24. Construction of a semisimple Lie algebra from a Dynkin
diagram

24.1. Serre relations. Let k be an algebraically closed field of char-
acteristic zero. We would like to show that any reduced root system
gives rise to a semisimple Lie algebra over k, and moreover a unique
one. To this end, it suffices to show that any reduced irreducible root
system gives rise to a unique (finite dimensional) simple Lie algebra.

Let g be a finite dimensional simple Lie algebra over k with Cartan
subalgebra h C g and root system R C b* (which is thus reduced
and irreducible). Fix a polarization of R with the set of simple roots
II = (ay,...,a,), and let A = (a;;) be the Cartan matrix of R. We have
a decomposition g = ny @ h ® n_, where ny = Bpecr, g are the Lie
subalgebras spanned by positive, respectively negative root vectors.
Pick elements e; € g,,, fi € g_a, so that e;, f;,h; = [e;, f;] form an
sla-triple.

Theorem 24.1. (Serre relations) (i) The elements e;, fi, hi,i=1,...,r
generate g.
(ii) These elements satisfy the following relations:

(hi, hj] =0, [hi,e;] = aijej, [hi, ;] = —aiifj, e, fi] = 0ijhi,
(ade,-)l_“ijej = O, (adfl-)l_“"jfj = O, Z 75 j

The last two sets of relations are called Serre relations. Note that
if a;; = 0 then the Serre relations just say that [e;, e;] = [f;, f;] = 0.

Proof. (i) We know that h; form a basis of b, so it suffices to show that
e; generate n, and f; generate n_. We only prove the first statement,
the second being the same for the opposite polarization.

Let 0/, C ny be the Lie subalgebra generated by e;. It is clear that
0 = Dac R, 9o Where R, C R,. Assume the contrary, that R/, # R,.
Pick a € R, \ R/, with the smallest height (it is not a simple root).
Then go—a;, C W, 50 [€i, §a—a;) = 0. Let 2 € g_, be a nonzero element.
We have

([z,eil,y) = (2, ]ei,y]) = 0
for any y € ga—qa;- Thus [z,e;] = 0 for all 4, which implies, by the
representation theory of sly (Subsection 11.4), that (o, ;") < 0 for all
i, hence (o, ;) < 0 for all 7. This would imply that (a,a) < 0, a
contradiction. This proves (i).

(ii) All the relations except the Serre relations follow from the def-
inition and properties of root systems. So only the Serre relations re-

quire proof. We prove only the relation involving f;, the other one
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being the same for the opposite polarization. Consider the (sl);-
submodule M;; of g generated by f;. It is finite dimensional and

we have [h;, fj] = —a;;fj, |ei, fj] = 0. Thus by the representation
theory of sl (Subsection 11.4) we must have M;; = V_, . Hence
(ad f)) o1 f; =0, 0

24.2. The Serre presentation for semisimple Lie algebras. Now
for any reduced root system R let g(R) be the Lie algebra generated
by e;, fi,hi,t = 1,...,r, with defining relations being the relations
of Theorem 24.1. Precisely, this means that g(R) is the quotient of
the free Lie algebra F L3, with generators e;, f;, h; modulo the Lie ideal
generated by the differences of the left and right hand sides of these
relations.

Theorem 24.2. (Serre) (i) The Lie subalgebra ny of g(R) generated
by e; has the Serre relations (ade;)'"%ie; = 0 as the defining relations.
Similarly, the Lie subalgebra n_ of g(R) generated by f; has the Serre
relations (adf;)'~%if; = 0 as the defining relations. In particular,
ei, fi # 0 in g(R). Moreover, h; are linearly independent.

(i1) g(R) is a sum of finite dimensional modules over every simple
root subalgebra (sly); = (e;, fi, hi).

(111) g(R) is finite dimensional.

(iv) g(R) is semisimple and has root system R.

Proof. 1t is easy to see that g(Ry U R2) = g(R1) @ g(R2), so it suffices
to prove the theorem for irreducible root systems.

(i) Consider the (in general, infinite dimensional) Lie algebra g(R)
generated by e;, f;, h; with the defining relations of Theorem 24.1 with-
out the Serre relations. This Lie algebra is Z-graded, with deg(e;) = 1,
deg(f;) = —1, deg(h;) = 0. Thus we have a decomposition

g(R)=ny@hen,
where n, H and n_ are Lie subalgebras spanned by elements of positive,
zero and negative degree, respectively. Moreover, it is easy to see that
n, is generated by e;, n_ is generated by f;, and b is spanned by h;
(indeed, any commutator can be simplified to have only e;, only f;, or
only a single h;).
Lemma 24.3. (i) The Lie algebra vy is free on the generators e; and

n_ s free on the generators f;. N N
(i1) h; are linearly independent in § (i.e., h =h).

Proof. (i) We prove only the second statement, the first one being the

same for the opposite polarization. Let b’ be a vector space with basis
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hi, i =1,...,r and consider the Lie algebra a := ' x FL,, where F'L,
is freely generated by fi, ..., f; and

Consider the universal enveloping algebra
U=U(a) =Kk[h], ... x k{f], ..., [1),

T

which as a vector space is naturally identified with the tensor product
k{fi,..., fr) @Kk[R}, ..., ], via f ® h — fh (by Proposition 14.4). Now

—~—

define an action of g(R) on the space U as follows. For P € k[h], ..., h!]
and w a word in f! of weight —«, we set

hi(w® P) =w® (h, — a(h))P, filw® P) = flw® P,
eilf) o fl @P) = > il fh @ (W= (e, + oo + ) (hi))P

k:jr=i
(where the hat means that the corresponding factor is omitted). It is
easy to check that this indeed defines an action, i.e., the relations of

—_~—

g(R) are satisfied (check it!). Thus we have a linear map g(R) — U
given by x — x(1). The restriction of this map to the Lie subalgebra
n_is a map ¢ : n_ — FL, which sends every iterated commutator of
fi to itself. This implies that ¢ is an isomorphism, i.e., n_ is free.

(ii) The elements h;(1) = A/ are linearly independent, hence so are

h;. U

Now consider the element S := (ade;)' “Je; in ny and Sj; :=
(adf;)' = f; in n_. It is easy to check that [fi, S;;] = 0 (this follows
easily from the representation theory of sly, Subsection 11.4,—check it!).
Therefore, setting I, to be the ideal in the Lie algebra n, generated
by S7, and I_ to be the ideal in the Lie algebra n_ generated by S;;

5 K
we see that the ideal of Serre relations in g(R) is I & I_. Lemma 24.3
now implies (i).

(ii) The Serre relations imply that e; generates the representation
V_a,;,; of (slp); for j # 4, and so does f;. Also any element of b generates
Vo or V4 or the sum of the two, and ¢;, f; generate V5. This implies (ii)
since g(R) is generated by e;, f;, h;, and if = generates a representation
X of (sly); and y generates a representation Y then [z,y] generates a
quotient of X ® Y.

(iii) We have g(R) = @acofa, Where g, are the subspaces of g(R) of
weight o, and gy = bh. Let Q4 be the Z -span of ;. Then g, is zero
unless o € ;. or —a € @), and is finite dimensional for any «.

We will now show that if g, # 0 then &« € R or a = 0, which

implies (iii). It suffices to consider @ € ;. We prove the statement
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by induction in the height ht(a) = >, k; where & = ) kjo;. The
base case (height 1) is obvious, so we only need to justify the inductive
step. We have (a,w,;") = k; > 0 for all 7. If there is only one i with
k; > 0 then the statement is clear since g, = 0 if m > 2. (as
n, is generated by e;). So assume that there are at least two such
indices 7. Since (o, ) > 0, there exists ¢ such that (o, ;") > 0. By
the representation theory of sly (Subsection 11.4), g5, # 0. Clearly,
s = o — (a, ) )a; ¢ —Q4 (since k; > 0 for at least two indices j),
so s;a € Q4 but has height smaller than « (as («, ;') > 0). So by the
induction assumption s;« € R, which implies @ € R. This proves (iii).

(iv) We see that g(R) = h © @ ,cg 8o, Where g, are 1-dimensional
(this follows from (ii),(iii) since every root can be mapped to a simple
root by a composition of simple reflections). Let I be a nonzero ideal
in g. Then I D g, for some a # 0. Also, by the representation theory
of sly, Ig # 0 implies I3 # 0 for all w € W. Thus I,, # 0 for some
1, i.e., ¢; € I. Hence h;, f; € I. Now let J be the set of indices j for
which e;, f;,h; € I (or, equivalently, just e; € I); we have shown it is
nonempty. Since [hj,ex] = ajrex, we find that if j € J and a;, # 0
(i.e., k is connected to j in the Dynkin diagram) then k& € J. Since
the Dynkin diagram is connected, J = [1,...,r] and I = g. Thus g is
simple and clearly has root system R. This proves (iv) and completes
the proof of Serre’s theorem. O

Corollary 24.4. Isomorphism classes of simple Lie algebras over k are
in bijection with Dynkin diagrams A,, n > 1, B,, n > 2, C,,, n > 3,
Dn; n Z 4, E67 E7,E8, F4 and GQ.
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