22. Properties of the Weyl group

22.1. Weyl chambers. Suppose we have two polarizations of a root system R defined by $t, t' \in E$, and Π, Π' are the corresponding systems of simple roots. Are Π, Π' equivalent in a suitable sense? The answer turns out to be yes. To show this, we will need the notion of a Weyl chamber.

Note that the polarization defined by t depends only on the signs of (t, α) , so does not change when t is continuously deformed without crossing the hyperplanes $(t, \alpha) = 0$. This motivates the following definition:

Definition 22.1. A Weyl chamber is a connected component of the complement of the root hyperplanes L_{α} given by the equations $(\alpha, x) = 0$ in E ($\alpha \in R$).

Thus a Weyl chamber is defined by a system of strict homogeneous linear inequalities $\pm(\alpha, x) = 0$, $\alpha \in R$. More precisely, the set of solutions of such a system is either empty or a Weyl chamber.

Thus the polarization defined by t depends only on the Weyl chamber containing t.

The following lemma is geometrically obvious.

Lemma 22.2. (i) The closure \overline{C} of a Weyl chamber C is a convex cone.

(ii) The boundary of \overline{C} is a union of codimension 1 faces F_i which are convex cones inside one of the root hyperplanes defined inside it by a system of non-strict homogeneous linear inequalities.

The root hyperplanes containing the faces F_i are called the **walls** of C.

We have seen above that every Weyl chamber defines a polarization of R. Conversely, every polarization defines the corresponding **positive Weyl chamber** C_+ defined by the conditions $(\alpha, x) > 0$ for $\alpha \in R_+$ (this set is nonempty since it contains t, hence is a Weyl chamber). Thus C_+ is the set of vectors of the form $\sum_{i=1}^r c_i \omega_i$ with $c_i > 0$. So C_+ has r faces $L_{\alpha_1} \cap \overline{C}_+, ..., L_{\alpha_r} \cap \overline{C}_+$.

Lemma 22.3. These assignments are mutually inverse bijections between polarizations of R and Weyl chambers.

Exercise 22.4. Prove Lemma 22.3.

Since the Weyl group W permutes the roots, it acts on the set of Weyl chambers.

Theorem 22.5. W acts transitively on the set of Weyl chambers.

Proof. Let us say that Weyl chambers C, C' are **adjacent** if they share a common face $F \subset L_{\alpha}$. In this case it is easy to see that $s_{\alpha}(C) = C'$. Now given any Weyl chambers C, C', pick generic $t \in C, t' \in C'$ and connect them with a straight segment. This will define a sequence of Weyl chambers visited by this segment: $C_0 = C, C_1, ..., C_m = C'$, and C_i, C_{i+1} are adjacent for each *i*. So C_i, C_{i+1} lie in the same *W*-orbit. Hence so do C, C'.

Corollary 22.6. Every Weyl chamber has r walls.

Proof. This follows since it is true for the positive Weyl chamber and by Theorem 22.5 the Weyl group acts transitively on the Weyl chambers. \Box

Corollary 22.7. Any two polarizations of R are related by the action of an element $w \in W$. Thus if Π, Π' are systems of simple roots corresponding to two polarizations then there is $w \in W$ such that $w(\Pi) = \Pi'$.

22.2. Simple reflections. Given a polarization of R and the corresponding system of simple roots $\Pi = \{\alpha_1, ..., \alpha_r\}$, the simple reflections are the reflections s_{α_i} , denoted by s_i .

Lemma 22.8. For every Weyl chamber C there exist $i_1, ..., i_m$ such that $C = s_{i_1}...s_{i_m}(C_+)$.

Proof. Pick $t \in C, t_+ \in C_+$ generically and connect them with a straight segment as before. Let m be the number of chamber walls crossed by this segment. The proof is by induction in m (with obvious base). Let C' be the chamber entered by our segment from C and L_{α} the wall separating C, C', so that $C = s_{\alpha}(C')$. By the induction assumption $C' = u(C_+)$, where $u = s_{i_1} \dots s_{i_{m-1}}$. So $L_{\alpha} = u(L_{\alpha_j})$ for some j. Thus $s_{\alpha} = us_j u^{-1}$. Hence $C = s_{\alpha}(C') = s_{\alpha}u(C_+) = us_j(C_+)$, so we get the result with $i_m = j$.

Corollary 22.9. (i) The simple reflections s_i generate W; (ii) $W(\Pi) = R$.

Proof. (i) This follows since for any root α , the hyperplane L_{α} is a wall of some Weyl chamber, so s_{α} is a product of s_i .

(ii) Follows from (i).

Thus R can be reconstructed from Π as $W(\Pi)$, where W is the subgroup of O(E) generated by s_i .

Example 22.10. For root system A_{n-1} part (i) says that any element of S_n is a product of transpositions of neighbors.

22.3. Length of an element of the Weyl group. Let us say that a root hyperplane L_{α} separates two Weyl chambers C, C' if they lie on different sides of L_{α} .

Definition 22.11. The length $\ell(w)$ of $w \in W$ is the number of root hyperplanes separating C_+ and $w(C_+)$.

We have $t \in C_+, w(t) \in w(C_+)$, so $\ell(w)$ is the number of roots α such that $(t, \alpha) > 0$ but $(w(t), \alpha) = (t, w^{-1}\alpha) < 0$. Note that if α is a root satisfying this condition then $\beta = -w^{-1}\alpha$ satisfies the conditions $(t, \beta) > 0, (t, w\beta) < 0$. Thus $\ell(w) = \ell(w^{-1})$ and $\ell(w)$ is the number of positive roots which are mapped by w to negative roots. Note also that the notion of length depends on the polarization of R (as it refers to the positive chamber C_+ defined using the polarization).

Example 22.12. Let s_i be a simple reflection. Then $s_i(C_+)$ is adjacent to C_+ , with the only separating hyperplane being L_{α_i} . Thus $\ell(s_i) = 1$. It follows that the only positive root mapped by s_i to a negative root is α_i (namely, $s_i(\alpha_i) = -\alpha_i$), and thus s_i permutes $R_+ \setminus \{\alpha_i\}$.

Proposition 22.13. Let $\rho = \frac{1}{2} \sum_{\alpha \in R_+} \alpha$. Then $(\rho, \alpha_i^{\vee}) = 1$ for all *i*. Thus $\rho = \sum_{i=1}^r \omega_i$.

Proof. We have $\rho = \frac{1}{2}\alpha_i + \frac{1}{2}\sum_{\alpha \in R_+, \alpha \neq \alpha_i} \alpha$. Since s_i permutes $R_+ \setminus \{\alpha_i\}$, we get $s_i \rho = \rho - \alpha_i$. But for any λ , $s_i \lambda = \lambda - (\lambda, \alpha_i^{\vee})\alpha_i$. This implies the statement.

The weight ρ plays an important role in representation theory of semisimple Lie algebras. For instance, it occurs in the Weyl character formula for these representations which we will soon derive.

Theorem 22.14. Let $w = s_{i_1}...s_{i_l}$ be a representation of $w \in W$ as a product of simple reflections that has minimal possible length. Then $l = \ell(w)$.

Proof. As before, define a chain of Weyl chambers $C_k = s_{i_1} \dots s_{i_k}(C_+)$, so that $C_0 = C_+$ and $C_l = w(C_+)$. We have seen that C_k and C_{k-1} are adjacent. So there is a zigzag path from C_+ to $w(C_+)$ that intersects at most l root hyperplanes (namely, the segment from C_{k-1} to C_k intersects only one hyperplane). Thus $\ell(w) \leq l$. On the other hand, pick generic points in C_+ and $w(C_+)$ and connect them with a straight segment. This segment intersects every separating root hyperplane exactly once and does not intersect other root hyperplanes, so produces an expression of w as a product of $\ell(w)$ simple reflections. This implies the statement. \Box

An expression $w = s_{i_1}...s_{i_l}$ is called **reduced** if $l = \ell(w)$.

Proposition 22.15. The Weyl group W acts simply transitively on Weyl chambers.

Proof. By Theorem 22.5 the action is transitive, so we just have to show that if $w(C_+) = C_+$ then w = 1. But in this case $\ell(w) = 0$, so w has to be a product of zero simple reflections, i.e., indeed w = 1.

Thus we see that \overline{C}_+ is a *fundamental domain* of the action of W on E.

Moreover, we have

Proposition 22.16. $E/W = \overline{C}_+$, *i.e.*, every *W*-orbit on *E* has a unique representative in \overline{C}_+ .

Proof. Suppose $\lambda, \mu \in \overline{C}_+$ and $\lambda = w\mu$, where $w \in W$ is shortest possible. Assume the contrary, that $w \neq 1$. Pick a reduced decomposition $w = s_{i_l} \dots s_{i_1}$. Let γ be the positive root which is mapped to a negative root by w but not by $s_{i_l}w$, i.e., $\gamma = s_{i_1} \dots s_{i_{l-1}}\alpha_{i_l}$. Then $0 \leq (\mu, \gamma) = (\lambda, w\gamma) \leq 0$. so $(\mu, \gamma) = 0$. Thus

$$\lambda = w\mu = s_{i_1} \dots s_{i_1}\mu = s_{i_{l-1}} \dots s_{i_1} s_{\gamma}\mu = s_{i_{l-1}} \dots s_{i_1}\mu$$

which is a contradiction since w was the shortest possible.

Corollary 22.17. Let $C_{-} = -C_{+}$ be the negative Weyl chamber. Then there exists a unique $w_0 \in W$ such that $w_0(C_{+}) = C_{-}$. We have $\ell(w_0) = |R_{+}|$ and for any $w \neq w_0$, $\ell(w) < \ell(w_0)$. Also $w_0^2 = 1$.

Exercise 22.18. Prove Corollary 22.17.

The element w_0 is therefore called the **longest element** of W.

Example 22.19. For the root system A_{n-1} the element w_0 is the order reversing involution: $w_0(1, 2, ..., n) = (n, ..., 2, 1)$.

18.745 Lie Groups and Lie Algebras I Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.