
19. Structure of semisimple Lie algebras, I

19.1. Semisimple elements. Let x be an element of a Lie algebra
g over an algebraically closed field k. Let gλ ⊂ g be the generalized
eigenspace of adx with eigenvalue λ. Then g = ⊕λgλ.
Lemma 19.1. We have [gλ, gµ] ⊂ gλ+µ.

Proof. Let y ∈ gλ, z ∈ gµ. We have

(adx− λ− µ)N([y, z]) =∑
p+q+r+s=N

(−1)r+s
N !

p!q!r!s!
λrµs[(adx)p(y), (adx)q(z)] =

∑
k+`=N

N !

k!`!
[(adx− λ)k(y), (adx− µ)`(z)].

Thus if (adx− λ)n(y) = 0 and (adx− µ)m(z) = 0 then

(adx− λ− µ)m+n([y, z]) = 0,

so [y, z] ∈ gλ+µ. �

Definition 19.2. An element x of a Lie algebra g is called semisimple
if the operator adx is semisimple and nilpotent if this operator is
nilpotent.

It is clear that any element which is both semisimple and nilpotent
is central, so for a semisimple Lie algebra it must be zero. Note also
that for g = sln(k) this coincides with the usual definition.

Proposition 19.3. Let g be a semisimple Lie algebra over a field of
characteristic zero. Then every element x ∈ g has a unique decom-
position as x = xs + xn, where xs is semisimple, xn is nilpotent and
[xs, xn] = 0. Moreover, if y ∈ g and [x, y] = 0 then [xs, y] = [xn, y] = 0.

Proof. Recall that g ⊂ gl(g) via the adjoint representation. So we can
consider the Jordan decomposition x = xs + xn, with xs, xn ∈ gl(g).
We have xs(y) = λy for y ∈ gλ. Thus y 7→ xs(y) is a derivation of
g by Lemma 19.1. But by Proposition 17.9 every derivation of g is
inner, which implies that xs ∈ g, hence xn ∈ g. It is clear that xs is
semisimple, xn is nilpotent, and [xs, xn] = 0. Also if [x, y] = 0 then ady
preserves gλ for all λ, hence [xs, y] = 0 as linear operators on g and thus
as elements of g. This also implies that the decomposition is unique
since if x = x′s + x′n then [xs, x

′
s] = [xn, x

′
n] = 0, so xs− x′s = x′n− xn is

both semisimple and nilpotent, hence zero. �

Corollary 19.4. Any semisimple Lie algebra g 6= 0 over a field of
characteristic zero contains nonzero semisimple elements.
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Proof. Otherwise, by Proposition 19.3, every element x ∈ g is nilpo-
tent, which by Engel’s theorem would imply that g is nilpotent, hence
solvable, hence zero. �

19.2. Toral subalgebras. From now on we assume that char(k) = 0
unless specified otherwise.

Definition 19.5. An abelian Lie subalgebra h ⊂ g is called a toral
subalgebra if it consists of semisimple elements.

Proposition 19.6. Let g be a semisimple Lie algebra, h ⊂ g a toral
subalgebra, and B a nondegenerate invariant symmetric bilinear form
on g (e.g., the Killing form).

(i) We have a decomposition g = ⊕α∈h∗gα, where gα is the subspace
of x ∈ g such that for h ∈ h we have [h, x] = α(h)x, and g0 ⊃ h.

(ii) We have [gα, gβ] ⊂ gα+β.
(iii) If α + β 6= 0 then gα and gβ are orthogonal under B.
(iv) B restricts to a nondegenerate pairing gα × g−α → k.

Proof. (i) is just the joint eigenspace decomposition for h acting in g.
(ii) is a very easy special case of Lemma 19.1. (iii) and (iv) follow from
the fact that B is nondegenerate and invariant. �

Corollary 19.7. (i) The Lie subalgebra g0 ⊂ g is reductive.
(ii) if x ∈ g0 then xs, xn ∈ g0.

Proof. (i) This follows from Proposition 16.14 and the fact that the
form (x, y) 7→ Tr|g(xy) on g0 is nondegenerate (Proposition 19.6(iv) for
the Killing form of g).

(ii) We have [h, x] = 0 for h ∈ h, so [h, xs] = 0, hence xs ∈ g0. �

19.3. Cartan subalgebras.

Definition 19.8. A Cartan subalgebra of a semisimple Lie algebra
g is a toral subalgebra h ⊂ g such that g0 = h.

Example 19.9. Let g = sln(k). Then the subalgebra h ⊂ g of diagonal
matrices is a Cartan subalgebra.

It is clear that any Cartan subalgebra is a maximal toral subalgebra
of g. The following theorem, stating the converse, shows that Cartan
subalgebras exist.

Theorem 19.10. Let h be a maximal toral subalgebra of g. Then h is
a Cartan subalgebra.
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Proof. Let x ∈ g0, then by Corollary 19.7(ii) xs ∈ g0, so xs ∈ h by
maximality of h. Thus adx|g0 = adxn|g0 is nilpotent. So by Engel’s
theorem g0 is nilpotent. But it is also reductive, hence abelian.

Now let us show that every x ∈ g0 which is nilpotent in g must be
zero. Indeed, in this case, for any y ∈ g0, the operator adx ·ady : g→ g
is nilpotent (as [x, y] = 0), so Tr|g(adx · ady) = 0. But this form is
nondegenerate on g0, which implies that x = 0.

Thus for any x ∈ g0, xn = 0, so x = xs is semisimple. Hence g0 = h
and h is a Cartan subalgebra. �

We will show in Theorem 20.10 that all Cartan subalgebras of g are
conjugate under Aut(g), in particular they all have the same dimension,
which is called the rank of g.

19.4. Root decomposition.

Proposition 19.11. Let g be a semisimple Lie algebra, h ⊂ g a Cartan
subalgebra, and B a nondegenerate invariant symmetric bilinear form
on g (e.g., the Killing form).

(i) We have a decomposition g = h ⊕
⊕

α∈R gα, where gα is the
subspace of x ∈ g such that for h ∈ h we have [h, x] = α(h)x, and R is
the (finite) set of α ∈ h∗, α 6= 0, such that gα 6= 0.

(ii) We have [gα, gβ] ⊂ gα+β.
(iii) If α + β 6= 0 then gα and gβ are orthogonal under B.
(iv) B restricts to a nondegenerate pairing gα × g−α → k.

Proof. This immediately follows from Theorem 19.6. �

Definition 19.12. The set R is called the root system of g and its
elements are called roots.

Proposition 19.13. Let g1, ..., gn be simple Lie algebras and let g =
⊕igi.

(i) Let hi ⊂ gi be Cartan subalgebras of gi and Ri ⊂ h∗i the corre-
sponding root systems of gi. Then h = ⊕ihi is a Cartan subalgebra in
g and the corresponding root system R is the disjoint union of Ri.

(ii) Each Cartan subalgebra in g has the form h = ⊕ihi where hi ⊂ gi
is a Cartan subalgebra in gi.

Proof. (i) is obvious. To prove (ii), given a Cartan subalgebra h ⊂ g,
let hi be the projections of h to gi. It is easy to see that hi ⊂ gi
are Cartan subalgebras. Also h ⊂ ⊕ihi and the latter is toral, which
implies that h = ⊕ihi since h is a Cartan subalgebra. �

Example 19.14. Let g = sln(k). Then the subspace of diagonal matri-
ces h is a Cartan subalgebra (cf. Example 19.9), and it can be naturally
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identified with the space of vectors x = (x1, ..., xn) such that
∑

i xi = 0.
Let ei be the linear functionals on this space given by ei(x) = xi. We
have g = h ⊕

⊕
i6=j kEij and [x, Eij] = (xi − xj)Eij. Thus the root

system R consists of vectors ei−ej ∈ h∗ for i 6= j (so there are n(n−1)
roots).

Now let g be a semisimple Lie algebra and h ⊂ g a Cartan subal-
gebra. Let (, ) be a nondegenerate invariant symmetric bilinear form
on g, for example the Killing form. Since the restriction of (, ) to h is
nondegenerate, it defines an isomorphism h→ h∗ given by h 7→ (h, ?).
The inverse of this isomorphism will be denoted by α 7→ Hα. We also
have the inverse form on h∗ which we also will denote by (, ); it is given
by (α, β) := α(Hβ) = (Hα, Hβ).

Lemma 19.15. For any e ∈ gα, f ∈ g−α we have

[e, f ] = (e, f)Hα.

Proof. We have [e, f ] ∈ h so it is enough to show that the inner product
of both sides with any h ∈ h is the same. We have

([e, f ], h) = (e, [f, h]) = α(h)(e, f) = ((e, f)Hα, h),

as desired. �

Lemma 19.16. (i) If α is a root then (α, α) 6= 0.
(ii) Let e ∈ gα, f ∈ g−α be such that (e, f) = 2

(α,α)
, and let hα :=

2Hα
(α,α)

. Then e, f, hα satisfy the commutation relations of the Lie algebra

sl2.
(iii) hα is independent on the choice of (, ).

Proof. (i) Pick e ∈ gα, f ∈ g−α with (e, f) 6= 0. Let h := [e, f ] =
(e, f)Hα (by Lemma 19.15) and consider the Lie algebra a generated
by e, f, h. Then we see that

[h, e] = α(h)e = (α, α)(e, f)e, [h, f ] = −α(h)f = (α, α)(e, f)f.

Thus if (α, α) = 0 then a is a solvable Lie algebra. By Lie’s theorem,
we can choose a basis in g such that operators ade, adf , adh are upper
triangular. Since h = [e, f ], adh will be strictly upper-triangular and
thus nilpotent. But since h ∈ h, it is also semisimple. Thus, adh = 0,
so h = 0 as g is semisimple. On the other hand, h = (e, f)Hα 6= 0.
This contradiction proves the first part of the theorem.

(ii) This follows immediately from the formulas in the proof of (i).
(iii) It’s enough to check the statement for a simple Lie algebra, and

in this case this is easy since (, ) is unique up to scaling. �
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The Lie subalgebra of g spanned by e, f, hα, which we’ve shown to
be isomorphic to sl2(k), will be denoted by sl2(k)α (we will see that gα
are 1-dimensional so it is independent on the choices).

Proposition 19.17. Let aα = kHα⊕
⊕

k 6=0 gkα ⊂ g. Then aα is a Lie
subalgebra of g.

Proof. This follows from the fact that for e ∈ gkα, f ∈ g−kα we have
[e, f ] = (e, f)Hkα = k(e, f)Hα. �

Corollary 19.18. (i) The space gα is 1-dimensional for each root α
of g.

(ii) If α is a root of g and k ≥ 2 is an integer then kα is not a root
of g.

Proof. For a root α the Lie algebra aα contains sl2(k)α, so it is a finite
dimensional representation of this Lie algebra. Also the kernel of hα on
this representation is spanned by hα, hence 1-dimensional, and eigenval-
ues of hα are even integers since α(hα) = 2. Thus by the representation
theory of sl2 (Subsection 11.4), this representation is irreducible, i.e.,
eigenspaces of hα (which are gkα and kHα) are 1-dimensional. There-
fore the map [e, ?] : gα → g2α is zero (as gα is spanned by e). So again
by representation theory of sl2 we have gkα = 0 for |k| ≥ 2. �

Theorem 19.19. Let g be a semisimple Lie algebra with Cartan sub-
algebra h and root decomposition g = h ⊕

⊕
α∈R gα. Let (, ) be a non-

degenerate symmetric invariant bilinear form on g.
(i) R spans h∗ as a vector space, and elements hα, α ∈ R span h as

a vector space.

(ii) For any two roots α, β, the number aα,β := β(hα) = 2(α,β)
(α,α)

is an
integer.

(iii) For α ∈ R, define the reflection operator sα : h∗ → h∗ by

sα(λ) = λ− λ(hα)α = λ− 2
(λ, α)

(α, α)
α.

Then for any roots α, β, sα(β) is also a root.
(iv) For roots α, β 6= ±α, the subspace Vα,β = ⊕k∈Zgβ+kα ⊂ g is an

is an irreducible representation of sl2(k)α.

Proof. (i) Suppose h ∈ h is such that α(h) = 0 for all roots α. Then
adh = 0, hence h = 0 as g is semisimple. This implies both statements.

(ii) aα,β is the eigenvalue of hα on eβ, hence an integer by the repre-
sentation theory of sl2 (Subsection 11.4).
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(iii) Let x ∈ gβ be nonzero. If β(hα) ≥ 0 then let y = f
β(hα)
α x. If

β(hα) ≤ 0 then let y = e
−β(hα)
α x. Then by representation theory of sl2,

y 6= 0. We also have [h, y] = sα(β)(h)y. This implies the statement.
(iv) It is clear that Vα,β is a representation. Also all hα-eigenspaces

in Vα,β are 1-dimensional, and the eigenvalues are either all odd or all
even. This implies that it is irreducible. �

Corollary 19.20. Let hR be the R-span of hα. Then h = hR ⊕ ihR
and the restriction of the Killing form to hR is real-valued and positive
definite.

Proof. It follows from the previous theorem that the eigenvalues of adh,
h ∈ hR, are real. So hR ∩ ihR = 0, which implies the first statement.
Now, K(h, h) =

∑
i λ

2
i where λi are the eigenvalues of adh (which are

not all zero if h 6= 0). Thus K(h, h) > 0 if h 6= 0. �
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