21. Root systems

21.1. Abstract root systems. Let $E \cong \mathbb{R}^{r}$ be a Euclidean space with a positive definite inner product.

Definition 21.1. An abstract root system is a finite set $R \subset E \backslash 0$ satisfying the following axioms:
(R1) R spans E;
(R2) For all $\alpha, \beta \in R$ the number $n_{\alpha \beta}:=\frac{2(\alpha, \beta)}{(\alpha, \alpha)}$ is an integer;
(R3) If $\beta \in R$ then $s_{\alpha}(\beta):=\beta-n_{\alpha \beta} \alpha \in R$.
Elements of R are called roots. The number $r=\operatorname{dim} E$ is called the rank of R.

In particular, taking $\beta=\alpha$ in R 3 yields that R is centrally symmetric, i.e., $R=-R$. Also note that s_{α} is the reflection with respect to the hyperplane $(\alpha, x)=0$, so R3 just says that R is invariant under such reflections.

Note also that if $R \subset E$ is a root system, $\bar{E} \subset E$ a subspace, and $R^{\prime}=R \cap E^{\prime}$ then R^{\prime} is also a root system inside $E^{\prime}=\operatorname{Span}\left(R^{\prime}\right) \subset \bar{E}$.

For a root α the corresponding coroot $\alpha^{\vee} \in E^{*}$ is defined by the formula $\alpha^{\vee}(x)=\frac{2(\alpha, x)}{(\alpha, \alpha)}$. Thus $\alpha^{\vee}(\alpha)=2, n_{\alpha \beta}=\alpha^{\vee}(\beta)$ and $s_{\alpha}(\beta)=$ $\beta-\alpha^{\vee}(\beta) \alpha$.

Definition 21.2. A root system R is reduced if for $\alpha, c \alpha \in R$, we have $c= \pm 1$.

Proposition 21.3. If \mathfrak{g} is a semisimple Lie algebra and $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra then the corresponding set of roots R is a reduced root system, and $\alpha^{\vee}=h_{\alpha}$.

Proof. This follows immediately from Theorem 19.19.
Example 21.4. 1. The root system of $\mathfrak{s l}_{n}$ is called A_{n-1}. In this case, as we have seen in Example 19.14, the roots are $\mathbf{e}_{i}-\mathbf{e}_{j}$, and $s_{\mathbf{e}_{i}-\mathbf{e}_{j}}=(i j)$, the transposition of the i-th and j-th coordinates.
2. The subset $\{1,2,-1,-2\}$ of \mathbb{R} is a root system which is not reduced.

Definition 21.5. Let $R_{1} \subset E_{1}, R_{2} \subset E_{2}$ be root systems. An isomorphism of root systems $\phi: R_{1} \rightarrow R_{2}$ is an isomorphism $\phi: E_{1} \rightarrow E_{2}$ which maps R_{1} to R_{2} and preserves the numbers $n_{\alpha \beta}$.

So an isomorphism does not have to preserve the inner product, e.g. it may rescale it.

21.2. The Weyl group.

Definition 21.6. The Weyl group of a root system R is the group of automorphisms of E generated by s_{α}.

Proposition 21.7. W is a finite subgroup of $O(E)$ which preserves R.
Proof. Since s_{α} are orthogonal reflections, $W \subset O(E)$. By R3, s_{α} preserves R. By R1 an element of W is determined by its action on R, hence W is finite.

Example 21.8. For the root system $A_{n-1}, W=S_{n}$, the symmetric group. Note that for $n \geq 3$, the automorphism $x \mapsto-x$ of R is not in W, so W is, in general, a proper subgroup of $\operatorname{Aut}(R)$.
21.3. Root systems of rank 2. If α, β are linearly independent roots in R and $E^{\prime} \subset E$ is spanned by α, β then $R^{\prime}=R \cap E^{\prime}$ is a root system in E^{\prime} of rank 2. So to classify reduced root systems, it is important to classify reduced root systems of rank 2 first.

Theorem 21.9. Let R be a reduced root system and $\alpha, \beta \in R$ be two linearly independent roots with $|\alpha| \geq|\beta|$. Let ϕ be the angle between α and β. Then we have one of the following possibilities:
(1) $\phi=\pi / 2, n_{\alpha \beta}=n_{\beta \alpha}=0$;
(2a) $\phi=2 \pi / 3,|\alpha|^{2}=|\beta|^{2}, n_{\alpha \beta}=n_{\beta \alpha}=-1$;
(2b) $\phi=\pi / 3,|\alpha|^{2}=|\beta|^{2}, n_{\alpha \beta}=n_{\beta \alpha}=1$;
(3a) $\phi=3 \pi / 4,|\alpha|^{2}=2|\beta|^{2}, n_{\alpha \beta}=-1, n_{\beta \alpha}=-2$;
(3b) $\phi=\pi / 4,|\alpha|^{2}=2|\beta|^{2}, n_{\alpha \beta}=1, n_{\beta \alpha}=2$;
(4a) $\phi=5 \pi / 6,|\alpha|^{2}=3|\beta|^{2}, n_{\alpha \beta}=-1, n_{\beta \alpha}=-3$;
(4b) $\phi=\pi / 6,|\alpha|^{2}=3|\beta|^{2}, n_{\alpha \beta}=1$, $n_{\beta \alpha}=3$.
Proof. We have $(\alpha, \beta)=2|\alpha| \cdot|\beta| \cos \phi$, so $n_{\alpha \beta}=2 \frac{|\beta|}{|\alpha|} \cos \phi$. Thus $n_{\alpha \beta} n_{\beta \alpha}=4 \cos ^{2} \phi$. Hence this number can only take values $0,1,2,3$ (as it is an integer by R 2) and $\frac{n_{\alpha \beta}}{n_{\beta \alpha}}=\frac{|\alpha|^{2}}{|\beta|^{2}}$ if $n_{\alpha \beta} \neq 0$. The rest is obtained by analysis of each case.

In fact, all these possibilities are realized. Namely, we have root systems $A_{1} \times A_{1}, A_{2}, B_{2}=C_{2}$ (the root system of the Lie algebras $\mathfrak{s p}_{4}$ and $\mathfrak{s o}_{5}$, which are in fact isomorphic, consisting of the vertices and midpoints of edges of a square), and G_{2}, generated by α, β with $(\alpha, \alpha)=6,(\beta, \beta)=2,(\alpha, \beta)=-3$, and roots being $\pm \alpha, \pm \beta, \pm(\alpha+\beta)$, $\pm(\alpha+2 \beta), \pm(\alpha+3 \beta), \pm(2 \alpha+3 \beta)$.

Theorem 21.10. Any reduced rank 2 root system R is of the form $A_{1} \times A_{1}, A_{2}, B_{2}$ or G_{2}.

Proof. Pick independent roots $\alpha, \beta \in R$ such that the angle ϕ is as large as possible. Then $\phi \geq \pi / 2$ (otherwise can replace α with $-\alpha$), so we are in one of the cases $1,2 a, 3 a, 4 a$. Now the statement follows by inspection of each case, giving $A_{1} \times A_{1}, A_{2}, B_{2}$ and G_{2} respectively.

Corollary 21.11. If $\alpha, \beta \in R$ are independent roots with $(\alpha, \beta)<0$ then $\alpha+\beta \in R$.

Proof. This is easy to see from the classification of rank 2 root systems.

The root systems of rank 2 are shown in the following picture.

$\mathrm{A}_{1} \times \mathrm{A}_{1}$

A_{2}

$\mathrm{B}_{2} \cong \mathrm{C}_{2}$

G_{2}
21.4. Positive and simple roots. Let R be a reduced root system and $t \in E^{*}$ be such that $t(\alpha) \neq 0$ for any $\alpha \in R$. We say that a root is positive (with respect to t) if $t(\alpha)>0$ and negative if $t(\alpha)<0$. The set of positive roots is denoted by R_{+}and of negative ones by R_{-}, so $R_{+}=-R_{-}$and $R=R_{+} \cup R_{-}$(disjoint union). This decomposition is called a polarization of R; it depends on the choice of t.

Example 21.12. Let R be of type A_{n-1}. Then for $t=\left(t_{1}, \ldots, t_{n}\right)$ we have $t(\alpha) \neq 0$ for all α iff $t_{i} \neq t_{j}$ for any i, j. E.g. suppose $t_{1}>t_{2}>\ldots>t_{n}$, then we have $\mathbf{e}_{i}-\mathbf{e}_{j} \in R_{+}$iff $i<j$. We see that polarizations are in bijection with permutations in S_{n}, i.e., with elements of the Weyl group, which acts simply transitively on them. We will see that this is, in fact, the case for any reduced root system.

Definition 21.13. A root $\alpha \in R_{+}$is simple if it is not a sum of two other positive roots.

Lemma 21.14. Every positive root is a sum of simple roots.
Proof. If α is not simple then $\alpha=\beta+\gamma$ where $\beta, \gamma \in R_{+}$. We have $t(\alpha)=t(\beta)+t(\gamma)$, so $t(\beta), t(\gamma)<t(\alpha)$. If β or γ is not simple, we can continue this process, and it will terminate since t has finitely many values on R.

Lemma 21.15. If $\alpha, \beta \in R_{+}$are simple roots then $(\alpha, \beta) \leq 0$.

Proof. Assume $(\alpha, \beta)>0$. Then $(-\alpha, \beta)<0$ so by Lemma 21.11 $\gamma:=\beta-\alpha$ is a root. If γ is positive then $\beta=\alpha+\gamma$ is not simple. If γ is negative then $-\gamma$ is positive so $\alpha=\beta+(-\gamma)$ is not simple.

Theorem 21.16. The set $\Pi \subset R_{+}$of simple roots is a basis of E.
Proof. We will use the following linear algebra lemma:
Lemma 21.17. Let v_{i} be vectors in a Euclidean space E such that $\left(v_{i}, v_{j}\right) \leq 0$ when $i \neq j$ and $t\left(v_{i}\right)>0$ for some $t \in E^{*}$. Then v_{i} are linearly independent.

Proof. Suppose we have a nontrivial relation

$$
\sum_{i \in I} c_{i} v_{i}=\sum_{i \in J} c_{i} v_{i}
$$

where I, J are disjoint and $c_{i}>0$ (clearly, every nontrivial relation can be written in this form). Evaluating t on this relation, we deduce that both sides are nonzero. Now let us compute the square of the left hand side:

$$
0<\left|\sum_{i \in I} c_{i} v_{i}\right|^{2}=\left(\sum_{i \in I} c_{i} v_{i}, \sum_{j \in J} c_{j} v_{j}\right) \leq 0 .
$$

This is a contradiction.
Now the result follows from Lemma 21.15 and Lemma 21.17,
Thus the set Π of simple roots has r elements: $\Pi=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$.
Example 21.18. Let us describe simple roots for classical root systems. Suppose the polarization is given by $t=\left(t_{1}, \ldots, t_{n}\right)$ with decreasing coordinates. Then:

1. For type A_{n-1}, i.e., $\mathfrak{g}=\mathfrak{s l}_{n}$, the simple roots are $\alpha_{i}:=\mathbf{e}_{i}-\mathbf{e}_{i+1}$, $1 \leq i \leq n-1$.
2. For type C_{n}, i.e., $\mathfrak{g}=\mathfrak{s p}_{2 n}$, the simple roots are

$$
\alpha_{1}=\mathbf{e}_{1}-\mathbf{e}_{2}, \ldots, \alpha_{n-1}=\mathbf{e}_{n-1}-\mathbf{e}_{n}, \alpha_{n}=2 \mathbf{e}_{n}
$$

3. For type B_{n}, i.e., $\mathfrak{g}=\mathfrak{s o}_{2 n+1}$, we have the same story as for C_{n} except $\alpha_{n}=\mathbf{e}_{n}$ rather than $2 \mathbf{e}_{n}$. Thus the simple roots are

$$
\alpha_{1}=\mathbf{e}_{1}-\mathbf{e}_{2}, \ldots, \quad \alpha_{n-1}=\mathbf{e}_{n-1}-\mathbf{e}_{n}, \alpha_{n}=\mathbf{e}_{n} .
$$

4. For type D_{n}, i.e., $\mathfrak{g}=\mathfrak{s o}_{2 n}$, the simple roots are $\alpha_{1}=\mathbf{e}_{1}-\mathbf{e}_{2}, \ldots, \alpha_{n-2}=\mathbf{e}_{n-2}-\mathbf{e}_{n-1}, \alpha_{n-1}=\mathbf{e}_{n-1}-\mathbf{e}_{n}, \alpha_{n}=\mathbf{e}_{n-1}+\mathbf{e}_{n}$.

We thus obtain

Corollary 21.19. Any root $\alpha \in R$ can be uniquely written as $\alpha=$ $\sum_{i=1}^{r} n_{i} \alpha_{i}$, where $n_{i} \in \mathbb{Z}$. If α is positive then $n_{i} \geq 0$ for all i and if α is negative then $n_{i} \leq 0$ for all i.

For a positive root α, its height $h(\alpha)$ is the number $\sum n_{i}$. So simple roots are the roots of height 1 , and the height of $\mathbf{e}_{i}-\mathbf{e}_{j}$ in $R=A_{n-1}$ is $j-i$.
21.5. Dual root system. For a root system R, the set $R^{\vee} \subset E^{*}$ of α^{\vee} for all $\alpha \in R$ is also a root system, such that $\left(R^{\vee}\right)^{\vee}=R$. It is called the dual root system to R. For example, B_{n} is dual to C_{n}, while A_{n-1}, D_{n} and G_{2} are selfdual.

Moreover, it is easy to see that any polarization of R gives rise to a polarization of R^{\vee} (using the image t^{\vee} of t under the isomorphism $E \rightarrow E^{*}$ induced by the inner product), and the corresponding system Π^{\vee} of simple roots consists of α_{i}^{\vee} for $\alpha_{i} \in \Pi$.
21.6. Root and weight lattices. Recall that a lattice in a real vector space E is a subgroup $Q \subset E$ generated by a basis of E. Of course, every lattice is conjugate to $\mathbb{Z}^{n} \subset \mathbb{R}^{n}$ by an element of $G L_{n}(\mathbb{R})$. Also recall that for a lattice $Q \subset E$ the dual lattice $Q^{*} \subset E^{*}$ is the set of $f \in E^{*}$ such that $f(v) \in \mathbb{Z}$ for all $v \in Q$. If Q is generated by a basis \mathbf{e}_{i} of E then Q^{*} is generated by the dual basis \mathbf{e}_{i}^{*}.

In particular, for a root system R we can define the root lattice $Q \subset E$, which is generated by the simple roots α_{i} with respect to some polarization of R. Since Q is also generated by all roots in R, it is independent on the choice of the polarization. Similarly, we can define the coroot lattice $Q^{\vee} \subset E^{*}$ generated by $\alpha^{\vee}, \alpha \in R$, which is just the root lattice of R^{\vee}.

Also we define the weight lattice $P \subset E$ to be the dual lattice to $Q^{\vee}: P=\left(Q^{\vee}\right)^{*}$, and the coweight lattice $P^{\vee} \subset E^{*}$ to be the dual lattice to $Q: P^{\vee}=Q^{*}$, so P^{\vee} is the weight lattice of R^{\vee}. Thus

$$
P=\left\{\lambda \in E:\left(\lambda, \alpha^{\vee}\right) \in \mathbb{Z} \forall \alpha \in R\right\}, P^{\vee}=\left\{\lambda \in E^{*}:(\lambda, \alpha) \in \mathbb{Z} \forall \alpha \in R\right\}
$$

Since for $\alpha, \beta \in R$ we have $\left(\alpha^{\vee}, \beta\right)=n_{\alpha \beta} \in \mathbb{Z}$, we have $Q \subset P$, $Q^{\vee} \subset P^{\vee}$.

Given a system of simple roots $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$, we define fundamental coweights ω_{i}^{\vee} to be the dual basis to α_{i} and fundamental weights ω_{i} to be the dual basis to $\alpha_{i}^{\vee}:\left(\omega_{i}, \alpha_{j}^{\vee}\right)=\left(\omega_{i}^{\vee}, \alpha_{j}\right)=\delta_{i j}$. Thus P is generated by ω_{i} and P^{\vee} by ω_{i}^{\vee}.
Example 21.20. Let R be of type A_{1}. Then $\left(\alpha, \alpha^{\vee}\right)=2$ for the unique positive root α, so $\omega=\frac{1}{2} \alpha$, thus $P / Q=\mathbb{Z} / 2$. More generally, if R is of type A_{n-1} and we identify $Q \cong Q^{\vee}, P \cong P^{\vee}$, then P becomes the set of
$\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n}$ such that $\sum_{i} \lambda_{i}=0$ and $\lambda_{i}-\lambda_{j}=\mathbb{Z}$. So we have a homomorphism $\phi: P \rightarrow \mathbb{R} / \mathbb{Z}$ given by $\phi(\lambda)=\lambda_{i} \bmod \mathbb{Z}($ for any $i)$. Since $\sum_{i} \lambda_{i}=0$, we have $\phi: P \rightarrow \mathbb{Z} / n$, and $\operatorname{Ker} \phi=Q$ (integer vectors with sum zero). Also it is easy to see that ϕ is surjective (we may take $\lambda_{i}=\frac{k}{n}$ for $i \neq n$ and $\lambda_{n}=\frac{k}{n}-k$, then $\left.\phi(\lambda)=\frac{k}{n}\right)$. Thus $P / Q \cong \mathbb{Z} / n$.

MIT OpenCourseWare
https://ocw.mit.edu

18.745 Lie Groups and Lie Algebras I

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

