proof. (i) This follows from Proposition 16.14 and the fact that the form $\left.(x, y) \mapsto \operatorname{Tr}\right|_{\mathfrak{g}}(x y)$ on $\mathfrak{g}_{0}$ is nondegenerate (Proposition 19.6 (iv) for the Killing form of $\mathfrak{g}$ ).
(ii) We have $[h, x]=0$ for $h \in \mathfrak{h}$, so $\left[h, x_{s}\right]=0$, hence $x_{s} \in \mathfrak{g}_{0}$.

### 19.3. Cartan subalgebras.

Definition 19.8. A Cartan subalgebra of a semisimple Lie algebra $\mathfrak{g}$ is a toral subalgebra $\mathfrak{h} \subset \mathfrak{g}$ such that $\mathfrak{g}_{0}=\mathfrak{h}$.

Example 19.9. Let $\mathfrak{g}=\mathfrak{s l}_{n}(\mathbf{k})$. Then the subalgebra $\mathfrak{h} \subset \mathfrak{g}$ of diagonal matrices is a Cartan subalgebra.

It is clear that any Cartan subalgebra is a maximal toral subalgebra of $\mathfrak{g}$. The following theorem, stating the converse, shows that Cartan subalgebras exist.

Theorem 19.10. Let $\mathfrak{h}$ be a maximal toral subalgebra of $\mathfrak{g}$. Then $\mathfrak{h}$ is a Cartan subalgebra.

Proof. Let $x \in \mathfrak{g}_{0}$, then by Corollary 19.7 (ii) $x_{s} \in \mathfrak{g}_{0}$, so $x_{s} \in \mathfrak{h}$ by maximality of $\mathfrak{h}$. Thus ad $\left.x\right|_{\mathfrak{g}_{0}}=\left.a d x_{n}\right|_{\mathfrak{g}_{0}}$ is nilpotent. So by Engel's theorem $\mathfrak{g}_{0}$ is nilpotent. But it is also reductive, hence abelian.

Now let us show that every $x \in \mathfrak{g}_{0}$ which is nilpotent in $\mathfrak{g}$ must be zero. Indeed, in this case, for any $y \in \mathfrak{g}_{0}$, the operator $\operatorname{ad} x \cdot \operatorname{ad} y: \mathfrak{g} \rightarrow \mathfrak{g}$ is nilpotent $($ as $[x, y]=0)$, so $\left.\operatorname{Tr}\right|_{\mathfrak{g}}(\operatorname{ad} x \cdot \operatorname{ad} y)=0$. But this form is nondegenerate on $\mathfrak{g}_{0}$, which implies that $x=0$.

Thus for any $x \in \mathfrak{g}_{0}, x_{n}=0$, so $x=x_{s}$ is semisimple. Hence $\mathfrak{g}_{0}=\mathfrak{h}$ and $\mathfrak{h}$ is a Cartan subalgebra.

We will show in Theorem 20.10 that all Cartan subalgebras of $\mathfrak{g}$ are conjugate under $\operatorname{Aut}(\mathfrak{g})$, in particular they all have the same dimension, which is called the rank of $\mathfrak{g}$.

### 19.4. Root decomposition.

Proposition 19.11. Let $\mathfrak{g}$ be a semisimple Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra, and $B$ a nondegenerate invariant symmetric bilinear form on $\mathfrak{g}$ (e.g., the Killing form).
(i) We have a decomposition $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha}$, where $\mathfrak{g}_{\alpha}$ is the subspace of $x \in \mathfrak{g}$ such that for $h \in \mathfrak{h}$ we have $[h, x]=\alpha(h) x$, and $R$ is the (finite) set of $\alpha \in \mathfrak{h}^{*}, \alpha \neq 0$, such that $\mathfrak{g}_{\alpha} \neq 0$.
(ii) We have $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right] \subset \mathfrak{g}_{\alpha+\beta}$.
(iii) If $\alpha+\beta \neq 0$ then $\mathfrak{g}_{\alpha}$ and $\mathfrak{g}_{\beta}$ are orthogonal under $B$.
(iv) $B$ restricts to a nondegenerate pairing $\mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha} \rightarrow \mathbf{k}$.

Proof. This immediately follows from Theorem 19.6 .
Definition 19.12. The set $R$ is called the root system of $\mathfrak{g}$ and its elements are called roots.

Proposition 19.13. Let $\mathfrak{g}_{1}, \ldots, \mathfrak{g}_{n}$ be simple Lie algebras and let $\mathfrak{g}=$ $\oplus_{i} \mathfrak{g}_{i}$.
(i) Let $\mathfrak{h}_{i} \subset \mathfrak{g}_{i}$ be Cartan subalgebras of $\mathfrak{g}_{i}$ and $R_{i} \subset \mathfrak{h}_{i}^{*}$ the corresponding root systems of $\mathfrak{g}_{i}$. Then $\mathfrak{h}=\oplus_{i} \mathfrak{h}_{i}$ is a Cartan subalgebra in $\mathfrak{g}$ and the corresponding root system $R$ is the disjoint union of $R_{i}$.
(ii) Each Cartan subalgebra in $\mathfrak{g}$ has the form $\mathfrak{h}=\oplus_{i} \mathfrak{h}_{i}$ where $\mathfrak{h}_{i} \subset \mathfrak{g}_{i}$ is a Cartan subalgebra in $\mathfrak{g}_{i}$.

Proof. (i) is obvious. To prove (ii), given a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$, let $\mathfrak{h}_{i}$ be the projections of $\mathfrak{h}$ to $\mathfrak{g}_{i}$. It is easy to see that $\mathfrak{h}_{i} \subset \mathfrak{g}_{i}$ are Cartan subalgebras. Also $\mathfrak{h} \subset \oplus_{i} \mathfrak{h}_{i}$ and the latter is toral, which implies that $\mathfrak{h}=\oplus_{i} \mathfrak{h}_{i}$ since $\mathfrak{h}$ is a Cartan subalgebra.

Example 19.14. Let $\mathfrak{g}=\mathfrak{s l}_{n}(\mathbf{k})$. Then the subspace of diagonal matrices $\mathfrak{h}$ is a Cartan subalgebra (cf. Example 19.9), and it can be naturally
identified with the space of vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that $\sum_{i} x_{i}=0$. Let $\mathbf{e}_{i}$ be the linear functionals on this space given by $\mathbf{e}_{i}(\mathbf{x})=x_{i}$. We have $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{i \neq j} \mathbf{k} E_{i j}$ and $\left[\mathbf{x}, E_{i j}\right]=\left(x_{i}-x_{j}\right) E_{i j}$. Thus the root system $R$ consists of vectors $\mathbf{e}_{i}-\mathbf{e}_{j} \in \mathfrak{h}^{*}$ for $i \neq j$ (so there are $n(n-1)$ roots).

Now let $\mathfrak{g}$ be a semisimple Lie algebra and $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra. Let (, ) be a nondegenerate invariant symmetric bilinear form on $\mathfrak{g}$, for example the Killing form. Since the restriction of $($,$) to \mathfrak{h}$ is nondegenerate, it defines an isomorphism $\mathfrak{h} \rightarrow \mathfrak{h}^{*}$ given by $h \mapsto(h$, ?). The inverse of this isomorphism will be denoted by $\alpha \mapsto H_{\alpha}$. We also have the inverse form on $\mathfrak{h}^{*}$ which we also will denote by $($,$) ; it is given$ by $(\alpha, \beta):=\alpha\left(H_{\beta}\right)=\left(H_{\alpha}, H_{\beta}\right)$.

Lemma 19.15. For any $e \in \mathfrak{g}_{\alpha}, f \in \mathfrak{g}_{-\alpha}$ we have

$$
[e, f]=(e, f) H_{\alpha}
$$

Proof. We have $[e, f] \in \mathfrak{h}$ so it is enough to show that the inner product of both sides with any $h \in \mathfrak{h}$ is the same. We have

$$
([e, f], h)=(e,[f, h])=\alpha(h)(e, f)=\left((e, f) H_{\alpha}, h\right),
$$

as desired.
Lemma 19.16. (i) If $\alpha$ is a root then $(\alpha, \alpha) \neq 0$.
(ii) Let $e \in \mathfrak{g}_{\alpha}, f \in \mathfrak{g}_{-\alpha}$ be such that $(e, f)=\frac{2}{(\alpha, \alpha)}$, and let $h_{\alpha}:=$ $\frac{2 H_{\alpha}}{(\alpha, \alpha)}$. Then $e, f, h_{\alpha}$ satisfy the commutation relations of the Lie algebra $\mathfrak{s l}_{2}$.
(iii) $h_{\alpha}$ is independent on the choice of $($,$) .$

Proof. (i) Pick $e \in \mathfrak{g}_{\alpha}, f \in \mathfrak{g}_{-\alpha}$ with $(e, f) \neq 0$. Let $h:=[e, f]=$ $(e, f) H_{\alpha}$ (by Lemma 19.15) and consider the Lie algebra $\mathfrak{a}$ generated by $e, f, h$. Then we see that

$$
[h, e]=\alpha(h) e=(\alpha, \alpha)(e, f) e,[h, f]=-\alpha(h) f=(\alpha, \alpha)(e, f) f
$$

Thus if $(\alpha, \alpha)=0$ then $\mathfrak{a}$ is a solvable Lie algebra. By Lie's theorem, we can choose a basis in $\mathfrak{g}$ such that operators ade, $\operatorname{ad} f, \operatorname{ad} h$ are upper triangular. Since $h=[e, f]$, ad $h$ will be strictly upper-triangular and thus nilpotent. But since $h \in \mathfrak{h}$, it is also semisimple. Thus, $\operatorname{ad} h=0$, so $h=0$ as $\mathfrak{g}$ is semisimple. On the other hand, $h=(e, f) H_{\alpha} \neq 0$. This contradiction proves the first part of the theorem.
(ii) This follows immediately from the formulas in the proof of (i).
(iii) It's enough to check the statement for a simple Lie algebra, and in this case this is easy since $($,$) is unique up to scaling.$

The Lie subalgebra of $\mathfrak{g}$ spanned by $e, f, h_{\alpha}$, which we've shown to be isomorphic to $\mathfrak{s l}_{2}(\mathbf{k})$, will be denoted by $\mathfrak{s l}_{2}(\mathbf{k})_{\alpha}$ (we will see that $\mathfrak{g}_{\alpha}$ are 1-dimensional so it is independent on the choices).

Proposition 19.17. Let $\mathfrak{a}_{\alpha}=\mathbf{k} H_{\alpha} \oplus \bigoplus_{k \neq 0} \mathfrak{g}_{k \alpha} \subset \mathfrak{g}$. Then $\mathfrak{a}_{\alpha}$ is a Lie subalgebra of $\mathfrak{g}$.

Proof. This follows from the fact that for $e \in \mathfrak{g}_{k \alpha}, f \in \mathfrak{g}_{-k \alpha}$ we have $[e, f]=(e, f) H_{k \alpha}=k(e, f) H_{\alpha}$.

Corollary 19.18. (i) The space $\mathfrak{g}_{\alpha}$ is 1-dimensional for each root $\alpha$ of $\mathfrak{g}$.
(ii) If $\alpha$ is a root of $\mathfrak{g}$ and $k \geq 2$ is an integer then $k \alpha$ is not a root of $\mathfrak{g}$.

Proof. For a root $\alpha$ the Lie algebra $\mathfrak{a}_{\alpha}$ contains $\mathfrak{s l}_{2}(\mathbf{k})_{\alpha}$, so it is a finite dimensional representation of this Lie algebra. Also the kernel of $h_{\alpha}$ on this representation is spanned by $h_{\alpha}$, hence 1-dimensional, and eigenvalues of $h_{\alpha}$ are even integers since $\alpha\left(h_{\alpha}\right)=2$. Thus by the representation theory of $\mathfrak{s l}_{2}$ (Subsection 11.4), this representation is irreducible, i.e., eigenspaces of $h_{\alpha}$ (which are $\mathfrak{g}_{k \alpha}$ and $\mathbf{k} H_{\alpha}$ ) are 1-dimensional. Therefore the map $[e, ?]: \mathfrak{g}_{\alpha} \rightarrow \mathfrak{g}_{2 \alpha}$ is zero (as $\mathfrak{g}_{\alpha}$ is spanned by $e$ ). So again by representation theory of $\mathfrak{s l}_{2}$ we have $\mathfrak{g}_{k \alpha}=0$ for $|k| \geq 2$.

Theorem 19.19. Let $\mathfrak{g}$ be a semisimple Lie algebra with Cartan subalgebra $\mathfrak{h}$ and root decomposition $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha}$. Let (, ) be a nondegenerate symmetric invariant bilinear form on $\mathfrak{g}$.
(i) $R$ spans $\mathfrak{h}^{*}$ as a vector space, and elements $h_{\alpha}, \alpha \in R$ span $\mathfrak{h}$ as a vector space.
(ii) For any two roots $\alpha, \beta$, the number $a_{\alpha, \beta}:=\beta\left(h_{\alpha}\right)=\frac{2(\alpha, \beta)}{(\alpha, \alpha)}$ is an integer.
(iii) For $\alpha \in R$, define the reflection operator $s_{\alpha}: \mathfrak{h}^{*} \rightarrow \mathfrak{h}^{*}$ by

$$
s_{\alpha}(\lambda)=\lambda-\lambda\left(h_{\alpha}\right) \alpha=\lambda-2 \frac{(\lambda, \alpha)}{(\alpha, \alpha)} \alpha .
$$

Then for any roots $\alpha, \beta, s_{\alpha}(\beta)$ is also a root.
(iv) For roots $\alpha, \beta \neq \pm \alpha$, the subspace $V_{\alpha, \beta}=\oplus_{k \in \mathbb{Z}} \mathfrak{g}_{\beta+k \alpha} \subset \mathfrak{g}$ is an is an irreducible representation of $\mathfrak{s l}_{2}(\mathbf{k})_{\alpha}$.

Proof. (i) Suppose $h \in \mathfrak{h}$ is such that $\alpha(h)=0$ for all roots $\alpha$. Then $\operatorname{ad} h=0$, hence $h=0$ as $\mathfrak{g}$ is semisimple. This implies both statements.
(ii) $a_{\alpha, \beta}$ is the eigenvalue of $h_{\alpha}$ on $e_{\beta}$, hence an integer by the representation theory of $\mathfrak{s l}_{2}$ (Subsection 11.4).
(iii) Let $x \in \mathfrak{g}_{\beta}$ be nonzero. If $\beta\left(h_{\alpha}\right) \geq 0$ then let $y=f_{\alpha}^{\beta\left(h_{\alpha}\right)} x$. If $\beta\left(h_{\alpha}\right) \leq 0$ then let $y=e_{\alpha}^{-\beta\left(h_{\alpha}\right)} x$. Then by representation theory of $\mathfrak{s l}_{2}$, $y \neq 0$. We also have $[h, y]=s_{\alpha}(\beta)(h) y$. This implies the statement.
(iv) It is clear that $V_{\alpha, \beta}$ is a representation. Also all $h_{\alpha}$-eigenspaces in $V_{\alpha, \beta}$ are 1-dimensional, and the eigenvalues are either all odd or all even. This implies that it is irreducible.

Corollary 19.20. Let $\mathfrak{h}_{\mathbb{R}}$ be the $\mathbb{R}$-span of $h_{\alpha}$. Then $\mathfrak{h}=\mathfrak{h}_{\mathbb{R}} \oplus i \mathfrak{h}_{\mathbb{R}}$ and the restriction of the Killing form to $\mathfrak{h}_{\mathbb{R}}$ is real-valued and positive definite.
Proof. It follows from the previous theorem that the eigenvalues of $\mathrm{ad} h$, $h \in \mathfrak{h}_{\mathbb{R}}$, are real. So $\mathfrak{h}_{\mathbb{R}} \cap i \mathfrak{h}_{\mathbb{R}}=0$, which implies the first statement. Now, $K(h, h)=\sum_{i} \lambda_{i}^{2}$ where $\lambda_{i}$ are the eigenvalues of ad $h$ (which are not all zero if $h \neq 0$ ). Thus $K(h, h)>0$ if $h \neq 0$.

MIT OpenCourseWare
https://ocw.mit.edu

### 18.745 Lie Groups and Lie Algebras I

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

