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Introduction

The purpose of group theory is to give a mathematical treatment of
symmetries. For example, symmetries of a set of n elements form the
symmetric group Sn, and symmetries of a regular n-gon – the dihedral
group Dn. Likewise, Lie group theory serves to give a mathematical
treatment of continuous symmetries, i.e., families of symmetries
continuously depending on several real parameters.

The theory of Lie groups was founded in the second half of the 19th
century by the Norwegian mathematician Sophus Lie, after whom it
is named. It was then developed by many mathematicians over the last
150 years, and has numerous applications in mathematics and science,
especially physics.

A prototypical example of a Lie group is the group SO(3) of rota-
tional symmetries of the 2-dimensional sphere; in this case the param-
eters are the Euler angles φ, θ, ψ.

It turns out that unlike ordinary parametrized curves and surfaces,
Lie groups are determined by their linear approximation at the identity
element. This leads to the notion of the Lie algebra of a Lie group.
This notion allows one to reformulate the theory of continuous symme-
tries in purely algebraic terms, which provides an extremely effective
way of studying such symmetries. The goal of these notes is to give a
detailed study of Lie groups and Lie algebras and interactions between
them, with numerous examples.

These notes are based on a year-long introductory course on Lie
groups and Lie algebras given by the author at MIT in 2020-2021 (in
particular, they contain no original material). The first half (Sections
1-26) corresponds to the first semester and follows rather closely the
excellent book “An introduction to Lie groups and Lie algebras” by A.
Kirillov Jr. ([K]), but also discusses some additional topics. Namely,
after a brief review of geometry and topology of manifolds, it covers the
basic theory of Lie groups and Lie algebras, including the three funda-
mental theorems of Lie theory (except the proof of the third theorem,
which is given in the second half). Then it proceeds to nilpotent and
solvable Lie algebras, theorems of Lie and Engel, representations of sl2,
enveloping algebras and the Poincaré-Birkhoff Witt theorem, free Lie
algebras, the Baker-Campbell-Hausdorff formula, and concludes with
a detailed study and classification of complex semisimple Lie algebras,
their representations, and the Weyl character formula.

The second half (starting with Section 27) covers representation the-
ory of GLn and other classical groups, minuscule representations, spin
representations and spin groups, representation theory of compact Lie
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groups (again following [K]) and, more generally, compact topological
groups, including existence of the Haar measure and the Peter-Weyl
theorem. Then it discusses applications to quantum mechanics (a fairly
complete treatment of the hydrogen atom) and proceeds to real forms
of semisimple Lie algebras and groups, discussing the classification of
such forms in terms of Vogan diagrams, maximal tori and maximal
compact subgroups, the polar and Cartan decompositions, and classifi-
cation of connected compact Lie groups and complex reductive groups.
Then we discuss topology of Lie groups and homogeneous spaces (in
particular, their cohomology rings), cohomology of Lie algebras, prove
the third fundamental theorem of Lie theory and Ado’s theorem on the
existence of a faithful representation for a finite dimensional Lie alge-
bra, and conclude with the study of Borel and parabolic subgroups,
the flag manifold of a complex semisimple group and the Iwasawa de-
composition for real groups.

Some other sources covering the same material are [E, FH, Hu, Kn].
Each section roughly corresponds to one 80-minute lecture. Part I

consists of 26 sections, which corresponds to a 1-semester course. Part
II consists of 25 sections, to allow for a review of Part I. Also, a lot
of material is contained in exercises, which are often provided with
detailed hints. These exercises were assigned as homework problems.1

Finally, we note that Lie theory is an inherently synthetic subject.
While the main technical tools ultimately boil down to various parts of
algebra (notably linear algebra and the theory of noncommutative rings
and modules, and, at more advanced stages, algebraic geometry), Lie
theory also relies in important ways on analysis, differential equations,
differential geometry and topology. Thus, while we try to recall basic
notions from these subjects along the way, the reader will need some
degree of dexterity with them, which increases as we dig deeper into
the material.

Acknowledgments. I’d like to thank David Vogan for inspiring
me to write these notes and useful comments, and the students of
the MIT courses “Lie groups and Lie algebras, I,II” for feedback. I am
especially grateful to Frank Wang and Atticus Wang for careful reading
and many corrections to parts I and II, respectively. This work was
partially supported by the NSF grant DMS-2001318.

1During the first semester and at the beginning of the second one homework
problems were also assigned from [K].
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Lie groups and Lie algebras, I
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1. Manifolds

1.1. Topological spaces and groups. Recall that the mathematical
notion responsible for describing continuity is that of a topological
space. Thus, to describe continuous symmetries, we should put this
notion together with the notion of a group. This leads to the concept
of a topological group.

Recall:
• A topological space is a setX, certain subsets of which (including

∅ and X) are declared to be open, so that an arbitrary union and finite
intersection of open sets is open.
• The collection of open sets in X is called the topology of X.
• A subset Z ⊂ X of a topological space X is closed if its comple-

ment is open.
• If X, Y are topological spaces then the Cartesian product X×Y has

a natural product topology in which open sets are (possibly infinite)
unions of products U × V , where U ⊂ X, V ⊂ Y are open.
• Every subset Z ⊂ X of a topological space X carries a natural

induced topology, in which open sets are intersections of open sets
in X with Z.
• A map f : X → Y between topological spaces is continuous if for

every open set V ⊂ Y , the preimage f−1(V ) is open in X.
For example, the open sets of the usual topology of the real line R

are (disjoint) unions of open intervals (a, b), where −∞ ≤ a < b ≤ ∞.

Definition 1.1. A topological group is a group G which is also a
topological space, so that the multiplication map m : G×G→ G and
the inversion map ι : G→ G are continuous.

For example, the group (R,+) of real numbers with the operation of
addition and the usual topology of R is a topological group, since the
functions (x, y) 7→ x+ y and x 7→ −x are continuous. Also a subgroup
of a topological group is itself a topological group, so another example
is rational numbers with addition, (Q,+). This last example is not
a very good model for continuity, however, and shows that general
topological groups are not very well behaved. Thus, we will focus on a
special class of topological groups called Lie groups.

Lie groups are distinguished among topological groups by the prop-
erty that as topological spaces they belong to a very special class called
topological manifolds. So we need to start with reviewing this no-
tion.

1.2. Topological manifolds. Recall:
11



• A neighborhood of a point x ∈ X in a topological space X is an
open set containing x.
• A base for a topological space X is a collection B of open sets in

X such that for every neighborhood U of a point x ∈ X there exists
a neighborhood V ⊂ U of x which belongs to B. Equivalently, every
open set in X is a union of members of B.

For example, open intervals form a base of the usual topology of
R. Moreover, we may take only intervals whose endpoints have ra-
tional coordinates, which gives a countable base for R. Also if X, Y
are topological spaces with bases BX ,BY then products U × V , where
U ∈ BX , V ∈ BY , form a base of the product topology of X × Y . Thus
if X and Y have countable bases, so does X × Y ; in particular, Rn
with its usual (product) topology has a countable base (boxes whose
vertices have rational coordinates).
• X is Hausdorff if any two distinct points have disjoint neighbor-

hoods.
• If X is Hausdorff, we say that a sequence of points xn ∈ X,n ∈ N

converges to x ∈ X as n → ∞ (denoted xn → x) if every neighbor-
hood of x contains almost all terms of this sequence. Then one also
says that the limit of xn is x and writes

lim
n→∞

xn = x.

It is easy to show that the limit is unique when it exists. In a Hausdorff
space with a countable base, a closed set is one that is closed under
taking limits of sequences.
• A Hausdorff space X is compact if every open cover {Uα, α ∈ A}

of X (i.e., Uα ⊂ X for all α ∈ A and X = ∪α∈AUα) has a finite
subcover.
• A continuous map f : X → Y is a homeomorphism if it is a

bijection and f−1 : Y → X is continuous.

Definition 1.2. A Hausdorff topological space X is said to be an n-
dimensional topological manifold if it has a countable base and
for every x ∈ X there is a neighborhood U ⊂ X of x and a continuous
map φ : U → Rn such that φ : U → φ(U) is a homeomorphism and
φ(U) ⊂ Rn is open.

The second property is often formulated as the condition that X is
locally homeomorphic to Rn.

It is true (although not immediately obvious) that if a nonempty
open set in Rn is homeomorphic to one in Rm then n = m. Therefore,
the number n is uniquely determined by X as long as X 6= ∅. It is

12



called the dimension of X. (By convention, ∅ is a manifold of any
integer dimension).

Example 1.3. 1. Obviously X = Rn is an n-dimensional topological
manifold: we can take U = X and φ = Id.

2. An open subset of a topological manifold is itself a topological
manifold of the same dimension.

3. The circle S1 ⊂ R2 defined by the equation x2 + y2 = 1 is a
topological manifold: for example, the point (1, 0) has a neighborhood
U = S1 \ {(−1, 0)} and a map φ : U → R given by the stereographic
projection:

φ(θ) = tan( θ
2
), −π < θ < π.

and similarly for every other point. More generally, the sphere
Sn ⊂ Rn+1 defined by the equation x2

0 + ... + x2
n = 1 is a topologi-

cal manifold, for the same reason. The stereographic projection for the
2-dimensional sphere is shown in the following picture.

4. The curve∞ is not a manifold, since it is not locally homeo-
morphic to R at the self-intersection point (show it!)

A pair (U, φ) with the above properties is called a local chart. An
atlas of local charts is a collection of charts (Uα, φα), α ∈ A such that
∪α∈AUα = X; i.e., {Uα, α ∈ A} is an open cover of X. Thus any
topological manifold X admits an atlas labeled by points of X. There
are also much smaller atlases. For instance, an open set in Rn has an
atlas with just one chart, while the sphere Sn has an atlas with two
charts. Very often X admits an atlas with finitely many charts. For
example, if X is compact then there is a finite atlas, since every atlas
has a finite subatlas. Moreover, there is always a countable atlas, due
to the following lemma:

Lemma 1.4. If X is a topological space with a countable base then
every open cover of X has a countable subcover.

Proof. Let {Vi, i ∈ N} be a countable base of X. If {Uα} is an open
cover of X then for each x ∈ X pick indices i(x) and α(x) such that
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x ∈ Vi(x) ⊂ Uα(x). Let I ⊂ N be the image of the map i. For each j ∈ I
pick x ∈ X such that i(x) = j and set αj := α(x). Then {Uαj , j ∈ I}
is a countable subcover of {Uα}. �

Now let (U, φ) and (V, ψ) be two charts such that V ∩ U 6= ∅. Then
we have the transition map

φ ◦ ψ−1 : ψ(U ∩ V )→ φ(U ∩ V ),

which is a homeomorphism between open subsets in Rn. For example,
consider the atlas of two charts for the circle S1 (Example 1.3(3)), one
missing the point (−1, 0) and the other missing the point (1, 0). Then
φ(θ) = tan( θ

2
) and ψ(θ) = cot( θ

2
), φ(U ∩ V ) = ψ(U ∩ V ) = R \ 0, and

(φ ◦ ψ−1)(x) = 1
x
.

1.3. Ck, real analytic and complex analytic manifolds. The no-
tion of topological manifold is too general for us, since continuous func-
tions on which it is based in general do not admit a linear approxima-
tion. To develop the theory of Lie groups, we need more regularity. So
we make the following definition.

Definition 1.5. An atlas on X is said to be of regularity class Ck,
1 ≤ k ≤ ∞, if all transition maps between its charts are of class Ck

(k times continuously differentiable). An atlas of class C∞ is called
smooth. Also an atlas is said to be real analytic if all transition
maps are real analytic. Finally, if n = 2m is even, so that Rn = Cm,
then an atlas is called complex analytic if all its transition maps are
complex analytic (i.e., holomorphic).

Example 1.6. The two-chart atlas for the circle S1 defined by stereo-
graphic projections (Example 1.3(3)) is real analytic, since the function
f(x) = 1

x
is analytic. The same applies to the sphere Sn for any n. For

example, for S2 it is easy to see that the transition map R2 \0→ R2 \0
is given by the formula

f(x, y) =

(
x

x2 + y2
,

y

x2 + y2

)
.

Using the complex coordinate z = x+ iy, we get

f(z) = z/|z|2 = 1/z.

So this atlas is not complex analytic. But it can be easily made complex
analytic by replacing one of the stereographic projections (φ or ψ) by
its complex conjugate. Then we will have f(z) = 1

z
. On the other

hand, it is known (although hard to prove) that Sn does not admit a
complex analytic atlas for (even) n 6= 2, 6. For n = 6 this is a famous
conjecture.

14



Definition 1.7. Two Ck, real analytic, or complex analytic atlases
Uα, Vβ are said to be compatible if the transition maps between Uα
and Vβ are of the same class (Ck, real analytic, or complex analytic).

It is clear that compatibility is an equivalence relation.

Definition 1.8. A Ck, real analytic, or complex analytic struc-
ture on a topological manifold X is an equivalence class of Ck, real
analytic, or complex analytic atlases. If X is equipped with such a
structure, it is said to be a Ck, real analytic, or complex analytic
manifold. Complex analytic manifolds are also called complex man-
ifolds, and a C∞-manifold is also called smooth. A diffeomorphism
(or isomorphism) between such manifolds is a homeomorphism which
respects the corresponding classes of atlases.

Remark 1.9. This is really a structure and not a property. For
example, consider X = C and Y = D ⊂ C the open unit disk, with the
usual complex coordinate z. It is easy to see that X, Y are isomorphic
as real analytic manifolds. But they are not isomorphic as complex
analytic manifolds: a complex isomorphism would be a holomorphic
function f : C → D, hence bounded, but by Liouville’s theorem any
bounded holomorphic function on C is a constant. Thus we have two
different complex structures on R2 (Riemann showed that there are
no others). Also, it is true, but much harder to show, that there are
uncountably many different smooth structures on R4, and there are 28
(oriented) smooth structures on S7.

Note that the Cartesian product X×Y of manifolds X, Y is naturally
a manifold (of the same regularity type) of dimension dimX + dimY .

Exercise 1.10. Let f1, ..., fm be functions Rn → R which are Ck or real
analytic. Let X ⊂ Rn be the set of points P such that fi(P ) = 0 for all i
and dfi(P ) are linearly independent. Use the implicit function theorem
to show that X is a topological manifold of dimension n−m and equip
it with a natural Ck, respectively real analytic structure. Prove the
analogous statement for holomorphic functions Cn → C, namely that
in this case X is naturally a complex manifold of (complex) dimension
n−m.

1.4. Regular functions. Now let P ∈ X and (U, φ) be a local chart
such that P ∈ U and φ(P ) = 0. Such a chart is called a coordi-
nate chart around P . In particular, we have local coordinates
x1, ..., xn : U → R (or U → C for complex manifolds), which are
just the components of φ, i.e., φ(Q) = (x1(Q), ..., xn(Q). Note that
xi(P ) = 0, and xi(Q) determine Q if Q ∈ U .

15



Definition 1.11. A regular function on an open set V ⊂ X in
a Ck, real analytic, or complex analytic manifold X is a function
f : V → R,C such that f ◦ φ−1

α : φα(V ∩ Uα) → R,C is of the
corresponding regularity class, for some (and then any) atlas (Uα, φα)
defining the corresponding structure on X.2

In other words, f is regular if it is expressed as a regular function
in local coordinates near every point of V . Clearly, this is independent
on the choice of coordinates.

The space (in fact, algebra) of regular functions on V will be denoted
by O(V ).

Definition 1.12. Let V, U be neighborhoods of P ∈ X. Let us say that
f ∈ O(V ), g ∈ O(U) are equal near P if there exists a neighborhood
W ⊂ U ∩ V of P such that f |W = g|W .

It is clear that this is an equivalence relation.

Definition 1.13. A germ of a regular function at P is an equivalence
class of regular functions defined on neighborhoods of P which are
equal near P .

The algebra of germs of regular functions at P is denoted by OP .
Thus we have OP = lim−→ O(U), where the direct limit is taken over

neighborhoods of P .

1.5. Tangent spaces. From now on we will only consider smooth, real
analytic and complex analytic manifolds. By a derivation at P we
will mean a linear map D : OP → R in the smooth and real analytic
case and D : OP → C in the complex analytic case, satisfying the
Leibniz rule

(1.1) D(fg) = D(f)g(P ) + f(P )D(g).

Note that for any such D we have D(1) = 0.
Let TPX be the space of all such derivations. Thus TPX is a real

vector space for smooth and real analytic manifolds and a complex
vector space for complex manifolds.

Lemma 1.14. Let x1, ..., xn be local coordinates at P . Then TPX has
basis D1, ..., Dn, where

Di(f) :=
∂f

∂xi
(0).

2More precisely, for Ck and real analytic manifolds regular functions will be
assumed real-valued, unless specified otherwise. In the complex analytic case there
is, of course, no choice, and regular functions are automatically complex-valued.
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Proof. We may assume X = Rn or Cn, P = 0. Clearly, D1, ..., Dn is a
linearly independent set in TPX. Also let D ∈ TPX, D(xi) = ai, and
consider D∗ := D −

∑
i aiDi. Then D∗(xi) = 0 for all i. Now given

a regular function f near 0, for small x1, ..., xn by the fundamental
theorem of calculus and the chain rule we have:

f(x1, ..., xn) = f(0)+

∫ 1

0

df(tx1, ..., txn)

dt
dt = f(0)+

n∑
i=1

xihi(x1, ..., xn),

where

hi(x1, ..., xn) :=

∫ 1

0

(∂if)(tx1, ..., txn)dt

are regular near 0. So by the Leibniz rule

D∗(f) =
∑
i

D∗(xi)hi(0, ..., 0) = 0,

hence D∗ = 0. �

Definition 1.15. The space TPX is called the tangent space to X
at P . Elements v ∈ TPX are called tangent vectors to X at P .

Observe that every tangent vector v ∈ TPX defines a derivation
∂v : O(U) → R,C for every neighborhood U of P , satisfying (1.1).
The number ∂vf is called the derivative of f along v. For usual
curves and surfaces in R3 these coincide with the familiar notions from
calculus.3

1.6. Regular maps.

Definition 1.16. A continuous map F : X → Y between manifolds
(of the same regularity class) is regular if for any regular function h
on an open set U ⊂ Y the function h ◦ F on F−1(U) is regular. In
other words, F is regular if it is expressed by regular functions in local
coordinates.

It is easy to see that the composition of regular maps is regular, and
that a homeomorphism F such that F, F−1 are both regular is the same
thing as a diffeomorphism (=isomorphism).

Let F : X → Y be a regular map and P ∈ X. Then we can define
the differential of F at P , dPF , which is a linear map TPX → TF (P )Y .
Namely, for f ∈ OF (P ) and v ∈ TPX, the vector dPF · v is defined by
the formula

(dPF · v)(f) := v(f ◦ F ).

3Note however that ∂vf differs from the directional derivative Dvf defined in
calculus. Namely, Dvf = ∂vf

|v| (thus defined only for v 6= 0) and depends only on

the direction of v.
17



The differential of F is also denoted by F∗; namely, for v ∈ TPX one
writes dFP · v = F∗v.

Moreover, if G : Y → Z is another regular map, then we have the
usual chain rule,

d(G ◦ F )P = dGF (P ) ◦ dFP .
In particular, if γ : (a, b)→ X is a regular parametrized curve then
for t ∈ (a, b) we can define the velocity vector γ′(t) ∈ Tγ(t)X by

γ′(t) := dtγ · 1
(where 1 ∈ R = Tt(a, b)).

1.7. Submersions and immersions, submanifolds.

Definition 1.17. A regular map of manifolds F : X → Y is a sub-
mersion if dFP : TPX → TF (P )Y is surjective for all P ∈ X.

The following proposition is a version of the implicit function theo-
rem for manifolds.

Proposition 1.18. If F is a submersion then for any Q ∈ Y , F−1(Q)
is a manifold of dimension dimX − dimY .

Proof. This is a local question, so it reduces to the case when X, Y are
open subsets in Euclidean spaces. In this case it reduces to Exercise
1.10. �

Definition 1.19. A regular map of manifolds f : X → Y is an im-
mersion if dPF : TPX → TF (P )Y is injective for all P ∈ X.

Example 1.20. The inclusion of the sphere Sn into Rn+1 is an immer-
sion. The map F : S1 → R2 given by

(1.2) x(t) =
cos θ

1 + sin2 θ
, y(t) =

sin θ cos θ

1 + sin2 θ

is also an immersion; its image is the lemniscate (shaped as∞). This
shows that an immersion need not be injective. On the other hand, the
map F : R → R2 given by F (t) = (t2, t3) parametrizing a semicubic

parabola≺ is injective, but not an immersion, since F ′(0) = (0, 0).

Definition 1.21. An immersion f : X → Y is an embedding if the
map F : X → F (X) is a homeomorphism (where F (X) is equipped
with the induced topology from Y ). In this case, F (X) ⊂ Y is said to
be an (embedded) submanifold.4

4Recall that a subset Z of a topological space X is called locally closed if it is
a closed subset in an open subset U ⊂ X. It is clear that embedded submanifolds
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Example 1.22. The immersion of Sn into Rn+1 and of (0, 1) into R
are embeddings, but the parametrization of the lemniscate by the circle
given by (1.2) is not. The parametrization of the curveρ by R is also
not an embedding; it is injective but the inverse is not continuous.

Definition 1.23. An embedding F : X → Y of manifolds is closed
if F (X) ⊂ Y is a closed subset. In this case we say that F (X) is a
closed (embedded) submanifold of Y .

Example 1.24. The embedding of Sn into Rn+1 is closed but of (0, 1)
into R is not. Also in Proposition 1.18, f−1(Q) is a closed submanifold
of X.

are locally closed. For this reason they are often called locally closed (embedded)
submanifolds.
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2. Lie groups, I

2.1. The definition of a Lie group.

Definition 2.1. A Ck, real or complex analytic Lie group is a man-
ifold G of the same class, with a group structure such that the multi-
plication map m : G×G→ G is regular.

Thus, in a Lie group G for any g ∈ G the left and right translation
maps Lg, Rg : G→ G, Lg(x) := gx,Rg(x) := xg, are diffeomorphisms.

Proposition 2.2. In a Lie group G, the inversion map ι : G → G is
a diffeomorphism, and dι1 = −Id.

Proof. For the first statement it suffices to show that ι is regular near
1, the rest follows by translation. So let us pick a coordinate chart near
1 ∈ G and write the map m in this chart in local coordinates. Note that
in these coordinates, 1 ∈ G corresponds to 0 ∈ Rn. Since m(x, 0) = x
and m(0, y) = y, the linear approximation of m(x, y) at 0 is x+y. Thus
by the implicit function theorem, the equation m(x, y) = 0 is solved
near 0 by a regular function y = ι(x) with dι(0) = −Id. This proves
the proposition. �

Remark 2.3. A C0 Lie group is a topological group which is a topo-
logical manifold. The Hilbert 5th problem was to show that any
such group is actually a real analytic Lie group (i.e., the regularity
class does not matter). This problem is solved by the deep Gleason-
Yamabe theorem, proved in 1950s. So from now on we will not pay
attention to regularity class and consider only real and complex Lie
groups.

Note that any complex Lie group of dimension n can be regarded as
a real Lie group of dimension 2n. Also the Cartesian product of real
(complex) Lie groups is a real (complex) Lie group.

2.2. Homomorphisms.

Definition 2.4. A homomorphism of Lie groups f : G → H is a
group homomorphism which is also a regular map. An isomorphism
of Lie groups is a homomorphism f which is a group isomorphism,
such that f−1 : H → G is regular.

We will see later that the last condition is in fact redundant.

2.3. Examples.

Example 2.5. 1. (Rn,+) is a real Lie group and (Cn,+) is a complex
Lie group (both n-dimensional).
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2. (R×,×), (R>0,×) are real Lie groups, (C×,×) is a complex Lie
group (all 1-dimensional).

3. S1 = {z ∈ C : |z| = 1} is a 1-dimensional real Lie group under
multiplication of complex numbers.

Note that R× ∼= R>0 × Z/2, C× ∼= R>0 × S1 as real Lie groups
(trigonometric form of a complex number) and (R,+) ∼= (R>0,×) via
x 7→ ex.

4. The groups of invertible n by n matrices: GLn(R) is a real Lie
group and GLn(C) is a complex Lie group. These are open sets in the
corresponding spaces of all matrices and have dimension n2.

5. SU(2), the special unitary group of size 2. This is the set of
complex 2-by-2 matrices A such that

AA† = 1, detA = 1.

So writing

A =

(
a b
c d

)
, A† =

(
a c
b d

)
,

we get

aa+ bb = 1, ac+ bd = 0, cc+ dd = 1.

The second equation implies that (c, d) = λ(−b, a). Then we have

1 = detA = ad− bc = λ(aa+ bb) = λ,

so λ = 1. Thus SU(2) is identified with the set of (a, b) ∈ C2 such that
aa+ bb = 1. Writing a = x+ iy, b = z + it, we have

SU(2) = {(x, y, z, t) ∈ R4 : x2 + y2 + z2 + t2 = 1}.
Thus SU(2) is a 3-dimensional real Lie group which as a manifold is
the 3-dimensional sphere S3 ⊂ R4.

6. Any countable group G with discrete topology (i.e., such that
every set is open) is a (real and complex) Lie group.

2.4. The connected component of 1. Recall:
• A topological space X is path-connected if for any P,Q ∈ X

there is a continuous map x : [0, 1]→ X such that x(0) = P, x(1) = Q
(such x is called a path connecting P to Q).
• If X is any topological space, then for P ∈ X we can define its

path-connected component to be the set XP of Q ∈ X for which
there is a path connecting P to Q. Then XP is the largest path-
connected subset of X containing P . Clearly, the relation that Q
belongs to XP is an equivalence relation, which splits X into equiv-
alence classes called path-connected components. The set of such
components is denoted π0(X).
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• A topological space X is connected if the only subsets of X that
are both open and closed are ∅ and X. For P ∈ X, the connected
component of X is the union XP of all connected subsets of X con-
taining P , which is obviously connected itself (so it is the largest con-
nected subset of X containing P ). A path-connected space X is always
connected but not vice versa (the classic counterexample is the graph
of the function y = sin( 1

x
) together with the interval [−1, 1] of the y-

axis); however, a connected manifold is path-connected (show it!), so
for manifolds the notions of connected component and path-connected
component coincide.
• If Y is a topological space, X is a set and p : Y → X is a surjective

map (i.e., X = Y/ ∼ is the quotient of Y by an equivalence relation)
then X acquires a topology called the quotient topology, in which
open sets are subsets V ⊂ X such that p−1(V ) is open.

Now let G be a real or complex Lie group, and G◦ the connected
component of 1 ∈ G. Then the connected component of any g ∈ G is
gG◦.

Proposition 2.6. (i) G◦ is a normal subgroup of G.
(ii) π0(G) = G/G◦ with quotient topology is a discrete and countable

group.

Proof. (i) Let g ∈ G, a ∈ G◦, and x : [0, 1] → G be a path connecting
1 to a. Then gxg−1 is a path connecting 1 to gag−1, so gag−1 ∈ G◦,
hence G◦ is normal.

(ii) Since G is a manifold, for any g ∈ G, there is a neighborhood
of g contained in Gg = gG◦. This implies that any coset of G◦ in G is
open, hence G/G◦ is discrete. Also G/G◦ is countable since G has a
countable base. �

Thus we see that any Lie group is an extension of a discrete count-
able group by a connected Lie group. This essentially reduces studying
Lie groups to studying connected Lie groups. In fact, one can fur-
ther reduce to simply connected Lie groups, which is done in the next
subsections.
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3. Lie groups, II

3.1. A crash course on coverings. Now we need to review some
more topology. Let X, Y be Hausdorff topological spaces, and
p : Y → X a continuous map. Then p is called a covering if ev-
ery point x ∈ X has a neighborhood U such that p−1(U) is a union
of disjoint open sets (called sheets of the covering) each of which is
mapped homeomorphically onto U by p:

In other words, there exists a homeomorphism h : U × F → p−1(U)
for some discrete space F with (p ◦ h)(u, f) = u for all u ∈ U , f ∈ F .
I.e., informally speaking, a covering is a map that locally on X looks
like the projection X × F → X for some discrete F .

We will consider only coverings with countable fibers, and just call
them coverings. It is clear that a covering of a manifold (Ck, real or
complex analytic) is a manifold of the same type, and the covering map
is regular.

Two paths x0, x1 : [0, 1] → X such that xi(0) = P, xi(1) = Q are
said to be homotopic if there is a continuous map

x : [0, 1]× [0, 1]→ X,

called a homotopy between x0 and x1, such that x(t, 0) = x0(t) and
x(t, 1) = x1(t), x(0, s) = P, x(1, s) = Q. See a movie here:
https://commons.wikimedia.org/wiki/File:Homotopy.gif#/media/

File:HomotopySmall.gif

For example, if x(t) is a path and g : [0, 1] → [0, 1] is a change of
parameter with g(0) = 0, g(1) = 1 then the paths x1(t) = x(t) and
x2(t) = x(g(t)) are clearly homotopic.
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A path-connected Hausdorff space X is said to be simply con-
nected if for any P,Q ∈ X, any paths x0, x1 : [0, 1] → X such that
xi(0) = P, xi(1) = Q are homotopic.

Example 3.1. S1 is not simply connected but Sn is simply connected
for n ≥ 2.

It is easy to show that any covering has a homotopy lifting prop-

erty: if b ∈ X and b̃ ∈ p−1(b) ⊂ Y then any path γ starting at b admits

a unique lift to a path γ̃ starting at b̃, i.e., p(γ̃) = γ. Moreover, if γ1, γ2

are homotopic paths on X then γ̃1, γ̃2 are homotopic on Y (in partic-
ular, have the same endpoint). Thus, if Z is a simply connected space
with a point z then any continuous map f : Z → X with f(z) = b

lifts to a unique continuous map f̃ : Z → Y satisfying f̃(z) = b̃; i.e.,

p ◦ f̃ = f . Namely, to compute f̃(w), pick a path β from z to w, let

γ = f(β) and consider the path γ̃. Then the endpoint of γ̃ is f̃(w),
and it does not depend on the choice of β.

If Z,X are manifolds (of any regularity type), Z is simply connected,

and f : Z → X is a regular map then the lift f̃ : Z → Y is also regular.
Indeed, if we introduce local coordinates on Y using the homeomor-

phism between sheets of the covering and their images then f̃ and f
will be locally expressed by the same functions.

A covering p : Y → X of a path-connected space X is called uni-
versal if Y is simply connected.

If X is a sufficiently nice space, e.g., a manifold, its universal covering

can be constructed as follows. Fix b ∈ X and let X̃b be the set of
homotopy classes of paths on X starting at b. We have a natural map

p : X̃b → X, p(γ) = γ(1). If U ⊂ X is a small ball around a point
x ∈ X then U is simply connected, so we have a natural identification
h : U × F → p−1(U) with (p ◦ h)(u, f) = u, where F = p−1(x) is
the set of homotopy classes of paths from b to x; namely, h(u, f) is
the concatenation of f with any path connecting x with u inside U .
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Here the concatenation γ1 ◦ γ2 of paths γ1, γ2 : [0, 1] → X with
γ2(1) = γ1(0) is the path γ = γ1◦γ2 : [0, 1]→ X such that γ(t) = γ2(2t)
for t ≤ 1/2 and γ(t) = γ1(2t− 1) for t ≥ 1/2.

The topologies on all such p−1(U) induced by these identifications

glue together into a topology on X̃b, and the map p : X̃b → X is then

a covering. Moreover, the homotopy lifting property implies that X̃b is
simply connected, so this covering is universal.

It is easy to see that a universal covering p : Y → X covers any path-
connected covering p′ : Y ′ → X, i.e., there is a covering q : Y → Y ′

such that p = p′ ◦ q; this is why it is called universal. Therefore a
universal covering is unique up to an isomorphism (indeed, if Y, Y ′ are
universal then we have coverings q1 : Y → Y ′ and q2 : Y ′ → Y and
q1 ◦ q2 = q2 ◦ q1 = Id).

Example 3.2. 1. The map z 7→ zn defines an n-sheeted covering
S1 → S1.

2. The map x→ eix defines the universal covering R→ S1.

Now denote by π1(X, x) the set of homotopy classes of closed paths
on a path-connected space X, starting and ending at x. Then π1(X, x)
is a group under concatenation of paths (concatenation is associative
since the paths a(bc) and (ab)c differ only by parametrization and are
hence homotopic). This group is called the fundamental group of X
relative to the point x. It acts on the fiber p−1(x) for every covering
p : Y → X (by lifting γ ∈ π1(X, x) to Y ), which is called the action
by deck transformations. This action is transitive iff Y is path-
connected and moreover free iff Y is universal.

Finally, the group π1(X, x) does not depend on x up to an isomor-
phism. More precisely, conjugation by any path from x1 to x2 defines
an isomorphism π1(X, x1) → π1(X, x2) (although two non-homotopic
paths may define different isomorphisms if π1 is non-abelian).

Example 3.3. 1. π1(S1) = Z.
2. π1(C \ {z1, ..., zn}) = Fn is a free group in n generators.
3. We have a 2-sheeted universal covering Sn → RPn (real projective

space) for n ≥ 2. Thus π1(RPn) = Z/2 for n ≥ 2.

Exercise 3.4. Make sure you can fill all the details in this subsection!

3.2. Coverings of Lie groups. Let G be a connected (real or com-

plex) Lie group and G̃ = G̃1 be the universal covering of G, consisting

of homotopy classes of paths x : [0, 1] → G with x(0) = 1. Then G̃ is
a group via (x · y)(t) = x(t)y(t), and also a manifold.
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Proposition 3.5. (i) G̃ is a simply connected Lie group. The covering

p : G̃→ G is a homomorphism of Lie groups.

(ii) Ker(p) is a central subgroup of G̃ naturally isomorphic to π1(G) =

π1(G, 1). Thus, G̃ is a central extension of G by π1(G). In particular,
π1(G) is abelian.

Proof. We will only prove (i). We only need to show that G̃ is a Lie

group, i.e., that the multiplication map m̃ : G̃× G̃→ G̃ is regular. But

G̃× G̃ is simply connected, and m̃ is a lifting of the map

m′ := m ◦ (p× p) : G̃× G̃→ G×G→ G,

so it is regular. In other words, m̃ is regular since in local coordinates
it is defined by the same functions as m. �

Exercise 3.6. Prove Proposition 3.5(ii).

Remark 3.7. The same argument shows that more generally, the fun-
damental group of any path-connected topological group is abelian.

Example 3.8. 1. The map z 7→ zn defines an n-sheeted covering of
Lie groups S1 → S1.

2. The map x → eix defines the universal covering of Lie groups
R→ S1.

Exercise 3.9. Consider the action of SU(2) on the 3-dimensional real
vector space of traceless Hermitian 2-by-2 matrices by conjugation.

(i) Show that this action preserves the positive inner product (A,B) =
Tr(AB) and has determinant 1. Deduce that it defines a homomor-
phism φ : SU(2)→ SO(3).

(ii) Show that φ is surjective, with kernel ±1, and is a universal
covering map (use that SU(2) = S3 is simply connected). Deduce that
π1(SO(3)) = Z/2 and that SO(3) ∼= RP3 as a manifold.

This is demonstrated by the famous Dirac belt trick, which illus-
trates the notion of a spinor; namely, spinors are vectors in C2 acted
upon by matrices from SU(2). Here are some videos of the belt trick:
https://www.youtube.com/watch?v=17Q0tJZcsnY

https://www.youtube.com/watch?v=Vfh21o-JW9Q

3.3. Closed Lie subgroups.

Definition 3.10. A closed Lie subgroup of a (real or complex) Lie
group G is a subgroup which is also an embedded submanifold.

This terminology is justified by the following lemma.

Lemma 3.11. A closed Lie subgroup of G is closed in G.
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Exercise 3.12. Prove Lemma 3.11.

We also have

Theorem 3.13. Any closed subgroup of a real Lie group G is a closed
Lie subgroup.

This theorem is rather nontrivial, and we will not prove it at this
time (it will be proved much later in Exercise 36.13), but we will soon
prove a weaker version which suffices for our purposes.

Example 3.14. 1. SLn(K) is a closed Lie subgroup of GLn(K) for K =
R,C. Indeed, the equation detA = 1 defines a smooth hypersurface in
the space of matrices (show it!).

2. Let φ : R→ S1 × S1 be the irrational torus winding given by the

formula φ(x) = (eix, eix
√

2):

Then φ(R) is a subgroup of S1 × S1 but not a closed Lie subgroup,
since it is not an embedded submanifold: although φ is an immersion,
the map φ−1 : φ(R)→ R is not continuous.

3.4. Generation of connected Lie groups by a neighborhood of
the identity.

Proposition 3.15. (i) If G is a connected Lie group and U a neigh-
borhood of 1 in G then U generates G.

(ii) If f : G→ K is a homomorphism of Lie groups, K is connected,
and df1 : T1G→ T1K is surjective, then f is surjective.

Proof. (i) Let H be the subgroup of G generated by U . Then H is open
in G since H = ∪h∈HhU . Thus H is an embedded submanifold of G,
hence a closed Lie subgroup. Thus by Lemma 3.11 H ⊂ G is closed.
So H = G since G is connected.

(ii) Since df1 is surjective, by the implicit function theorem f(G)
contains some neighborhood of 1 in K. Thus it contains the whole K
by (i). �
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4. Homogeneous spaces, Lie group actions

4.1. Homogeneous spaces. A regular map of manifolds p : Y → X
is a said to be a locally trivial fibration (or fiber bundle) with
base X, total space Y and fiber being a manifold F if every point
x ∈ X has a neighborhood U such that there is a diffeomorphism
h : U × F ∼= p−1(U) with (p ◦ h)(u, f) = u. In other words, locally
p looks like the projection X × F → X (the trivial fiber bundle with
fiber F over X), but not necessarily globally so. This generalizes the
notion of a covering, in which case F is 0-dimensional (discrete).

Theorem 4.1. (i) Let G be a Lie group of dimension n and H ⊂ G a
closed Lie subgroup of dimension k. Then the homogeneous space
G/H has a natural structure of an n − k-dimensional manifold, and
the map p : G→ G/H is a locally trivial fibration with fiber H.

(ii) If moreover H is normal in G then G/H is a Lie group.
(iii) We have a natural isomorphism T1(G/H) ∼= T1G/T1H.

Proof. Let g ∈ G/H and g ∈ p−1(g). Then gH ⊂ G is an embed-
ded submanifold (image of H under left translation by g). Pick a
sufficiently small transversal submanifold U passing through g (i.e.,
TgG = Tg(gH)⊕ TgU).

H 

J, p 

By the inverse function theorem, the set UH is open in G. Let
U be the image of UH in G/H. Since p−1(U) = UH is open, U is
open in the quotient topology. Also it is clear that p : U → U is a
homeomorphism. This defines a local chart near g ∈ G/H, and it is
easy to check that transition maps between such charts are regular. So
G/H acquires the structure of a manifold, which is easily checked to
be independent on the choices we made. Also the multiplication map
U ×H → UH is a diffeomorphism, which implies that p : G → G/H
is a locally trivial fibration with fiber H. Finally, we have a surjective
linear map TgG → TgG/H whose kernel is Tg(gH). So in particular
for g = 1 we get T1(G/H) ∼= T1G/T1H. This proves all parts of the
proposition. �

28



Recall that a sequence of group homomorphisms di : Ci → Ci+1 is a
complex if for all i, di◦di−1 is the trivial homomorphism Ci−1 → Ci+1.
(One may consider finite complexes, semi-infinite to the left or to the
right, or infinite in both directions). In this case Im(di−1) ⊂ Ker(di)
is a subgroup. The i-th cohomology H i(C•) of the complex C• is
the quotient Ker(di)/Im(di−1). In general it is just a set but if Ci are
abelian groups, it is also an abelian group. Also recall that a complex
C• is called exact in the i-th term if Ker(di) = Im(di−1), i.e., if H i(C•)
is trivial (consists of one element). A complex exact in all its terms
(except possibly first and last, where this condition makes no sense) is
called an exact sequence.

Corollary 4.2. Let H ⊂ G be a closed Lie subgroup.
(i) If H is connected then the map p0 : π0(G) → π0(G/H) is a

bijection.
(ii) If also G is connected then there is an exact sequence

π1(H)→ π1(G)→ π1(G/H)→ 1.

Proof. This follows from the theory of covering spaces using that
p : G→ G/H is a fibration. �

Exercise 4.3. Fill in the details in the proof of Corollary 4.2.

Remark 4.4. The sequence in Corollary 4.2(ii) is the end portion
of the infinite long exact sequence of homotopy groups of a
fibration,

...→ πi(H)→ πi(G)→ πi(G/H)→ πi−1(H)→ ...,

where πi(X) is the i-th homotopy group of X.

4.2. Lie subgroups. We will call the image of an injective immersion
of manifolds an immersed submanifold; it has a manifold structure
coming from the source of the immersion.

Definition 4.5. A Lie subgroup of a Lie group G is a subgroup H
which is also an immersed submanifold (but need not be an embedded
submanifold, nor a closed subset).

It is clear that in this case H is still a Lie group and the inclusion
H ↪→ G is a homomorphism of Lie groups.

Example 4.6. 1. The winding of a torus in Example 3.14(2) realizes
R as a Lie subgroup of S1 × S1 which is not closed.

2. Any countable subgroup of G is a 0-dimensional Lie subgroup,
but not always a closed one (e.g., Q ⊂ R).
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Proposition 4.7. Let f : G → K be a homomorphism of Lie groups.
Then H := Kerf is a closed normal Lie subgroup in G and Imf is a
Lie subgroup in K, closed if and only if it is an embedded submanifold.
In the latter case, we have an isomorphism of Lie groups G/H ∼= Imf .

We will prove Proposition 4.7 in Subsection 9.1.

4.3. Actions and representations of Lie groups. Let X be a man-
ifold, G a Lie group, and a : G ×X → X a set-theoretical left action
of G on X.

Definition 4.8. This action is called regular if the map a is regular.

From now on, by an action of G on X we will always mean a regular
action.

Example 4.9. 1. Any Lie subgroup of GLn(R) acts on Rn by linear
transformations. Likewise, any Lie subgroup of GLn(C) acts on Cn.

2. SO(3) acts on S2 by rotations.

Definition 4.10. A (real analytic) finite dimensional representa-
tion of a real Lie group G is a linear action of G on a finite dimensional
vector space V over R or C. Similarly, a (complex analytic) finite di-
mensional representation of a complex Lie group G is a linear action of
G on a finite dimensional vector space V over C.

In other words, a representation is a homomorphism of Lie groups
πV : G→ GL(V ).

Definition 4.11. A (homo)morphism of representations (or in-
tertwining operator) A : V → W is a linear map which commutes
with the G-action, i.e., AπV (g) = πW (g)A, g ∈ G. In particular, if
V = W , such A is called an endomorphism of V .

As usual, an isomorphism of representations is an invertible
morphism. With these definitions, finite dimensional representations
of G form a category.

Note also that we have the operations of dual and tensor product
on representations. Namely, given a representation V of G, we can
define its representation on the dual space V ∗ by

πV ∗(g) = πV (g−1)∗,

and if W is another representation of G then we can define a represen-
tation of G on V ⊗W (the tensor product of vector spaces) by

πV⊗W (g) = πV (g)⊗ πW (g).
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Also if V ⊂ W is a subrepresentation (i.e., a subspace invariant
under G) then W/V is also a representation of G, called the quotient
representation.

4.4. Orbits and stabilizers. As in ordinary group theory, if G acts
on X and x ∈ X then we can define the orbit Gx ⊂ X of x as the set
of gx, g ∈ G, and the stabilizer, or isotropy group Gx ⊂ G to be
the group of g ∈ G such that gx = x.

Proposition 4.12. (The orbit-stabilizer theorem for Lie group actions)
The stabilizer Gx ⊂ G is a closed Lie subgroup, and the natural map
G/Gx → X is an injective immersion whose image is Gx.

Proposition 4.12 will be proved in Subsection 9.1.

Corollary 4.13. The orbit Gx ⊂ X is an immersed submanifold, and
we have a natural isomorphism Tx(Gx) ∼= T1G/T1Gx. If Gx is an
embedded submanifold then the map G/Gx → Gx is a diffeomorphism.

Remark 4.14. Note that Gx need not be closed in X. E.g., let C×
act on C by multiplication. The orbit of 1 is C× ⊂ C, which is not
closed.

Example 4.15. Suppose that G acts on X transitively. Then we get
that X ∼= G/Gx for any x ∈ X, i.e., X is a homogeneous space.

Corollary 4.16. If G acts transitively on X then the map p : G→ X
given by p(g) = gx is a locally trivial fibration with fiber Gx.

Example 4.17. 1. SO(3) acts transitively on S2 by rotations, Gx =
S1 = SO(2), so S2 = SO(3)/S1. Thus SO(3) = RP3 fibers over S2

with fiber S1.
2. SU(2) acts on S2 = CP1, and the stabilizer is S1 = U(1). Thus

SU(2)/S1 = S2, and SU(2) = S3 fibers over S2 with fiber S1 (the Hopf
fibration). Here is D. Richter’s keyring model of the Hopf fibration:

3. Let K = R or C and Fn(K) the set of flags 0 ⊂ V1 ⊂ ... ⊂ Vn = Kn

(dimVi = i). Then G = GLn(K) acts transitively on Fn(K) (check it!).
Also let P ∈ Fn(K) be the flag for which Vi = Ki is the subspace of
vectors whose all coordinates but the first i are zero. Then GP is the
subgroup Bn(K) ⊂ GLn(K) of invertible upper triangular matrices.
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Thus Fn(K) = GLn(K)/Bn(K) is a homogeneous space of GLn(K), in
particular, a K-manifold. It is called the flag manifold.

4.5. Left translation, right translation, and adjoint action. Re-
call that a Lie group G acts on itself by left translations Lg(x) = gx
and right translations Rg−1(x) = xg−1 (note that both are left actions).

Definition 4.18. The adjoint action Adg : G → G is the action
Adg = Lg ◦Rg−1 = Rg−1 ◦ Lg; i.e., Adg(x) = gxg−1.

Note this is an action by (inner) automorphisms. Also since Adg(1) =
1, we have a linear map d1Adg : g→ g, where g = T1G. We will abuse
notation and denote this map just by Adg. This defines a representation
of G on g called the adjoint representation.
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5. Tensor fields

5.1. A crash course on vector bundles. Let X be a real manifold.
A vector bundle on X is, informally speaking, a (locally trivial) fiber
bundle on X whose fibers are finite dimensional vector spaces. In other
words, it is a family of vector spaces parametrized by x ∈ X and varying
regularly with x. More precisely, we have the following definition.

Let K = R or C.

Definition 5.1. A K-vector bundle of rank n on X is a manifold E
with a surjective regular map p : E → X and aK-vector space structure
on each fiber p−1(x) such that every x ∈ X has a neighborhood U
admitting a diffeomorphism g : U × Kn → p−1(U) with the following
properties:

(i) (p ◦ g)(u, v) = u, and
(ii) the map g is K-linear on the second factor.

In other words, locally on X, E is isomorphic to X × Kn, but not
necessarily globally so.

As for ordinary fiber bundles, E is called the total space and X the
base of the bundle.

Note that even if X is a complex manifold and K = C, E need not
be a complex manifold.

Definition 5.2. A complex vector bundle p : E → X on a complex
manifold X is said to be holomorphic if E is a complex manifold and
the diffeomorphisms gU can be chosen holomorphic.

From now on, unless specified otherwise, all complex vector bundles
on complex manifolds we consider will be holomorphic.

It follows from the definition that if p : E → X is a vector bundle
then X has an open cover {Uα} such that E trivializes on each Uα, i.e.,
there is a diffeomorphism gα : Uα × Kn → p−1(Uα) as above. In this
case we have clutching functions

hαβ : Uα ∩ Uβ → GLn(K)

(holomorphic if E is a holomorphic bundle), defined by the formula

(g−1
α ◦ gβ)(x, v) = (x, hαβ(x)v)

which satisfy the consistency conditions

hαβ(x) = hβα(x)−1

and

hαβ(x) ◦ hβγ(x) = hαγ(x)
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for x ∈ Uα ∩Uβ ∩Uγ. Moreover, the bundle can be reconstructed from
this data, starting from the disjoint union tαUα ×Kn and identifying
(gluing) points according to

hαβ : (x, v) ∈ Uβ ×Kn ∼ (x, hαβ(x)v) ∈ Uα ×Kn.

The consistency conditions ensure that the relation ∼ is symmetric and
transitive, so it is an equivalence relation, and we define E to be the
space of equivalence classes with the quotient topology. Then E has a
natural structure of a vector bundle on X.

This can also be used for constructing vector bundles. Namely, the
above construction defines a K-vector bundle on X once we are given
a cover {Uα} on X and a collection of clutching functions

hαβ : Uα ∩ Uβ → GLn(K)

satisfying the consistency conditions.

Remark 5.3. All this works more generally for non-linear fiber bundles
if we drop the linearity conditions along fibers.

Example 5.4. 1. The trivial bundle p : E = X×Kn → X, p(x, v) =
x.

2. The tangent bundle is the vector bundle p : TX → X con-
structed as follows. For the open cover we take an atlas of charts
(Uα, φα) with transition maps

θαβ = φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ),

and we set

hαβ(x) := dφβ(x)θαβ.

(Check that these maps satisfy consistency conditions!)
Thus the tangent bundle TX is a vector bundle of rank dimX whose

fiber p−1(x) is naturally the tangent space TxX (indeed, the tangent
vectors transform under coordinate changes exactly by multiplication
by hαβ(x)). In other words, it formalizes the idea of “the tangent space
TxX varying smoothly with x ∈ X”.

Definition 5.5. A section of a map p : E → X is a map s : X → E
such that p ◦ s = Idx.

Example 5.6. If p : X×Y = E → X, p(x, y) = x is the trivial bundle
then a section s : X → E is given by s(x) = (x, f(x)) where y = f(x)
is a function X → Y , and the image of s is the graph of f . So the
notion of a section is a generalization of the notion of a function.
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In particular, we may consider sections of a vector bundle p : E → X
over an open set U ⊂ X. These sections form a vector space denoted
Γ(U,E).

Exercise 5.7. Show that a vector bundle p : E → X is trivial (i.e.,
globally isomorphic to X×Kn) if and only if it admits sections s1, ..., sn
which form a basis in every fiber p−1(x).

5.2. Vector fields.

Definition 5.8. A vector field on X is a section of the tangent bundle
TX.

Thus in local coordinates a vector field looks like

v =
∑
i

vi
∂

∂xi
,

vi = vi(x), and if xi 7→ x′i is a change of local coordinates then the
expression for v in the new coordinates is

v =
∑
i

v′i
∂

∂x′i

where

v′i =
∑
j

∂x′i
∂xj

vj,

i.e., the clutching function is the Jacobi matrix of the change of
variable. Thus, every vector field v on X defines a derivation of the
algebra O(U) for every open set U ⊂ X compatible with restriction
maps O(U) → O(V ) for V ⊂ U ;5 in particular, a derivation Ox → Ox

for all x ∈ X. Conversely, it is easy to see that such a collection of
derivations gives rise to a vector field, so this is really the same thing.

A manifold X is called parallelizable if its tangent bundle is trivial.
By Exercise 5.7, this is equivalent to having a collection of vector fields
v1, ...,vn which form a basis in every tangent space (such a collection
is called a frame). For example, the circle S1 and hence the torus
S1 × S1 are parallelizable. On the other hand, the sphere S2 is not
parallelizable, since it does not even have a single nowhere vanishing
vector field (the Hairy Ball theorem, or Hedgehog theorem). The
same is true for any even-dimensional sphere S2m, m ≥ 1.

5In other words, using a fancier language, v defines a derivation of the sheaf of
regular functions on X.
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5.3. Tensor fields, differential forms. Since vector bundles are ba-
sically just smooth families of vector spaces varying over some base
manifold X, we can do with them the same things we can do with
vector spaces - duals, tensor products, symmetric and exterior powers,
etc. E.g., the cotangent bundle T ∗X is dual to the tangent bundle
TX.

More generally, we make the following definition.

Definition 5.9. A tensor field of rank (k,m) on a manifold X is a
section of the tensor product (TX)⊗k ⊗ (T ∗X)⊗m.

For example, a tensor field of rank (1, 0) is a vector field. Also, a
skew-symmetric tensor field of rank (0,m) is called a differential m-
form on X. In other words, a differential m-form is a section of the
vector bundle ΛmT ∗X.

For instance, if f ∈ O(X) then we have a differential 1-form df on
X, called the differential of f (indeed, recall that dxf : TxX → K).
A general 1-form can therefore be written in local coordinates as

ω =
∑
i

aidxi.

where ai = ai(x). If coordinates are changed as xi 7→ x′i, then in new
coordinates

ω =
∑
i

a′idx
′
i

where

a′i =
∑
j

∂xj
∂x′i

aj.

Thus the clutching function is the inverse of the Jacobi matrix of
the change of variable. For instance,

df =
∑
i

∂f

∂xi
dxi.

More generally, a differential m-form in local coordinates looks like

ω =
∑

1≤i1<...<im≤n

ai1...im(x)dxi1 ∧ ... ∧ dxim .

5.4. Left and right invariant tensor fields on Lie groups. Note
that if a Lie group G acts on a manifold X, then it automatically acts
on the tangent bundle TX and thus on vector and, more generally,
tensor fields on X. In particular, G acts on tensor fields on itself by
left and right translations; we will denote this action by Lg and Rg,
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respectively. We say that a tensor field T on G is left invariant if
LgT = T for all g ∈ G, and right invariant if RgT = T for all g ∈ G.

Proposition 5.10. (i) For any τ ∈ g⊗k ⊗ g∗⊗m there exists a unique
left invariant tensor field Lτ and a unique right invariant tensor field
Rτ whose value at 1 is τ . Thus, the spaces of such tensor fields are
naturally isomorphic to g⊗k ⊗ g∗⊗m.

(ii) Lτ is also right invariant iff Rτ is also left invariant iff τ is
invariant under the adjoint representation Adg.

Proof. We only prove (i). Consider the tensor fields Lτ (g) := Lgτ,Rτ (g) :=
Rg−1τ (i.e., we “spread” τ from 1 ∈ G to other points g ∈ G by
left/right translations). By construction, Rg−1τ is right invariant, while
Lgτ is left invariant, both with value τ at 1, and it is clear that these
are unique. �

Exercise 5.11. Prove Proposition 5.10(ii).

Corollary 5.12. A Lie group is parallelizable.

Proof. Given a basis e1, ..., en of g = T1G, the vector fields Lge1, ..., Lgen
form a frame. �

Remark 5.13. In particular, S1 and SU(2) = S3 are parallelizable. It
turns out that Sn for n ≥ 1 is parallelizable if and only if n = 1, 3, 7
(a deep theorem in differential topology). So spheres of other dimen-
sions don’t admit a Lie group structure. The sphere S7 does not admit
one either, although it admits a weaker structure of a “homotopy Lie
group”, or H-space (arising from octonions) which suffices for paral-
lelizability. Thus the only spheres admitting a Lie group structure are
S0 = {1,−1}, S1 and S3. This result is fairly elementary and will be
proved in Section 46.
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6. Classical Lie groups

6.1. First examples of classical groups. Roughly speaking, clas-
sical groups are groups of matrices arising from linear algebra. More
precisely, classical groups are the following subgroups of the general
linear group GLn(K): GLn(K), SLn(K) (the special linear group),
On(K), SOn(K), Sp2n(K), O(p, q), SO(p, q), U(p, q), SU(p, q), Sp(2p, 2q) :=
Sp2n(C) ∩ U(2p, 2q) for p+ q = n (and also some others we’ll consider
later).

Namely,
• The orthogonal group On(K) is the group of matrices preserving

the nondegenerate quadratic form in n variables, Q = x2
1 + ...+ x2

n (or,
equivalently, the corresponding bilinear form x1y1 + ...+ xnyn);
• The symplectic group Sp2n(K) is the group of matrices preserv-

ing a nondegenerate skew-symmetric form in 2n variables;
• The pseudo-orthogonal group O(p, q), p + q = n is the group

of real matrices preserving a nondegenerate quadratic form of signa-
ture (p, q), Q = x2

1 + ... + x2
p − x2

p+1 − ... − x2
n (or, equivalently, the

corresponding bilinear form);
• The pseudo-unitary group U(p, q), p+q = n is the group of com-

plex matrices preserving a nondegenerate Hermitian quadratic form of
signature (p, q), Q = |x1|2 + ...+ |xp|2 − |xp+1|2 − ...− |xn|2 (or, equiv-
alently, the corresponding sesquilinear form);
• The special pseudo-orthogonal, pseudo-unitary, and or-

thogonal groups SO(p, q) ⊂ O(p, q), SU(p, q) ⊂ U(p, q), SOn ⊂ On

are the subgroups of matrices of determinant 1.
Note that the groups don’t change under switching p, q and that

(S)On(R) = (S)O(n, 0); it is also denoted (S)O(n). Also (S)U(n, 0) is
denoted by (S)U(n).

Exercise 6.1. Show that the special (pseudo)orthogonal groups are
index 2 subgroups of the (pseudo)orthogonal groups.

Let us show that they are all Lie groups. For this purpose we’ll use
the exponential map for matrices. Namely, recall from linear algebra
that we have an analytic function exp : gln(K)→ GLn(K) given by the
formula

exp(a) =
∞∑
n=0

an

n!
,

and the matrix-valued analytic function log near 1 ∈ GLn(K),

log(A) = −
∞∑
n=1

(1− A)n

n
.
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Namely, this is well defined if the spectral radius of 1−A is < 1 (i.e., all
eigenvalues are in the open unit disk). These maps have the following
properties:

1. They are mutually inverse.
2. They are conjugation-invariant.
3. d exp0 = d log1 = Id.
4. If xy = yx then exp(x + y) = exp(x) exp(y). If XY = Y X then

log(XY ) = log(X) + log(Y ) (for X, Y sufficiently close to 1).
5. For x ∈ gln(K) the map t 7→ exp(tx) is a homomorphism of Lie

groups K→ GLn(K).
6. det exp(a) = exp(Tr a), log(detA) = Tr(logA).
Now we can look at classical groups and see what happens to the

equations defining them when we apply log.
1. G = SLn(K). We already showed that it is a Lie group in Example

3.14 but let us re-do it by a different method. The group G is defined
by the equation detA = 1. So for A close to 1 we have log(detA) = 0,
i.e., Tr log(A) = 0. So log(A) ∈ sln(K) = g, the space of matrices with
trace 0. This defines a local chart near 1 ∈ G, showing that G is a
manifold, hence a Lie group (namely, local charts near other points are
obtained by translation).

2. G = On(K). The equation is AT = A−1, thus log(A)T = − log(A),
so log(A) ∈ son(K) = g, the space of skew-symmetric matrices.

3. G = U(n). The equation is A
T

= A−1, thus log(A)
T

= − log(A),
so log(A) ∈ un = g, the space of skew-Hermitian matrices.

Exercise 6.2. Do the same for all classical groups listed above.

We see that the logarithm map identifies the neighborhood of 1 in
the group G with a neighborhood of 0 in a finite-dimensional vector
space. Thus we obtain

Proposition 6.3. Every classical group G from the above list is a Lie
group, with g = T1G ⊂ gln(K). Moreover, if u ⊂ gln(K) is a small
neighborhood of 0 and U = exp(u) then exp and log define mutually
inverse diffeomorphisms between u ∩ g and U ∩G.

Exercise 6.4. Which of these groups are complex Lie groups?

Exercise 6.5. Use this proposition to compute the dimensions of clas-
sical groups: dimSLn = n2 − 1, dimOn = n(n − 1)/2, dimSp2n =
n(2n + 1), dimSUn = n2 − 1, etc. (Note that for complex groups we
give the dimension over C).
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6.2. Quaternions. An important role in the theory of Lie groups is
played by the algebra of quaternions, which is the only noncommu-
tative finite dimensional division algebra over R, discovered in the 19th
century by W. R. Hamilton.

Definition 6.6. The algebra of quaternions is the R-algebra with
basis 1, i, j,k and multiplication rules

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = −1.

This algebra is associative but not commutative.
Given a quaternion

q = a+ bi + cj + dk, a, b, c, d ∈ R,
we define the conjugate quaternion by the formula

q = a− bi− cj− dk.
Thus

qq = |q|2 = a2 + b2 + c2 + d2 ∈ R,
where |q| is the length of q as a vector in R4. So if q 6= 0 then it is
invertible and

q−1 =
q

|q|2
.

Thus H is a division algebra (i.e., a skew-field). One can show that
the only finite dimensional associative division algebras over R are R,
C and H. (See Exercise 6.9).

In particular, we can do linear algebra over H in almost the same
way as we do over ordinary fields. Namely, every (left or right) module
over H is free and has a basis; such a module is called a (left or right)
quaternionic vector space. In particular, any (say, right) quater-
nionic vector space of dimension n (i.e., with basis of n elements) is
isomorphic to Hn. Moreover, H-linear maps between such spaces are
given by left multiplication by quaternionic matrices. Finally, it is easy
to see that Gaussian elimination works the same way as over ordinary
fields; in particular, every invertible square matrix over H is a product
of elementary matrices of the form 1 + (q− 1)Eii and 1 + qEij, i 6= j,
where q ∈ H is nonzero.

Also it is easy to show that

q1q2 = q2 · q1, |q1q2| = |q1| · |q2|
(check this!). So quaternions are similar to complex numbers, except
they are non-commutative. Finally, note that H contains a copy of C
spanned by 1, i; however, this does not make H a C-algebra since i is
not a central element.
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Proposition 6.7. The group of unit quaternions {q ∈ H : |q| = 1}
under multiplication is isomorphic to SU(2) as a Lie group.

Proof. We can realize H as C2, where C ⊂ H is spanned by 1, i; namely,
(z1, z2) 7→ z1 + jz2. Then left multiplication by quaternions on H = C2

commutes with right multiplication by C, i.e., is C-linear. So it is
given by complex 2-by-2 matrices. It is easy to compute that the
corresponding matrix is

z1 + z2j 7→
(
z1 −z2

z2 z1

)
,

and we showed in Example 2.3(5) that such matrices (with |z1|2+|z2|2 =
1) are exactly the matrices from SU(2). �

This is another way to see that SU(2) ∼= S3 as a manifold (since the
set of unit quaternions is manifestly S3).

Corollary 6.8. The map q 7→ ( q
|q| , |q|) is an isomorphism of Lie

groups H× ∼= SU(2)× R>0.

This is the quaternionic analog of the trigonometric form of complex
numbers, except the “phase” factor q

|q| is now not in S1 but in S3 =

SU(2).

Exercise 6.9. Let D be a finite dimensional division algebra over R.
(i) Show that if D is commutative then D = R or D = C.
(ii) Assume that D is not commutative. Take q ∈ D, q /∈ R. Show

that there exist a, b ∈ R such that i := a+ bq satisfies i2 = −1.
(iii) Decompose D into the eigenspaces D± of the operator of con-

jugation by i with eigenvalues ±1 and show that 1, i is a basis of D+,
i.e., D+

∼= C.
(iv) Pick q ∈ D−, q 6= 0, and show that D− = D+q, so {1, i,q, iq}

is a basis of D over R. Deduce that q2 is a central element of D.
(v) Conclude that q2 = −λ where λ ∈ R>0 and deduce that D ∼= H.

6.3. More classical groups. Now we can define a new classical group
GLn(H), a real Lie group of dimension 4n2, called the quaternionic
general linear group. For example, as we just showed, GL1(H) =
H× ∼= SU(2)× R>0.

For A ∈ GLn(H), let detA be the determinant of A as a linear
operator on C2n = Hn.

Lemma 6.10. We have detA > 0.

Proof. For n = 1, A = q ∈ H× and det q = |q|2 > 0. It follows that
det(1+(q−1)Eii) = |q|2 > 0. Also it is easy to see that det(1+qEij) =
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1 for i 6= j. It then follows by Gaussian elimination that for any A we
have det(A) > 0. �

Let SLn(H) ⊂ GLn(H) be the subgroup of matrices A with detA =
1, called the quaternionic special linear group.

Exercise 6.11. Show that SLn(H) ⊂ GLn(H) is a normal subgroup,
and GLn(H) ∼= SLn(H)× R>0.

Thus SLn(H) is a real Lie group of dimension 4n2 − 1.
We can also define groups of quaternionic matrices preserving various

sesquilinear forms. Namely, let V ∼= Hn be a right quaternionic vector
space.

Definition 6.12. A sesquilinear form on V is a biadditive function
(, ) : V × V → H such that

(xα,yβ) = α(x,y)β, x,y ∈ V, α, β ∈ H.

Such a form is called Hermitian if (x,y) = (y,x) and skew-

Hermitian if (x,y) = −(y,x).

Note that the order of factors is important here!

Proposition 6.13. (i) Every nondegenerate Hermitian form on V in
some basis takes the form

(x,y) = x1y1 + ...+ xpyp − xp+1yp+1 − ...− xnyn
for a unique pair (p, q) with p+ q = n.

(ii) Every nondegenerate skew-Hermitian form on V in some basis
takes the form

(x,y) = x1jy1 + ...+ xnjyn.

Exercise 6.14. Prove Proposition 6.13.

In (i), the pair (p, q) is called the signature of the quaternionic
Hermitian form.

Exercise 6.15. Show that a nondegenerate quaternionic Hermitian
form of signature (p, q) can be written as

(x,y) = B1(x,y) + jB2(x,y),

with B1, B2 taking values in C = R + Ri ⊂ H, where B1 is a usual
nondegenerate Hermitian form of signature (2p, 2q) and B2 is a non-
degenerate skew-symmetric bilinear form on V as a (2n-dimensional)
C-vector space. Show that B2(x,y) = B1(xj,y). Deduce that any
complex linear transformation preserving B1 and B2 is H-linear.
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Thus the group of symmetries of a nondegenerate quaternionic Her-
mitian form of signature (p, q) is Sp(2p, 2q) = Sp2n(C) ∩ U(2p, 2q). It
is called the quaternionic pseudo-unitary group.

One also sometimes uses the notation U(p, q,R) = O(p, q), U(p, q,C) =
U(p, q), U(p, q,H) = Sp(2p, 2q), and U(n, 0,K) = U(n,K) for K =
R,C,H.

Exercise 6.16. Show that a nondegenerate quaternionic skew-Hermitian
form can be written as

(x,y) = B1(x,y) + jB2(x,y),

with B1, B2 taking values in C = R + Ri ⊂ H, where B1 is an or-
dinary skew-Hermitian form, while B2 is a symmetric bilinear form
(both nondegenerate). Show that B2(x,y) = B1(xj,y). Deduce that
any complex linear transformation preserving B1 and B2 is H-linear.
Also show that the signature of the Hermitian form iB1 is necessarily
(n, n).

Thus the group of symmetries of a nondegenerate quaternionic skew-
Hermitian form is O2n(C) ∩ U(n, n). This group is denoted by O∗(2n)
and called the quaternionic orthogonal group. There is also the
subgroup SO∗(2n) ⊂ O∗(2n) of matrices of determinant 1 (having in-
dex 2).

All of these groups are Lie groups, which is shown similarly to Sub-
section 6.1, using the exponential map.

Exercise 6.17. Compute the dimensions of all classical groups intro-
duced above.
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7. The exponential map of a Lie group

7.1. The exponential map. We will now generalize the exponential
and logarithm maps from matrix groups to arbitrary Lie groups.

Let G be a real Lie group, g = T1G.

Proposition 7.1. Let x ∈ g. There is a unique morphism of Lie
groups γ = γx : R→ G such that γ′(0) = x.

Proof. For such a morphism we should have

γ(t+ s) = γ(t)γ(s), t, s ∈ R,
so differentiating by s at s = 0, we get6

γ′(t) = γ(t)x.

Thus γ(t) is a solution of the ODE defined by the left-invariant vector
field Lx corresponding to x ∈ g with initial condition γ(0) = 1. By the
existence and uniqueness theorem for solutions of ODE, this equation
has a unique solution with this initial condition defined for |t| < ε for
some ε > 0. Moreover, if |s| + |t| < ε, both γ1(t) := γ(s + t) and
γ2(t) := γ(s)γ(t) satisfy this differential equation with initial condition
γ1(0) = γ2(0) = γ(s), so γ1 = γ2. Thus

γ(s+ t) = γ(s)γ(t), |s|+ |t| < ε;

hence γ(t)x = xγ(t) for |t| < ε.
We claim that the solution γ(t) extends to all values of t ∈ R. Indeed,

let us prove that it extends to |t| < 2nε for all n ≥ 0 by induction in
n. The base of induction (n = 0) is already known, so we only need to
justify the induction step from n − 1 to n. Given t with |t| < 2nε, we
define

γ(t) := γ( t
2
)2.

This agrees with the previously defined solution for |t| < 2n−1ε, and
we have

γ′(t) = 1
2
(γ′( t

2
)γ( t

2
)+γ( t

2
)γ′( t

2
)) = 1

2
γ( t

2
)xγ( t

2
)+1

2
γ( t

2
)2x = γ( t

2
)2x = γ(t)x,

as desired.
Thus, we have a regular map γ : R→ G with γ(s+t) = γ(s)γ(t) and

γ′(0) = x, which is unique by the uniqueness of solutions of ODE. �

Definition 7.2. The exponential map exp : g→ G is defined by the
formula exp(x) = γx(1).

Thus γx(t) = exp(tx). So we have

6For brevity for g ∈ G, x ∈ g we denote Lgx by gx and Rgx by xg.
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Proposition 7.3. The flow defined by the right-invariant vector field
Rx is given by g 7→ exp(tx)g, and the flow defined by the left-invariant
vector field Lx is given by g 7→ g exp(tx).

Example 7.4. 1. Let G = Kn. Then exp(x) = x.
2. Let G = GLn(K) or its Lie subgroup. Then γx(t) satisfies the

matrix differential equation

γ′(t) = γ(t)x

with γ(0) = 1, so

γx(t) = etx,

the matrix exponential. For example, if n = 1, this is the usual expo-
nential function.

The following theorem describes the basic properties of the exponen-
tial map. Let G be a real or complex Lie group.

Theorem 7.5. (i) exp : g→ G is a regular map which is a diffeomor-
phism of a neighborhood of 0 ∈ g onto a neighborhood of 1 ∈ G, with
exp(0) = 1, exp′(0) = Idg.

(ii) exp((s+ t)x) = exp(sx) exp(tx) for x ∈ g, s, t ∈ K.
(iii) For any morphism of Lie groups φ : G → K and x ∈ T1G we

have

φ(exp(x)) = exp(φ∗x);

i.e., the exponential map commutes with morphisms.
(iv) For any g ∈ G, x ∈ g, we have

g exp(x)g−1 = exp(Adgx).

Proof. (i) The regularity of exp follows from the fact that if a differen-
tial equation depends regularly on parameters then so do its solutions.
Also γ0(t) = 1 so exp(0) = 1. We have exp′(0)x = d

dt
exp(tx)|t=0 = x,

so exp′(0) = Id. By the inverse function theorem this implies that exp
is a diffeomorphism near the origin.

(ii) Holds since exp(tx) = γx(t).
(iii) Both φ(exp(tx)) and exp(φ∗(tx)) satisfy the equation γ′(t) =

γ(t)φ∗(x) with the same initial conditions.
(iv) is a special case of (iii) with φ : G→ G, φ(h) = ghg−1. �

Thus exp has an inverse log : U → g defined on a neighborhood U
of 1 ∈ G with log(1) = 0. This map is called the logarithm. For
GLn(K) and its Lie subgroups it coincides with the matrix logarithm.
The logarithm map defines a canonical coordinate chart on G near 1,
so a choice of a basis of g gives a local coordinate system.
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Proposition 7.6. Let G be a connected Lie group and φ : G → K a
morphism of Lie groups. Then φ is completely determined by the linear
map φ∗ : T1G→ T1K.

Proof. We have φ(exp(x)) = exp(φ∗(x)), so since exp is a diffeomor-
phism near 0, φ is determined by φ∗ on a neighborhood of 1 ∈ G.
This completely determines φ since this neighborhood generates G by
Proposition 3.15. �

Exercise 7.7. (i) Show that a connected compact complex Lie group
is abelian. (Hint: consider the adjoint representation and use that a
holomorphic function on a compact complex manifold is constant, by
the maximum principle.)

(ii) Classify such Lie groups of dimension n up to isomorphism (Show
that they are compact complex tori whose isomorphism classes are
bijectively labeled by elements of the set GLn(C)\GL2n(R)/GL2n(Z).)

(iii) Work out the classification explicitly in the 1-dimensional case
(this is the classification of complex elliptic curves). Namely, show that
isomorphism classes are labeled by points of H/Γ, where H is the upper
half-plane and Γ = SL2(Z) acting on H by Möbius transformations
τ 7→ aτ+b

cτ+d
(where Im(τ) > 0).

7.2. The commutator. In general (say, for G = GLn(K), n ≥ 2),
exp(x+ y) 6= exp(x) exp(y). So let us consider the map

(x, y) 7→ µ(x, y) = log(exp(x) exp(y))

which maps U × U → g, where U ⊂ g is a neighborhood of 0. This
map expresses the product in G in the coordinate chart coming from
the logarithm map. We have µ(x, 0) = µ(0, x) = x and µ∗(x, y) = x+y.
So, since µ is regular, we have the second Taylor approximation

µ(x, y) = x+ y + 1
2
µ2(x, y) + ...

where µ2 = d2µ(0,0) is the quadratic part and ... are higher terms.
Moreover, µ2(x, 0) = µ2(0, y) = 0, hence µ2 is a bilinear map g×g→ g.
It is easy to see that µ(x,−x) = 0, hence µ2 is skew-symmetric.

Definition 7.8. The map µ2 is called the commutator and denoted
by x, y 7→ [x, y].

Thus we have

(7.1) exp(x) exp(y) = exp(x+ y + 1
2
[x, y] + ...).

Example 7.9. Let G = GLn(K). Then

exp(x) exp(y) = (1+x+x2

2
+...)(1+y+y2

2
+...) = 1+x+y+x2

2
+xy+y2

2
+... =
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1 + (x+ y) + (x+y)2

2
+ xy−yx

2
+ ... = exp(x+ y + xy−yx

2
+ ...)

Thus
[x, y] = xy − yx.

This justifies the term “commutator”: it measures the failure of x and
y to commute.

Corollary 7.10. If G ⊂ GLn(K) is a Lie subgroup then g = T1G ⊂
gln(K) is closed under the commutator [x, y] = xy−yx, which coincides
with the commutator of G.

For x ∈ g define the linear map adx : g→ g by

adx(y) = [x, y].

Proposition 7.11. (i) Let G,K be Lie groups and φ : G→ K a mor-
phism of Lie groups. Then φ∗ : T1G→ T1K preserves the commutator:

φ∗([x, y]) = [φ∗(x), φ∗(y)].

(ii) The adjoint action preserves the commutator.
(iii) We have

exp(x) exp(y) exp(x)−1 exp(y)−1 = exp([x, y] + ...)

where ... denotes cubic and higher terms.
(iv) Let X(t), Y (s) be parametrized curves on G such that X(0) =

Y (0) = 1, X ′(0) = x, Y ′(0) = y. Then we have

[x, y] = lim
s,t→0

log(X(t)Y (s)X(t)−1Y (s)−1)

ts
.

In particular,

[x, y] = lim
s,t→0

log(exp(tx) exp(sy) exp(tx)−1 exp(sy)−1)

ts

and
[x, y] = d

dt
|t=0AdX(t)(y).

Thus ad = Ad∗, the differential of Ad at 1 ∈ G.
(v) If G is commutative (=abelian) then [x, y] = 0 for all x, y.

Proof. (i) Follows since φ commutes with the exponential map.
(ii) Follows from (i) by setting φ = Adg.
(iii) By (7.1), modulo cubic and higher terms we have

log(exp(x) exp(y)) = log(exp(y) exp(x)) + [x, y] + ...,

which implies the statement by exponentiation.
(iv) Let logX(t) = x(t), log Y (s) = y(s). Then by (iii) we have

log(X(t)Y (s)X(t)−1Y (s)−1) =
47



log(exp(x(t)) exp(y(s)) exp(x(t))−1 exp(y(s))−1) = ts([x, y]+o(1)), t, s→ 0.

This implies the first two statements. The last statement follows by
taking the limit in s first, then in t.

(v) follows from (iii). �
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8. Lie algebras

8.1. The Jacobi identity. The matrix commutator [x, y] = xy − yx
obviously satisfies the identity

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0

called the Jacobi identity. Thus it is satisfied for any Lie subgroup
of GLn(K).

Proposition 8.1. The Jacobi identity holds for any Lie group G.

Proof. Let g = T1G. The Jacobi identity is equivalent to adx being a
derivation of the commutator:

adx([y, z]) = [adx(y), z] + [y, adx(z)], x, y, z ∈ g.

To show that it is indeed a derivation, let g(t) = exp(tx), then

Adg(t)([y, z]) = [Adg(t)(y),Adg(t)(z)].

The desired identity is then obtained by differentiating this equality by
t at t = 0 and using the Leibniz rule and Proposition 7.11(iv). �

Corollary 8.2. We have ad[x, y] = [adx, ady].

Proof. This is also equivalent to the Jacobi identity. �

Proposition 8.3. For x ∈ g one has exp(adx) = Adexp(x) ∈ GL(g).

Proof. We will show that exp(tadx) = Adexp(tx) for t ∈ R. Let γ1(t) =
exp(tadx) and γ2(t) = Adexp(tx). Then γ1, γ2 both satisfy the differen-
tial equation γ′(t) = γ(t)adx and equal 1 at t = 0. Thus γ1 = γ2. �

8.2. Lie algebras.

Definition 8.4. A Lie algebra over a field k is a vector space g
over k equipped with bilinear operation [, ] : g × g → g, called the
commutator or (Lie) bracket which satisfies the following identities:

(i) [x, x] = 0 for all x ∈ g;
(ii) the Jacobi identity: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.
A (homo)morphism of Lie algebras is a linear map between Lie

algebras that preserves the commutator.

Remark 8.5. If k has characteristic 6= 2 then the condition [x, x] = 0
is equivalent to skew-symmetry [x, y] = −[y, x], but in characteristic 2
it is stronger.

Example 8.6. Any subspace of gln(k) closed under [x, y] := xy − yx
is a Lie algebra.
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Example 8.7. The map ad : g → End(g) is a morphism of Lie alge-
bras.

Thus we have

Theorem 8.8. If G is a K-Lie group (for K = R,C) then g := T1G has
a natural structure of a Lie algebra over K. Moreover, if φ : G→ K is
a morphism of Lie groups then φ∗ : T1G→ T1K is a morphism of Lie
algebras.

We will denote the Lie algebra g = T1G by LieG or Lie(G) and call
it the Lie algebra of G. We see that the assignment G 7→ LieG
is a functor from the category of Lie groups to the category of Lie
algebras. Thus we have a map Hom(G,K)→ Hom(LieG,LieK), which
is injective if G is connected.

Motivated by Proposition 7.11(v), a Lie algebra g is said to be com-
mutative or abelian if [x, y] = 0 for all x, y ∈ g.

8.3. Lie subalgebras and ideals. A Lie subalgebra of a Lie algebra
g is a subspace h ⊂ g closed under the commutator. It is called a Lie
ideal if moreover [g, h] ⊂ h.

Proposition 8.9. Let H ⊂ G be a Lie subgroup. Then:
(i) LieH ⊂ LieG is a Lie subalgebra;
(ii) If H is normal then LieH is a Lie ideal in LieG;
(iii) If G,H are connected and LieH ⊂ LieG is a Lie ideal then H

is normal in G.

Proof. (i) If x, y ∈ h then exp(tx), exp(sy) ∈ H, so by Proposition
7.11(iv)

[x, y] = lim
t,s→0

log(exp(tx) exp(sy) exp(−tx) exp(−sy))

ts
∈ h.

(ii) We have ghg−1 ∈ H for g ∈ G and h ∈ H. Thus, taking
h = exp(sy), y ∈ h and taking the derivative in s at zero, we get
Adg(y) ∈ h. Now taking g = exp(tx), x ∈ g and taking the derivative
in t at zero, by Proposition 7.11(iv) we get [x, y] ∈ h, i.e., h is a Lie
ideal.

(iii) If x ∈ g, y ∈ h are small then

exp(x) exp(y) exp(x)−1 =

exp(Adexp(x)y) = exp(exp(adx)y) = exp(
∞∑
n=0

(adx)ny
n!

) ∈ H
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since
∑∞

n=0
(adx)ny

n!
∈ h. So G acting on itself by conjugation maps a

small neighborhood of 1 in H into H (as G is generated by its neigh-
borhood of 1 by Proposition 3.15, since it is connected). But H is also
connected, so is generated by its neighborhood of 1, again by Proposi-
tion 3.15. Hence H is normal. �

8.4. The Lie algebra of vector fields. Recall that a vector field on
a manifold X is a compatible family of derivations v : O(U) → O(U)
for open subsets U ⊂ X.

Proposition 8.10. If v,w are derivations of an algebra A then so is
[v,w] := vw −wv.

Proof. We have

(vw −wv)(ab) = v(w(a)b+ aw(b))−w(v(a)b+ av(b)) =

vw(a)b+ w(a)v(b) + v(a)w(b) + avw(b)

−wv(a)b− v(a)w(b)−w(a)v(b)− awv(b) =

(vw −wv)(a)b+ a(vw −wv)(b).

�

Thus, the space Vect(X) of vector fields on X is a Lie algebra under
the operation

v,w 7→ [v,w],

called the Lie bracket of vector fields.7

In local coordinates we have

v =
∑
i

vi
∂

∂xi
, w =

∑
wj

∂

∂xj
,

so

[v,w] =
∑
i

(∑
j

(vj
∂wi
∂xj
− wj ∂vi∂xj

)

)
∂
∂xi
.

This implies that if vector fields v,w are tangent to a k-dimensional
submanifold Y ⊂ X then so is their Lie bracket [v,w]. Indeed, in local
coordinates Y is given by equations xk+1 = ... = xn = 0, and in such
coordinates a vector field is tangent to Y iff it does not contain terms
with ∂

∂xj
for j > k.

7Note that this Lie algebra is infinite dimensional for all real manifolds and many
(but not all) complex manifolds of positive dimension.

51



Exercise 8.11. Let U ⊂ Rn be an open subset, v,w ∈ Vect(U) and
gt, ht be the associated flows, defined in a neighborhood of every point
of U for small t. Show that for any x ∈ U

lim
t,s→0

gthsg
−1
t h−1

s (x)− x

ts
= [v,w](x).

Now let G be a Lie group and VectL(G),VectR(G) ⊂ Vect(G) be the
subspaces of left and right invariant vector fields.

Proposition 8.12. VectL(G),VectR(G) ⊂ Vect(G) are Lie subalgebras
which are both canonically isomorphic to g = LieG.

Proof. The first statement is obvious, so we prove only the second state-
ment. Let x,y ∈ VectL(G). Then x = Lx, y = Ly for x = x(1), y =
y(1) ∈ g, where Lz denotes the vector field on G obtained by left trans-
lations of z ∈ g. Then [Lx,Ly] = Lz, where z = [Lx,Ly](1). So let us
compute z.

Let f be a regular function on a neighborhood of 1 ∈ G. We have
shown that for u ∈ g

(Luf)(g) = d
dt
|t=0f(g exp(tu)).

Thus,

z(f) = x(Lyf)−y(Lxf) = x( ∂
∂s
|s=0f(• exp(sy)))−y( ∂

∂t
|t=0f(• exp(tx))) =

∂
∂t
|t=0

∂
∂s
|s=0f(exp(tx) exp(sy))− ∂

∂s
|s=0

∂
∂t
|t=0f(exp(sy) exp(tx)) =

∂2

∂t∂s
|t=s=0(F (tx+ sy + 1

2
ts[x, y] + ...)− F (tx+ sy − 1

2
ts[x, y] + ...)),

where F (u) := f(exp(u)). It is easy to see by using Taylor expansion
that this expression equals to [x, y](f). Thus z = [x, y], i.e., the map
g → VectL(G) given by x 7→ Lx is a Lie algebra isomorphism. Sim-
ilarly, the map g → VectR(G) given by x 7→ −Rx is a Lie algebra
isomorphism, as claimed. �
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9. Fundamental theorems of Lie theory

9.1. Proofs of Theorem 3.13, Proposition 4.12, Proposition
4.7. Let G be a Lie group with Lie algebra g and X be a manifold
with an action a : G ×X → X. Then for any z ∈ g we have a vector
field a∗(z) on X given by

(a∗(z)f)(x) = d
dt
|t=0f(exp(−tz)x),

where t ∈ R, f ∈ O(U) for some open set U ⊂ X and x ∈ U .

Proposition 9.1. The map a∗ is linear and we have

a∗([z, w]) = [a∗(z), a∗(w)].

In other words, the map a∗ : g → Vect(X) is a homomorphism of Lie
algebras.

Exercise 9.2. Prove Proposition 9.1.

This motivates the following definition.

Definition 9.3. An action of a Lie algebra g on a manifold X is a
homomorphism of Lie algebras g→ Vect(X).

Thus an action of a Lie group G on X induces an action of the Lie
algebra g = LieG on X.

Now let x ∈ X. Then we have a linear map a∗x : g→ TxX given by
a∗x(z) := a∗(z)(x).

Theorem 9.4. (i) The stabilizer Gx is a closed subgroup of G with Lie
algebra

gx := Ker(a∗x).

(ii) The map G/Gx → X given by g 7→ gx is an immersion. So the
orbit Gx is an immersed submanifold of X, and

Tx(Gx) ∼= Im(a∗x) ∼= g/gx.

Part (i) of Theorem 9.4 is the promised weaker version of Theorem
3.13 sufficient for our purposes. Also, part (ii) implies Proposition 4.12.

Proof. (i) It is clear that Gx is closed in G, but we need to show it is
a Lie subgroup and compute its Lie algebra.8 It suffices to show that
for some neighborhood U of 1 in G, U ∩ Gx is a (closed) submanifold
of U such that T1(U ∩Gx) = gx.

Note that gx ⊂ g is a Lie subalgebra, since the commutator of vector
fields vanishing at x also vanishes at x (by the formula for commutator

8Although we claimed in Theorem 3.13 that a closed subgroup of a Lie group is
always a Lie subgroup, we did not prove it, so we need to prove it in this case.
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in local coordinates). Also, for any z ∈ gx, exp(tz)x is a solution of the
ODE γ′(t) = a∗γ(t)(z) with initial condition γ(0) = x, and γ(t) = x is
such a solution, so by uniqueness of ODE solutions exp(tz)x = x, thus
exp(tz) ∈ Gx.

Now choose a complement u of gx in g, so that g = gx ⊕ u. Then
a∗x : u→ TxX is injective. By the implicit function theorem, the map
u → X given by u 7→ exp(u)x is injective for small u, so exp(u) ∈ Gx

for small u ∈ u if and only if u = 0.
But in a small neighborhood U of 1 in G, any element g can be

uniquely written as g = exp(u) exp(z), where u ∈ u and z ∈ gx. So we
see that g ∈ Gx iff u = 0, i.e., log(g) ∈ gx. This shows that U ∩ Gx

coincides with U ∩ exp(gx), as desired.
(ii) The same proof shows that we have an isomorphism T1(G/Gx) ∼=

g/gx = u, so the injectivity of a∗x : u → TxX implies that the map
G/Gx → X given by g 7→ gx is an immersion, as claimed. �

Corollary 9.5. (Proposition 4.7) Let φ : G → K be a morphism of
Lie groups and φ∗ : LieG → LieK be the corresponding morphism of
Lie algebras. Then H := Ker(φ) is a closed normal Lie subgroup with
Lie algebra h := Ker(φ∗), and the map φ : G/H → K is an immersion.
Moreover, if Imφ is a submanifold of K then it is a closed Lie subgroup,
and we have an isomorphism of Lie groups φ : G/H ∼= Imφ.

Proof. Apply Theorem 9.4 to the action of G on X = K via g ◦ k =
φ(g)k, and take x = 1. �

Corollary 9.6. Let V be a finite dimensional representation of a Lie
group G, and v ∈ V . Then the stabilizer Gv is a closed Lie subgroup
of G with Lie algebra gv := {z ∈ g : zv = 0}.

Example 9.7. Let A be a finite dimensional algebra (not necessarily
associative, e.g. a Lie algebra). Then the group G = Aut(A) ⊂ GL(A)
is a closed Lie subgroup with Lie algebra Der(A) ⊂ End(A) of deriva-
tions of A, i.e., linear maps d : A→ A such that

d(ab) = d(a) · b+ a · d(b).

Indeed, consider the action of GL(A) on Hom(A⊗A,A). Then G = Gµ

where µ : A ⊗ A → A is the multiplication map. Also, if gt is a
smooth family of automorphisms of A such that g0 = id (i.e., gt(ab) =
gt(a)gt(b)) and d = d

dt
|t=0gt then d(ab) = d(a)·b+a·d(b), and conversely,

if d is a derivation then gt := exp(td) is an automorphism.

9.2. The center of G and g. Let G be a Lie group with Lie algebra g
and Z = Z(G) the center of G, i.e. the set of z ∈ G such that zg = gz
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for all g ∈ G. Also let z = z(g) be the set of x ∈ g such that [x, y] = 0
for all y ∈ g; it is called the center of g.

Proposition 9.8. If G is connected then Z is a closed (normal, com-
mutative) Lie subgroup of G with Lie algebra z.

Proof. Since G is connected, an element g ∈ G belongs to Z iff it
commutes with exp(tu) for all u ∈ g, i.e., iff Adg(u) = u. Thus Z =
Ker(Ad), where Ad : G → GL(g) is the adjoint representation. Thus
by Proposition 4.7, Z ⊂ G is a closed Lie subgroup with Lie algebra
Ker(ad), as claimed. �

Remark 9.9. In general (when G is not necessarily connected), it is
easy to show that G/G◦ acts on z, and Z is a closed Lie subgroup of G
with Lie algebra zG/G

◦
(the subspace of invariant vectors).

Definition 9.10. For a connected Lie group G, the group G/Z(G) is
called the adjoint group of G.

It is clear that G/Z(G) is naturally isomorphic to the image of the
adjoint representation Ad : G→ GL(g), which motivates the terminol-
ogy.

9.3. The statements of the fundamental theorems of Lie the-
ory.

Theorem 9.11. (First fundamental theorem of Lie theory) For a Lie
group G, there is a bijection between connected Lie subgroups H ⊂ G
and Lie subalgebras h ⊂ g = LieG, given by h = LieH.

Theorem 9.12. (Second fundamental theorem of Lie theory) If G and
K are Lie groups with G simply connected then the map

Hom(G,K)→ Hom(LieG,LieK)

given by φ 7→ φ∗ is a bijection.

Theorem 9.13. (Third fundamental theorem of Lie theory) Any finite
dimensional Lie algebra is the Lie algebra of a Lie group.

These theorems hold for real as well as complex Lie groups. Thus
we have

Corollary 9.14. For K = R,C, the assignment G 7→ LieG is an equiv-
alence between the category of simply connected K-Lie groups and the
category of finite dimensional K-Lie algebras. Moreover, any connected
Lie group K has the form G/Γ where G ‘is simply connected and Γ ⊂ G
is a discrete central subgroup.
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Proof. The second fundamental theorem says that the functor G 7→
LieG is fully faithful, and the third fundamental theorem says that it
is essentially surjective. Thus it is an equivalence of categories. The
last statement follows from Proposition 3.5 (G is the universal covering
of K). �

We will discuss proofs of the fundamental theorems of Lie theory in
Subsection 10.2. The third theorem is the hardest one, and we will give
its complete proof only in Section 49.

9.4. Complexification of real Lie groups and real forms of com-
plex Lie groups. Let k be a real Lie algebra. Then kC := k⊗R C is a
complex Lie algebra. We say that g := kC is the complexification of k,
and k is a real form of g. Thus a real form of g is a real Lie subalgebra
k ⊂ g such that the natural map k⊗R C→ g is an isomorphism.

In this case we have an antilinear involution σ : g → g given by
σ(a + ib) = a− ib for a, b ∈ k, and k := gσ is the set of fixed points of
σ. Conversely, it is easy to see that if σ is an antilinear involution of a
complex Lie algebra g (i.e., an automorphism as a real Lie algebra such
that σ2 = 1 and σ(λa) = λσ(a) for a ∈ g, λ ∈ C), then k := gσ ⊂ g is a
real form of g. Thus real forms of a complex Lie algebra are in natural
bijection with its antilinear involutions.

Note that two non-isomorphic real Lie algebras can have isomorphic
complexifications; in other words, the same complex Lie algebra can
have non-isomorphic real forms. For example,

u(n)C ∼= gln(R)C ∼= gln(C)

while for n > 1,
u(n) � gln(R),

since in the first algebra any element x with nilpotent adx must be
zero, while in the second one it does not have to.

Let us now discuss real forms of complex Lie groups. By analogy
with the case of Lie algebras, we make the following definition.

Definition 9.15. Let G be a complex Lie group with Lie algebra g
and σ : G → G be an involutive automorphism of G as a real Lie
group such that the induced map σ : g → g is antilinear (i.e., σ is
antiholomorphic). Then the fixed point subgroup K := Gσ is called a
real form of G and G is called a complexification of K.9

9Note that this definition is not quite equivalent to Definition 3.51 in [K] of the
same notion, which is less conventional. For example, according to the definition
of [K], every complex elliptic curve has a real form, which does not agree with the
definition from algebraic geometry (cf. Example 9.16).
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Note that a real Lie group K may not admit a complexification. For

example, Exercise 11.20 shows that this happens if K◦ ∼= S̃L2(R), the
universal cover of SL2(R). On the other hand, Example 9.16 shows
that K may admit several (in fact, infinitely many) non-isomorphic
complexifications.

For example, both U(n) and GLn(R) are real forms of GLn(C), with
σ(g) = g and σ(g) = (gT )−1 respectively. Note that GLn(R) is not
connected, so a real form of a connected Lie group may be disconnected.

We see that every real form (i.e., antilinear involution) of g defines
at most one such form for G. However, it could be none since the
involution σ : g → g may not lift to G. This is demonstrated by the
following example.

Example 9.16. Let Λ ⊂ C be a lattice generated by 1 and τ ∈ C
with Imτ > 0, −1

2
< Reτ ≤ 1

2
, and let E := C/Λ be the corresponding

complex elliptic curve (a 1-dimensional complex Lie group). We have
LieE = C, so the only real form of LieE is defined by the antilinear
involution σ(z) = z. The condition for this involution to lift to E is
that σ(Λ) = Λ, or, equivalently, τ = aτ + b for some a, b ∈ Z coprime.
Taking imaginary parts, we get that a = −1, so E has a real form
if and only if τ + τ ∈ Z. This coincides with the definition of a real
elliptic curve in algebraic geometry saying that E can be defined by a
Weierstrass equation y2 = P (x) where P is a cubic polynomial with
real coefficients (check it!). There are two types of such elliptic curves:
τ ∈ iR (P has one real root) and τ ∈ 1

2
+ iR (P has three real roots).

In the first case the corresponding real group Eσ is Z/2 × R/Z (the
two components are the images of R and R+ 1

2
τ), while in the second

case it is R/Z (the image of R).

However, if G is a simply connected complex Le group, then every
real form of g necessarily defines one for G. Indeed, in this case by the
second fundamental theorem of Lie theory, the antilinear involution
σ : g→ g lifts to an antiholomorphic involution G→ G.

Exercise 9.17. (i) Classify complex Lie algebras of dimension at most
3, up to isomorphism.

(ii) Classify real Lie algebras of dimension at most 3.
(iii) Classify connected complex and real Lie groups of dimension at

most 3.
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10. Proofs of the fundamental theorems of Lie theory

10.1. Distributions and the Frobenius theorem. The proofs of
the fundamental theorems of Lie theory are based on the notion of
an integrable distribution in differential geometry, and the Frobenius
theorem about such distributions.

Definition 10.1. A k-dimensional distribution on a manifold X is a
rank k subbundle D ⊂ TX.

This means that in every tangent space TxX we fix a k-dimensional
subspace Dx which varies regularly with x. In other words, on some
neighborhood U ⊂ X of every x ∈ X, D is spanned by vector fields
v1, ...,vk linearly independent at every point of U .

Definition 10.2. A distribution D is integrable if every point x ∈ X
has a neighborhood U and local coordinates x1, ..., xn on U such that D
is defined at every point of U by the equations dxk+1 = ... = dxn = 0,
i.e., it is spanned by vector fields ∂i = ∂

∂xi
, i = 1, ..., k.

This is equivalent to saying that every point x of X is contained in an
integral submanifold for D, i.e., an immersed submanifold S = Sx ⊂
X such that for any y ∈ S the tangent space TyS ⊂ TyX coincides with
Dy. Namely, Sx is the set of all points of y ∈ X that can be connected
to x by a smooth curve γ : [0, 1] → X with γ(0) = x, γ(1) = y and
γ′(t) ∈ Dγ(t) for all t ∈ [0, 1] (show it!).

For this reason an integrable distribution is also called a foliation
and the integral submanifolds Sx are called the sheets of the folia-
tion. The manifold X falls into a disjoint union of such sheets. But
note that the sheets need not be closed (i.e., think of the irrational
torus winding!)

Example 10.3. A 1-dimensional distribution is the same thing as a
direction field. It is always integrable, as follows from the existence
theorem for ODE, and its integral submanifolds are called integral
curves. They are geometric realizations of solutions of the correspond-
ing ODE.

However, for k ≥ 2 a distribution is not always integrable.

Theorem 10.4. (The Frobenius theorem) A distribution D is inte-
grable if and only if for every two vector fields v,w contained in D,
their commutator [v,w] is also contained in D.

Example 10.5. Let v = ∂x, w = x∂y + ∂z in R3, and D be the 2-
dimensional distribution spanned by v,w. Then [v,w] = ∂y /∈ D. So
D is not integrable.
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Proof. If D is integrable, a vector field is contained in D iff it is tangent
to integral submanifolds of D. But the commutator of two vector fields
tangent to a submanifold is itself tangent to this submanifold. This
establishes the “only if” part.

It remains to prove the “if ” part. The proof is by induction in the
rank k of D. The base case k = 0 is trivial, so it suffices to establish the
inductive step. The question is local, so we may work in a neighborhood
U of P ∈ X. Suppose that v1, ...,vk ∈ Vect(U) is a basis of D in U (on
every tangent space). By local existence and uniqueness of solutions
of ODE, in some local coordinates x1, ..., xn = z, the vector field vk
equals ∂z. By subtracting from vi, i < k a suitable multiple of vk we
can make sure that vi has no ∂z-component. Then

vi =
n−1∑
j=1

aij(x1, ..., xn−1, z)∂xj .

Thus, since by assumption [∂z,vi] = [vk,vi] is a linear combination of
vm with functional coefficients, we have

[∂z,vi] =
k−1∑
m=1

bim(x1, ..., xn−1, z)vm

(vk does not occur since there is no ∂z component on the left hand
side). Hence

∂zaij(x1, ..., xn−1, z) =
k−1∑
m=1

bim(x1, ..., xn−1, z)amj(x1, ..., xn−1, z).

So, setting A = (amj(x1, ..., xn−1, z)) (a (k − 1) × (n − 1)-matrix) and
B = (bim(x1, ..., xn−1, z)) (a (k − 1)× (k − 1) matrix), we have

∂zA = BA.

Let A0 be the solution of this linear ODE in (k− 1)× (k− 1) matrices
with A0(x1, ..., xn−1, 0) = 1. Then A = A0C, where C = C(x1, ..., xn−1)
is a (k − 1)× (n− 1)-matrix which does not depend on z. So we have
a new basis of D given by wk = ∂z and

wi =
∑
j

cij(x1, ..., xn−1)∂xj , 1 ≤ i ≤ k − 1.

Thus there is a neighborhood U of P which can be represented as
U = (−a, a)×U ′, where dimU ′ = n−1, so that D = R⊕D′, where D′

is a k−1-dimensional distribution on U ′ spanned by wi, 1 ≤ i ≤ k−1.
It is clear that for any two vector fields v,w on U ′ contained in D′, so is

59



[v,w]. Hence D′ is integrable by the induction assumption. Therefore,
so is D, justifying the inductive step.

�

10.2. Proofs of the fundamental theorems of Lie theory.

10.2.1. Proof of Theorem 9.11. Let G be a Lie group with Lie algebra
g. Let h ⊂ g be a Lie subalgebra. We need to show that there is a
unique (not necessarily closed) connected Lie subgroup H ⊂ G with
Lie algebra h. The proof of existence of H is based on the Frobenius
theorem.

Define the distribution D on G by left-translating h ⊂ g = T1G, i.e.,
Dg = Lgh. So any vector field contained in D is of the form

v =
∑

fiLai ,

where ai is a basis of h and fi are regular functions. Now if

w =
∑

gjLaj

is another such field then

[v,w] =
∑
i,j

(fiLai(gj)Laj − gjLaj(fi)Lai + figj[Lai ,Laj ]).

But [ai, aj] =
∑

k c
k
ijak, so

[Lai ,Laj ] =
∑
k

ckijLak .

Thus if v,w are contained in D then so is [v,w]. Hence by the Frobe-
nius theorem, D is integrable.

Now consider the integral (embedded) submanifold H of D going
through 1 ∈ G. We claim that H is a Lie subgroup of G with Lie
algebra h. Indeed, it suffices to show that H is a subgroup of G. But
this is clear since H is the collection of elements of G of the form

g = exp(a1)... exp(am),

where ai ∈ h.
Moreover, H is unique since it has to be generated by the image of

the exponential map exp : h→ G.
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10.2.2. Proof of Theorem 9.12. We need to show that the natural map
Hom(G,K)→ Hom(LieG,LieK) is a bijection if G is simply connected.

We know this map is injective so we only need to establish surjec-
tivity. For any morphism ψ : LieG→ LieK, consider the morphism

θ = (id, ψ) : LieG→ Lie(G×K) = LieG⊕ LieK

The previous proposition implies that there is a connected Lie subgroup
H ⊂ G ×K whose Lie algebra is Imθ. We have projection homomor-
phisms p1 : H → G, p2 : H → K, and (p1)∗ = id, so p1 is a covering.
Since G is simply connected, p1 is an isomorphism, so we can define
φ := p2 ◦ p−1

1 : G→ K, and it is easy to see that ψ = φ∗.

10.2.3. Proof of Theorem 9.13. Finally, let us discuss a proof of Theo-
rem 9.13, stating that any finite dimensional Lie algebra g over K = R
or C is the Lie algebra of a Lie group. We will deduce it from the
following purely algebraic Ado’s theorem.

Theorem 10.6. Any finite dimensional Lie algebra over K is a Lie
subalgebra of gln(K).

Ado’s theorem in fact holds over any ground field, but it is rather
nontrivial and we won’t prove it now. A proof can be found, for ex-
ample, in [J]. But Ado’s theorem immediately implies Theorem 9.13.
Indeed, using Theorem 9.11, Ado’s theorem implies the following even
stronger statement:

Theorem 10.7. Any finite dimensional K-Lie algebra is the Lie alge-
bra of a Lie subgroup of GLn(K) for some n.

This implies

Corollary 10.8. Any simply connected Lie group is the universal cov-
ering of a linear Lie group, i.e., of a Lie subgroup of GLn(K).

However, it is not true that any Lie group is isomorphic to a Lie
subgroup of GLn(K), see Exercise 11.20.

One can also prove Theorem 9.13 directly and then deduce Ado’s
theorem as a corollary. We will do this in Sections 49 and 50. We note
that Theorem 9.13 will not be used in proofs of other results until that
point.
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11. Representations of Lie groups and Lie algebras

11.1. Representations. We have previously defined (finite dimen-
sional) representations of Lie groups and (iso)morphisms between them.
We can do the same for Lie algebras:

Definition 11.1. A representation of a Lie algebra g over a field k
(or a g-module) is a vector space V over k equipped with a homomor-
phism of Lie algebras ρ = ρV : g → gl(V ). A (homo)morphism of
representations A : V → W (also called an intertwining operator)
is a linear map which commutes with the g-action: AρV (b) = ρW (b)A
for b ∈ g. Such A is an isomorphism if it is an isomorphism of vector
spaces.

The first and second fundamental theorems of Lie theory imply:

Corollary 11.2. Let G be a Lie group and g = LieG.
(i) Any finite dimensional representation ρ : G→ GL(V ) gives rise

to a Lie algebra representation ρ∗ : g → gl(V ), and any morphism of
G-representations is also a morphism of g-representations.

(ii) If G is connected then any morphism of g-representations is a
morphism of G-representations.

(iii) If G is simply connected then the assignment ρ 7→ ρ∗ is an
equivalence of categories RepG → Rep g between the corresponding
categories of finite dimensional representations. In particular, any fi-
nite dimensional representation of the Lie algebra g can be uniquely
exponentiated to the group G.

Example 11.3. 1. The trivial representation: ρ(g) = 1, g ∈ G,
ρ∗(x) = 0, x ∈ g.

2. The adjoint representation: ρ(g) = Adg, ρ∗(x) = adx.

Exercise 11.4. Let g be a complex Lie algebra. Show that gC ∼=
g ⊕ g. Deduce that if G is a simply connected complex Lie group
then RepRG

∼= Rep(g ⊕ g), where RepRG is the category of finite
dimensional representations of G regarded as a real Lie group.

As usual, a subrepresentation of a representation V is a subspace
W ⊂ V invariant under the G-action (resp. g-action). In this case
the quotient space V/W has a natural structure of a representation,
called the quotient representation. The notion of direct sum of
representations is defined in an obvious way:

ρV⊕W (x) = ρV (x)⊕ ρW (x).

Also we have the notion of dual representation:

ρV ∗(g) = ρV (g−1)∗, g ∈ G; ρV ∗(x) = −ρV (x)∗, x ∈ g,
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and tensor product:

ρV⊗W (g) = ρV (g)⊗ ρW (g), ρV⊗W (x) = ρV (x)⊗ 1W + 1V ⊗ ρW (x).

Thus we have the notion of symmetric and exterior powers SmV,∧mV
of a representation V , which can be defined either as quotients or (over
a field of characteristic zero) as subrepresentations of V ⊗n. Also for
representations V,W , Hom(V,W ) is a representation via

g ◦ A = ρW (g)AρV (g−1), x ◦ A = ρW (x)A− AρV (x),

so if V is finite dimensional then Hom(V,W ) ∼= V ∗ ⊗W . Finally, for
every representation V we have the notion of invariants:

V G = {v ∈ V : gv = v ∀g ∈ G}, V g = {v ∈ V : xv = 0 ∀x ∈ g}.
Thus V G ⊂ V g and V G = V g for connected G (in general, V G =
(V g)G/G

◦
). Also Hom(V,W )G ∼= HomG(V,W ) and Hom(V,W )g =

Homg(V,W ), the spaces of intertwining operators. Note that in all
cases the formula for Lie algebras is determined by the formula for
groups by the requirement that these definitions should be consistent
with the assignment ρ 7→ ρ∗.

Definition 11.5. A representation V 6= 0 of G or g is irreducible if
any subrepresentation W ⊂ V is either 0 or V and is indecomposable
if for any decomposition V ∼= V1 ⊕ V2, we have V1 = 0 or V2 = 0.

It is clear that any finite dimensional representation is isomorphic
to a direct sum of indecomposable representations (in fact, uniquely
so up to order of summands by the Krull-Schmidt theorem). However,
not any V is a direct sum of irreducible representations, e.g.

ρ : C→ GL2(C), ρ(x) =

(
1 x
0 1

)
.

Definition 11.6. A representation V is called completely reducible
if it is isomorphic to a direct sum of irreducible representations.

Some of the main problems of representation theory are:
1) Classify irreducible representations;
2) If V is a completely reducible representation, find its decomposi-

tion into irreducibles.
3) For which G are all representations completely reducible?

Example 11.7. Let V be a finite dimensional C-representation of g or
G and A : V → V be a homomorphism of representations (e.g., defined
by a central element). Then we have a decomposition of representations
V = ⊕λV (λ), where V (λ) is the generalized eigenspace of A with
eigenvalue λ.
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Example 11.8. Let V be the vector representation of GL(V ). Then
V is irreducible, and more generally so are SmV,∧nV (show it!). Thus
V ⊗ V is completely reducible: V ⊗ V ∼= S2V ⊕ ∧2V .

11.2. Schur’s lemma.

Lemma 11.9. (Schur’s lemma) Let V,W be irreducible finite dimen-
sional complex representations of G or g. Then HomG,g(V,W ) = 0 if
V,W are not isomorphic, and every endomorphism of the representa-
tion V is a scalar.

Proof. Let A : V → W be a nonzero morphism of representations.
Then Im(A) ⊂ W is a nonzero subrepresentation, hence Im(A) = W .
Also Ker(A) ⊂ V is a proper subrepresentation, so Ker(A) = 0. Thus
A is an isomorphism, i.e., we may assume that W = V . In this case,
let λ be an eigenvalue of A. Then A − λ · Id : V → V is a morphism
of representations but not an isomorphism, hence it must be zero, so
A = λ · Id. �

Note that the second statement of Schur’s lemma (unlike the first
one) does not hold over R. For example, consider the rotation group
SO(2) (or any of its finite subgroups of order > 2) acting on V = R2 by
rotations. Then End(V ) = C 6= R. Similarly, if V is the representation
of SU(2) on H defined by right multiplication by unit quaternions
then V is an irreducible real representation but End(V ) = H 6= R.
For this reason, in representation theory of Lie groups and Lie algebras
one usually considers complex representations. Thus from now on all
representations we consider will be assumed complex unless specified
otherwise.10

Corollary 11.10. The center of G, g acts on an irreducible representa-
tion by a scalar. In particular, if G or g is abelian then every irreducible
representation of G is 1-dimensional.

Example 11.11. Irreducible representations of R are χs given by
χs(a) = exp(sa), s ∈ C. Irreducible representations of R× = R>0×Z/2
are χs,+(a) = |a|s, χs,−(a) = |a|ssign(a). Irreducible representations of
S1 are χn(z) = zn, n ∈ Z. Irreducible representations of the real group
C× = R>0 × S1 are χs,n(z) = |z|s(z/|z|)n, s ∈ C, n ∈ Z.

Corollary 11.12. Let Vi be irreducible and V = ⊕iniVi,W = ⊕imiVi
be completely reducible complex representations of G or g. Then we
have a natural linear isomorphism

HomG,g(V,W ) ∼= ⊕iMatmi,ni(C).

10An exception is the adjoint representation of a real Lie group and associated
tensor representations, which are real.
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Moreover, if V = W then this is an isomorphism of algebras.

11.3. Unitary representations. A finite dimensional representation
V of G is said to be unitary if it is equipped with a positive definite
Hermitian inner product B(, ) invariant under G, i.e., B(gv, gw) =
B(v, w) for v, w ∈ V , g ∈ G.

Proposition 11.13. Any unitary representation can be written as an
orthogonal direct sum of irreducible unitary representations. In partic-
ular, it is completely reducible.

Proof. If W ⊂ V is a subrepresentation of a unitary representation V
then let W⊥ be its orthogonal complement under B. Then W⊥ is also
a subrepresentation since B is invariant, and V = W ⊕W⊥ since B is
positive definite.

Now we can prove that V is an orthogonal direct sum of irreducible
unitary representations by induction in dimV . The base dimV = 1 is
clear so let us make the inductive step. Pick an irreducible W ⊂ V .
Then V = W ⊕ W⊥, and W⊥ is a unitary representation of dimen-
sion smaller than dimV , so is an orthogonal direct sum of irreducible
unitary representations by the induction assumption. �

Proposition 11.14. Any finite dimensional representation V of a fi-
nite group G is unitary. Moreover, if V is irreducible, the unitary
structure is unique up to a positive factor.

Proof. Let B be any positive definite inner product on V . Let

B̂(v, w) :=
∑
g∈G

B(gv, gw).

Then B̂ is positive definite and invariant, so V is unitary.
If V is irreducible and B1, B2 are two unitary structures on V then

B1(v, w) = B2(Av,w) for some homomorphism A : V → V . Thus
by Schur’s lemma A = λ · Id, and λ > 0 since B1, B2 are positive
definite. �

Corollary 11.15. Every finite dimensional complex representation of
a finite group G is completely reducible.

11.4. Representations of sl2. The Lie algebra sl2 = sl2(C) has basis

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)
.

with commutator

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.
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Since 2-by-2 matrices act on variables x, y, they also act on the space
V = C[x, y] of polynomials in x, y. Namely, this action is given by the
formulas

e = x∂y, f = y∂x, h = x∂x − y∂y.
This infinite-dimensional representation has the form V = ⊕n≥0Vn,
where Vn is the space of polynomials of degree n. The space Vn is
invariant under e, f, h, so it is an n + 1-dimensional representation of
sl2. It has basis vpq = xpyq, such that

hvpq = (p− q)vpq, evpq = qvp+1,q−1, fvpq = pvp−1,q+1.

Thus V0 is the trivial representation, and V1 is the tautological rep-
resentation by 2-by-2 matrices. Also it is easy to see that V2 is the
adjoint representation.

Theorem 11.16. (i) Vn is irreducible.
(ii) If V 6= 0 is a finite dimensional representation of sl2 then e|V

and f |V are nilpotent, so U := Ker(e) 6= 0. Moreover, h preserves U
and acts diagonalizably on it, with nonnegative integer eigenvalues.

(iii) Any irreducible finite dimensional representation V of sl2 is
isomorphic to Vn for some n.

(iv) Any finite dimensional representation V of sl2 is completely re-
ducible.

Proof. (i) Let W ⊂ Vn be a nonzero subrepresentation. Since it is h-
invariant, it must be spanned by vectors vp,n−p for p from a nonempty
subset S ⊂ [0, n]. Since W is e-invariant and f -invariant, if m ∈ S
then so are m + 1,m − 1 (if they are in [0, n]). Thus S = [0, n] and
W = Vn.

(ii) Let V be a finite dimensional representation of sl2. We can
write V as a direct sum of generalized eigenspaces of h: V = ⊕λV (λ).
Since he = e(h + 2), hf = f(h − 2), we have e : V (λ) → V (λ + 2),
f : V (λ)→ V (λ− 2). Thus e|V , f |V are nilpotent, so U 6= 0.

If v ∈ U then e(hv) = (h−2)ev = 0, so hv ∈ U , i.e., U is h-invariant.
Given v ∈ U , consider the vector vm := emfmv. We have

efmv = fefm−1v + hfm−1v = fefm−1v + fm−1(h− 2(m− 1))v = ...

(11.1)

= fm−1m(h−m+ 1)v.

Thus

vm = em−1fm−1m(h−m+ 1)v = m(h−m+ 1)vm−1.

Hence
vm = m!h(h− 1)...(h−m+ 1)v.
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But for large enough m, vm = 0, since f is nilpotent, so

h(h− 1)...(h−m+ 1)v = 0.

Thus h acts diagonalizably on U with nonnegative integer eigenvalues.
(iii) Let v ∈ U be an eigenvector of h, i.e., hv = λv. Let wm = fmv.

Then

fwm = wm+1, hwm = (λ− 2m)wm.

Also, it follows from (11.1) that

ewm = m(λ−m+ 1)wm−1.

Thus if wm 6= 0 and λ 6= m then wm+1 6= 0. Also the nonzero vectors
wm are linearly independent since they have different eigenvalues of h.
Thus λ = n must be a nonnegative integer (as also follows from (ii)),
and wn+1 = 0. So V , being irreducible, has a basis wm, m = 0, ..., n.
Now it is easy to see that V ∼= Vn, via the assignment

wm 7→ n(n− 1)...(n−m+ 1)xmyn−m.

(iv) Consider the Casimir operator

C = 2fe+
h2

2
+ h.

It is easy to check that [C, e] = [C, f ] = [C, h] = 0, so C : V → V is a

homomorphism. Thus C|Vn = n(n+2)
2

(it is a scalar by Schur’s lemma,
and acts with such eigenvalue on vn0 ∈ Vn); note that these are different
for different n. For a general representation, we have V = ⊕cVc, the
direct sum of generalized eigenspaces of C.

Assume V is indecomposable. Then by Example 11.7 C has a single
eigenvalue c on V . Fix a Jordan-Hölder filtration on V , i.e. a
filtration

0 = F0V ⊂ F1V ⊂ ... ⊂ FmV = V

such that Yi := FiV/Fi−1V are irreducible for all i. By (iii), for each i

we have Yi ∼= Vn for some n, so c = n(n+2)
2

and thus this n is the same
for all i. Thus V (k) has dimension m, with h acting on it by k · Id
for k = n, n − 2, ...,−n and V (k) = 0 otherwise, by (ii); in particular,
dimV = m(n + 1). Let u1, ..., um be a basis of V (n). As in (iii), we
define subrepresentations Wi ⊂ V generated by ui. It is easy to see
that Wi

∼= Vn and the natural morphism W1⊕...⊕Wm → V is injective.
Hence it is an isomorphism by dimension count, i.e., V is completely
reducible. �

Corollary 11.17. (The Jacobson-Morozov lemma for GL(V )) Let V
be a finite dimensional complex vector space and N : V → V be a
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nilpotent operator. Then there is a unique up to isomorphism action
of sl2 on V for which e acts by N .

Proof. This follows from Theorem 11.16 and the Jordan normal form
theorem for operators on V . �

For a representation V define its character by

χV (z) = TrV (zh) =
∑
m

dimV (m)zm.

Thus

χVn(z) = zn + zn−2 + ...+ z−n =
zn+1 − z−n−1

z − z−1
.

It is easy to see that

χV⊕W = χV + χW , χV⊗W = χV χW .

Since the functions χVn are linearly independent, we see that a finite
dimensional representation of sl2 is determined by its character.

Theorem 11.18. (The Clebsch-Gordan rule) We have

Vm ⊗ Vn ∼= ⊕min(m,n)
i=0 V|m−n|+2i.

Proof. It suffices to note that we have the corresponding character iden-
tity:

χVmχVn =

min(m,n)∑
i=0

χV|m−n|+2i
.

�

Exercise 11.19. Show that Vn has an invariant nondegenerate inner
product (i.e., such that (av, w) + (v, aw) = 0 for a ∈ sl2, v, w ∈ Vn)
which is symmetric for even n and skew-symmetric for odd n. In par-
ticular, V ∗n

∼= Vn.

Exercise 11.20. Let G be the universal cover of SL2(R). Show that
G is not isomorphic to a Lie subgroup of GLn(R) for any n and that
moreover, the only quotients of G that are such subgroups are SL2(R)
and PSL2(R).
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12. The universal enveloping algebra of a Lie algebra

12.1. The definition of the universal enveloping algebra. Let V
be a vector space over a field k. Recall that the tensor algebra of V
is the Z-graded associative algebra TV := ⊕n≥0V

⊗n (with deg(V ⊗n) =
n), with multiplication given by a · b = a⊗ b for a ∈ V ⊗m and b ∈ V ⊗n.
If {xi} is a basis of V then TV is just the free algebra with generators
xi (i.e., without any relations). Its basis consists of various words in
the letters xi.

Let g be a Lie algebra over k.

Definition 12.1. The universal enveloping algebra of g, denoted
U(g), is the quotient of Tg by the ideal I generated by the elements
xy − yx− [x, y], x, y ∈ g.

Recall that any associative algebra A is also a Lie algebra with op-
eration [a, b] := ab− ba. The following proposition follows immediately
from the definition of U(g).

Proposition 12.2. (i) Let J ⊂ Tg be an ideal, and ρ : g → Tg/J
the natural linear map. Then ρ is a homomorphism of Lie algebras
if and only if J ⊃ I, so that Tg/J is a quotient of Tg/I = U(g).
In other words, U(g) is the largest quotient of Tg for which ρ is a
homomorphism of Lie algebras.

(ii) (universal property of U(g)) Let A be any associative algebra
over k. Then the map

Homassociative(U(g), A)→ HomLie(g, A)

given by φ 7→ φ ◦ ρ is a bijection.

Part (ii) of this proposition implies that any Lie algebra map
ψ : g → A can be uniquely extended to an associative algebra map
φ : U(g)→ A so that ψ = φ ◦ ρ. This is the universal property of U(g)
which justifies the term “universal enveloping algebra”.

In particular, it follows that a representation of g on a vector space V
is the same thing as an algebra map U(g)→ End(V ) (i.e., a represen-
tation of U(g) on V ). Thus, to understand the representation theory
of g, it is helpful to understand the structure of U(g); for example,
every central element C ∈ U(g) gives rise to a morphism of represen-
tations V → V (note that this has already come in handy in studying
representations of sl2).

In terms of the basis {xi} of g, we can write the bracket as

[xi, xj] =
∑
k

ckijxk,
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where ckij ∈ k are the structure constants. Then the algebra U(g)
can be described as the quotient of the free algebra k〈{xi}〉 by the
relations

xixj − xjxi =
∑
k

ckijxk.

Example 12.3. 1. If g is abelian (i.e., ckij = 0) then U(g) = Sg =
k[{xi}] is the symmetric algebra of g, Sg = ⊕n≥0S

ng, which in terms
of the basis is the polynomial algebra in xi.

2. U(sl2(k)) is generated by e, f, h with defining relations

he− eh = 2e, hf − fh = −2f, ef − fe = h.

Recall that g acts on Tg by derivations via the adjoint action. More-
over, using the Jacobi identity, we have

adz(xy − yx− [x, y]) = [z, x]y + x[z, y]− [z, y]x− y[z, x]− [z, [x, y]] =

([z, x]y − y[z, x]− [[z, x], y]) + (x[z, y]− [z, y]x− [x, [z, y]]).

Thus adz(I) ⊂ I, and hence the action of g on Tg descends to its action
on U(g) by derivations (also called the adjoint action). It is easy to see
that these derivations are in fact inner:

adz(a) = za− az
for a ∈ U(g) (although this is not so for Tg). Indeed, it suffices to note
that this holds for a ∈ g by the definition of U(g).

Thus we get

Proposition 12.4. The center Z(U(g)) of U(g) coincides with the
subalgebra of invariants U(g)adg.

Example 12.5. The Casimir operator C = 2fe+ h2

2
+h which we used

to study representations of g = sl2 is in fact a central element of U(g).

12.2. Graded and filtered algebras. Recall that a Z≥0-filtered al-
gebra is an algebra A equipped with a filtration

0 = F−1A ⊂ F0A ⊂ F1A ⊂ ... ⊂ FnA ⊂ ...

such that 1 ∈ F0A, ∪n≥0FnA = A and FiA·FjA ⊂ Fi+jA. In particular,
if A is generated by {xα} then a filtration on A can be obtained by
declaring xα to be of degree 1; i.e., FnA = (F1A)n is the span of all
words in xα of degree ≤ n.

If A = ⊕i≥0Ai is Z≥0-graded then we can define a filtration on A
by setting FnA := ⊕ni=0Ai; however, not any filtered algebra is ob-
tained in this way, and having a filtration is a weaker condition than
having a grading. Still, if A is a filtered algebra, we can define its as-
sociated graded algebra gr(A) := ⊕n≥0grn(A) (also denoted grA),

70



where grn(A) := FnA/Fn−1A. The multiplication in gr(A) is given by
the “leading terms” of multiplication in A: for a ∈ gri(A), b ∈ grj(A),

pick their representatives ã ∈ FiA, b̃ ∈ FjA and let ab be the projection

of ãb̃ to gri+j(A).

Proposition 12.6. If gr(A) is a domain (has no zero divisors) then
so is A.

Exercise 12.7. Prove Proposition 12.6.

Example 12.8. Let g be a Lie algebra over k. Define a filtration11 on
U(g) by setting deg(g) = 1. Thus FnU(g) is the image of⊕ni=0g

⊗i ⊂ Tg.
Note that since

xy − yx = [x, y], x ∈ g,

we have [FiU(g), FjU(g)] ⊂ Fi+j−1U(g). Thus, grU(g) is commutative;
in other words, we have a surjective algebra morphism

φ : Sg→ grU(g).

12.3. The coproduct of U(g). For a vector space g define the algebra
homomorphism ∆ : Tg → Tg ⊗ Tg given for x ∈ g ⊂ Tg by ∆(x) =
x⊗ 1 + 1⊗x (it exists and is unique since Tg is freely generated by g).

Lemma 12.9. If g is a Lie algebra then the kernel I of the map Tg→
U(g) satisfies the property ∆(I) ⊂ I ⊗ Tg + Tg⊗ I ⊂ Tg⊗ Tg. Thus
∆ descends to an algebra homomorphism U(g)→ U(g)⊗ U(g).

Proof. For x, y ∈ g and a = a(x, y) := xy− yx− [x, y] we have ∆(a) =
a ⊗ 1 + 1 ⊗ a. The lemma follows since the ideal I is generated by
elements of the form a(x, y). �

The homomorphism ∆ is called the coproduct (of Tg or U(g)).

Example 12.10. Let g = V be abelian (a vector space). Then U(g) =
SV , which for dimV < ∞ can be viewed as the algebra of polyno-
mial functions on V ∗. Similarly, SV ⊗ SV is the algebra of polyno-
mial functions on V ∗ × V ∗. In terms of this identification, we have
∆(f)(x, y) = f(x+ y).

11The grading on Tg does not descend to U(g), in general, since the relation
xy− yx = [x, y] is not homogeneous: the right hand side has degree 1 while the left
hand side has degree 2. So U(g) is not graded but is only filtered.
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12.4. Differential operators on manifolds and Lie groups. We
have seen in Subsection 5.2 that a vector field on a manifold X is
the same thing as a derivation of the algebra O(U) for every open set
U ⊂ X compatible with restriction maps O(U)→ O(V ) for V ⊂ U ; in
particular, on every U we have [v,mf ] = mv(f) where f ∈ O(U) and
mf : O(U) → O(U) is the operator of multiplication by f ∈ O(U).
Thus if also g ∈ O(U) then [[v,mf ],mg] = 0. Conversely, if A is an
endomorphism of the space O(U) for every open U ⊂ X compatible
with restriction maps and [[A,mf ],mg] = 0 for any f, g ∈ O(U) then
A = v + mh for a unique vector field v and regular function h on
X (check this!). This gives rise to the following generalization of the
notion of a vector field.

Definition 12.11. (Grothendieck) A differential operator of order
≤ N on X is an endomorphism of the space O(U) for every open set
U ⊂ X compatible with restriction maps O(U) → O(V ) for V ⊂ U
such that for any f0, ..., fN ∈ O(U) one has

[...[[A, f0], f1], ..., fN ] = 0.

It is easy to show that the latter condition is equivalent to the clas-
sical condition for a differential operator of order ≤ N : in local coor-
dinates (xi) on a chart U ⊂ X the operator A looks like

A =
N∑
k=0

∑
i1≤...≤ik

Fi1,...,ik
∂k

∂xi1 ...∂xik
,

where Fi1,...,ik ∈ O(U) (check this!). The space of such operators is
denoted by DN(X). Thus we have a nested sequence of spaces

O(X) = D0(X) ⊂ D1(X) ⊂ ... ⊂ DN(X) ⊂ ...

The nested union ∪N≥0DN(X) is a filtered associative algebra called
the algebra of differential operators on X and denoted by D(X).

Now suppose that a Lie group G with Lie algebra g acts on X. Then
we have a homomorphism of Lie algebras g → Vect(X), which can
be viewed as a Lie algebra homomorphism g → D(X). Thus by the
universal property of the universal enveloping algebra, we obtain an
associative algebra homomorphism ξ : U(g) → D(X). Moreover, this
homomorphism preserves filtrations.

For example, if X = G and G acts by right translations, then the cor-
responding map g→ Vect(G) identifies g with the Lie algebra VectL(G)
of left-invariant vector fields on G. Thus the map ξ : U(g) → D(G)
lands in the subalgebra DL(G) of left-invariant differential operators
on G.
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Exercise 12.12. Show that the map ξ : U(g) → DL(G) is a filtered
algebra isomorphism.
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13. The Poincaré-Birkhoff-Witt theorem

13.1. The statement of the Poincaré-Birkhoff-Witt theorem.
Let g be a Lie algebra over a field k. Recall from Example 12.8 that
we have a surjective algebra homomorphism

φ : Sg→ grU(g).

Theorem 13.1. (Poincaré-Birkhoff-Witt theorem) The homomorphism
φ is an isomorphism.

We will prove Theorem 13.1 in Subsection 13.2. Now let us discuss
its reformulation in terms of a basis and corollaries.

Given a basis {xi} of g, fix an ordering on this basis and consider
ordered monomials

∏
i x

ni
i , where the product is ordered according to

the ordering of the basis. The statement that φ is surjective is equiv-
alent to saying that ordered monomials span U(g). This is also easy
to see directly: any monomial can be ordered using the commutation
relations at the cost of an error of lower degree, so proceeding recur-
sively, we can write any monomial as a linear combination of ordered
ones. Thus the PBW theorem can be formulated as follows:

Theorem 13.2. The ordered monomials are linearly independent, hence
form a basis of U(g).

For instance, if k = R or C and g = Lie(G) where G is a Lie group,
this theorem is easy to deduce from Exercise 12.12 (do this!).

Corollary 13.3. The map ρ : g→ U(g) is injective. Thus g ⊂ U(g).

Remark 13.4. Let g be a vector space equipped with a bilinear map
[, ] : g × g → g. Then one can define the algebra U(g) as above.
However, if the map ρ : g → U(g) is injective then we clearly must
have [x, x] = 0 for x ∈ g and the Jacobi identity, i.e., g has to be a Lie
algebra. Thus the PBW theorem and even Corollary 13.3 fail without
the axioms of a Lie algebra.

Corollary 13.5. Let gi, 1 ≤ i ≤ n, be Lie subalgebras of g such that
g = ⊕igi as a vector space (but [gi, gj] need not be zero). Then the mul-
tiplication map ⊗iU(gi)→ U(g) in any order is a linear isomorphism.

Proof. The corollary follows immediately from the PBW theorem by
choosing a basis of each gi. �

Remark 13.6. 1. Corollary 13.5 applies to the case of infinitely many
gi if we understand the tensor product accordingly: the span of tensor
products of elements of U(gi) where almost all of these elements are
equal to 1.

74



2. Note that if dim gi = 1, this recovers the PBW theorem itself, so
Corollary 13.5 is in fact a generalization of the PBW theorem.

Let char(k) = 0. Define the symmetrization map σ : Sg→ U(g)
given by

σ(y1 ⊗ ...⊗ yn) =
1

n!

∑
s∈Sn

ys(1)...ys(n).

It is easy to see that this map commutes with the adjoint action of g.

Corollary 13.7. σ is an isomorphism.

Proof. It is easy to see that grσ (the induced map on the associated
graded algebra) coincides with φ, so the result follows from the PBW
theorem. �

Let Z(U(g)) denote the center of U(g).

Corollary 13.8. The map σ defines a filtered vector space isomor-
phism σ0 : (Sg)adg → Z(U(g)) whose associated graded is the algebra
isomorphism φ|(Sg)adg : (Sg)adg → grZ(U(g)).

In the case when g = LieG for a connected Lie group G, we thus
obtain a filtered vector space isomorphism of the center of U(g) with
(Sg)AdG.

Remark 13.9. The map σ0 is not, in general, an algebra homomor-
phism; however, a nontrivial theorem of M. Duflo says that if g is finite
dimensional then there exists a canonical filtered algebra isomorphism
η : Z(U(g)) → (Sg)adg (a certain twisted version of σ0) whose associ-
ated graded is φ|Z(U(g)). A construction of the Duflo isomorphism can
be found in [CR].

Example 13.10. Let g = sl2 = so3. Then g has a basis x, y, z with
[x, y] = z, [y, z] = x, [z, x] = y, and G = SO(3) acts on these ele-
ments by ordinary rotations of the 3-dimensional space. So the only
G-invariant polynomials of x, y, z are polynomials of r2 = x2 + y2 + z2.
Thus we get that Z(U(g)) = C[x2 + y2 + z2]. In terms of e, f, h, we
have

x2 + y2 + z2 = −fe− h2 + 2h

4
= −C

2
,

where C is the Casimir element.

13.2. Proof of the PBW theorem. The proof of Theorem 13.1 is
based on the following key lemma.
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Lemma 13.11. There exists a unique linear map ϕ : Tg → Sg such
that

(i) for an ordered monomial X := xi1 ...xim ∈ g⊗m one has
ϕ(X) = X;

(ii) one has ϕ(I) = 0; in other words, ϕ descends to a linear map
ϕ : U(g)→ Sg.

Remark 13.12. The map ϕ is not canonical and depends on the choice
of the ordered basis xi of g.

Note that Lemma 13.11 immediately implies the PBW theorem,
since by this lemma the images of ordered monomials under ϕ are
linearly independent in Sg, implying that these monomials themselves
are linearly independent in U(g).

Proof. It is clear that ϕ is unique if exists since ordered monomials
span U(g). We will construct ϕ by defining it inductively on FnTg for
n ≥ 0.

Suppose ϕ is already defined on Fn−1Tg and let us extend it to
FnTg = Fn−1Tg ⊕ g⊗n. So we should define ϕ on g⊗n. Since ϕ is
already defined on ordered monomials X (by ϕ(X) = X), we need to
extend this definition to all monomials.

Namely, let X be an ordered monomial of degree n, and let us define
ϕ on monomials of the form s(X) for s ∈ Sn, where

s(y1...yn) := ys(1)...ys(n).

To this end, fix a decomposition D of s into a product of transpositions
of neighbors:

s = sjr ...sj1 ,

and define ϕ(s(X)) by the formula

ϕ(s(X)) := X + ΦD(s,X),

where

ΦD(s,X) :=
r−1∑
m=0

ϕ([, ]jm+1(sjm ...sj1(X))),

and
[, ]j(y1...yjyj+1...yn) := y1...[yj, yj+1]...yn.

We need to show that ϕ(s(X)) is well defined, i.e., ΦD(s,X) does
not really depend on the choice of D and s but only on s(X). We first
show that ΦD(s,X) is independent on D.

To this end, recall that the symmetric group Sn is generated by
sj, 1 ≤ j ≤ n− 1 with defining relations

s2
j = 1; sjsk = sksj, |j − k| ≥ 2; sjsj+1sj = sj+1sjsj+1.
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Thus any two decompositions of s into a product of transpositions of
neighbors can be related by a sequence of applications of these relations
somewhere inside the decomposition.

Now, the first relation does not change the outcome by the identity
[x, y] = −[y, x].

For the second relation, suppose that j < k and we have two decom-
positions D1, D2 of s given by s = psjskq and s = psksjq, where q is a
product of m transpositions of neighbors. Let q(X) = Y abZcdT where
a, b, c, d ∈ g stand in positions j, j + 1, k, k + 1. Let Φ1 := ΦD1(s,X),
Φ2 := ΦD2(s,X). Then the sums defining Φ1 and Φ2 differ only in the
m-th and m+ 1-th term, so we get

Φ1 − Φ2 =

ϕ(Y abZ[c, d]T ) + ϕ(Y [a, b]ZdcT )− ϕ(Y [a, b]ZcdT )− ϕ(Y baZ[c, d]T ),

which equals zero by the induction assumption.
For the third relation, suppose that we have two decompositions

D1, D2 of s given by s = psjsj+1sjq and s = psj+1sjsj+1q, where q is
a product of k transpositions of neighbors. Let q(X) = Y abcZ where
a, b, c ∈ g stand in positions j, j + 1, j + 2. Let Φ1 := ΦD1(s,X),
Φ2 := ΦD2(s,X). Then the sums defining Φ1 and Φ2 differ only in the
k-th, k + 1-th, and k + 2-th terms, so we get

Φ1 − Φ2 =

(ϕ(Y [a, b]cZ) + ϕ(Y b[a, c]Z) + ϕ(Y [b, c]aZ))−
(ϕ(Y a[b, c]Z) + ϕ(Y [a, c]bZ) + ϕ(Y c[a, b]Z)) .

So the Jacobi identity

[[b, c], a] + [b, [a, c]] + [[a, b], c] = 0

combined with property (ii) in degree n−1 implies that Φ1−Φ2 = 0, i.e.,
Φ1 = Φ2, as claimed. Thus we will denote ΦD(s,X) just by Φ(s,X).

It remains to show that Φ(s,X) does not depend on the choice of
s and only depends on s(X). Let X = xi1 ...xin ; then s(X) = s′(X)
if and only if s = s′t, where t is the product of transpositions sk for
which ik = ik+1. Thus, it suffices to show that Φ(s,X) = Φ(ssk, X) for
such k. But this follows from the the fact that [x, x] = 0.

Now, it follows from the construction of ϕ that for any monomial X
of degree n (not necessarily ordered), ϕ(sj(X)) = ϕ(X) + ϕ([, ]j(X)).
Thus ϕ satisfies property (ii) in degree n. This concludes the proof of
Lemma 13.11 and hence Theorem 13.1. �
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14. Free Lie algebras, the Baker-Campbell-Hausdorff formula

14.1. Primitive elements. Let g be a Lie algebra over a field k. Let
us say that x ∈ U(g) is primitive if ∆(x) = x⊗ 1 + 1⊗ x. It is clear
that if x ∈ g ⊂ U(g) then x is primitive.

Lemma 14.1. If the ground field k has characteristic zero then every
primitive element of U(g) is contained in g.

Proof. Let 0 6= f ∈ U(g) be a primitive element. Suppose that the
filtration degree of f is n. Let f0 ∈ Sng be the leading term of f (it is
well defined by the PBW Theorem). Then f0 is primitive in Sg, and in
fact in SV for some finite dimensional subspace V ⊂ g. So f0(x+ y) =
f0(x) + f0(y), x, y ∈ V ∗. In particular, 2nf0(x) = f0(2x) = 2f0(x), so
2n − 2 = 0, which implies that n = 1 as char(k) = 0. Thus f = c+ f0

where f0 ∈ g, c ∈ k and c = 0 since f is primitive. �

Remark 14.2. Note that the assumption of characteristic zero is es-
sential. Indeed, if the characterictic of k is p > 0 and x ∈ g then
xp

i ∈ U(g) is primitive for all i.

14.2. Free Lie algebras. Let V be a vector space over a field k.
The free Lie algebra L(V ) generated by V is the Lie subalgebra
of TV generated by V . Note that L(V ) is a Z>0-graded Lie algebra:
L(V ) = ⊕m≥1Lm(V ), with grading defined by deg V = 1; thus Lm(V )
is spanned by commutators of m-tuples of elements of V inside TV .

Example 14.3. The free Lie algebra FL2 = L(k2) in two generators
x, y is generated by x, y with FL2[1] having basis x, y, FL2[2] hav-
ing basis [x, y], FL2[3] having basis [x, [x, y]], [y, [x, y]], etc. Similarly,
FL3 = L(k3) is generated by x, y, z with FL3[1] having basis x, y, z,
FL3[2] having basis [x, y], [x, z], [y, z], FL3[3] having basis [x, [x, y]],
[y, [x, y]], [y, [y, z]], [z, [y, z]], [x, [x, z], [z, [x, z]], [x, [y, z]], [y, [z, x]] (note
that [z, [x, y]] expresses in terms of the last two using the Jacobi iden-
tity).

The Lie algebra embedding L(V ) ↪→ TV gives rise to an associative
algebra homomorphism ψ : U(L(V ))→ TV .

Proposition 14.4. (i) ψ is an isomorphism, so U(L(V )) ∼= TV .
(ii) ψ preserves the coproduct.
(iii) (The universal property of free Lie algebras) If g is any Lie

algebra over k then restriction to V defines an isomorphism

res : HomLie(L(V ), g) ∼= Homk(V, g).

Proof. (i) By definition, U(L(V )) is generated by V as an associative
algebra, so U(L(V )) = TV/J for some 2-sided ideal J . Moreover,
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the map ψ : TV/J → TV restricts to the identity on the space V of
generators. Thus J = 0 and ψ = Id.

(ii) is clear since the two coproducts agree on generators.
(iii) Let a : V → g be a linear map. Then a can be viewed as a

linear map V → U(g). So it extends to a map of associative algebras
ã : TV → U(g) which restricts to a Lie algebra map â : L(V ) →
U(g). Moreover, since â(V ) ⊂ g ⊂ U(g) and L(V ) is generated by
V as a Lie algebra, we obtain that â : L(V ) → g. It is easy to see
that the assignment a 7→ â is inverse to res, implying that res is an
isomorphism. �

Exercise 14.5. Let dimV = n and dm(n) = dimLm(V ). Use the
PBW theorem to show that dm(n) are uniquely determined from the
identity

∞∏
m=1

(1− qm)dm(n) = 1− nq.

14.3. The Baker-Campbell-Hausdorff formula. We have defined
the commutator [x, y] on g = LieG as the quadratic part of µ(x, y) =
log(exp(x) exp(y)). So one may wonder if taking higher order terms in
the Taylor explansion of µ(x, y),

(14.1) µ(x, y) ∼
∞∑
n=1

µn(x, y)

n!

would yield new operations on g. It turns out, however, that all these
operations express via the commutator. Namely, we have

Theorem 14.6. For each n ≥ 1, µn(x, y) may be written as a Q-
Lie polynomial of x, y (i.e., a Q-linear combination of Lie monomials,
obtained by taking successive commutators of x, y), which is universal
(i.e., independent on G).

Proof. Expansion (14.1) is equivalent to the equality

(14.2) exp(tx) exp(ty) = exp

(
∞∑
n=1

tnµn(x, y)

n!

)
inside U(g)[[t]] ⊂ D(G)[[t]] for x, y ∈ g (see Subsection 12.4). Let
TC2 = C〈x, y〉 be the free noncommutative algebra in the letters x, y.
The series X = exp(tx) :=

∑∞
n=0

xn

n!
can be viewed as an element of

C〈x, y〉[[t]], and similarly for Y := exp(ty). Thus we may define

µ := log(XY ) ∈ C〈x, y〉[[t]],
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where

logA := −
∞∑
n=1

(1− A)n

n
.

Then µ =
∑∞

n=1
tnµn
n!

where µn ∈ C〈x, y〉 is homogeneous of degree n.
These µn are the desired universal expressions, and it remains to show
that they are Lie polynomials, i.e., can be expressed solely in terms of
commutators.

To this end, note that since ∆(x) = x ⊗ 1 + 1 ⊗ x, the element X
is grouplike, i.e., ∆(X) = X ⊗X (where we extend the coproduct to
the completion by continuity). The same property is shared by Y and
hence by Z := XY , i.e., we have ∆(Z) = Z ⊗ Z. Thus

∆(logZ) = log ∆(Z) = log(Z ⊗ Z) = log((Z ⊗ 1)(1⊗ Z))

= logZ ⊗ 1 + 1⊗ logZ.

Thus µ = logZ is primitive, hence so is µn for each n. Thus by Lemma
14.1, µn ∈ FL2 = L(C2), where FL2 ⊂ C〈x, y〉 is the free Lie algebra
generated by x, y. This implies the statement. �

Example 14.7.

µ3(x, y) = 1
2
([x, [x, y]] + [y, [y, x]]).

Thus

µ(x, y) = x+ y + 1
2
[x, y] + 1

12
([x, [x, y]] + [y, [y, x]]) + ...

Remark 14.8. 1. The universal expressions µn are unique, see Exam-
ple 28.10 below.

2. E. Dynkin derived an explicit formula for µ(x, y) making it ap-
parent that it expresses solely in terms of commutators. Several proofs
of this formula may be found in the expository paper [Mu].
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15. Solvable and nilpotent Lie algebras, theorems of Lie and
Engel

15.1. Ideals and commutant. Let g be a Lie algebra. Recall that an
ideal in g is a subspace h such that [g, h] ⊂ h. If h ⊂ g is an ideal then
g/h has a natural structure of a Lie algebra. Moreover, if φ : g1 → g2

is a homomorphism of Lie algebras then Kerφ is an ideal in g1, Imφ is
a Lie subalgebra in g2, and φ induces an isomorphism g1/Kerφ ∼= Imφ
(check it!).

Lemma 15.1. If I1, I2 ⊂ g are ideals then so are I1 ∩ I2, I1 + I2 and
[I1, I2] (the set of linear combinations of [a1, a2], am ∈ Im,m = 1, 2).

Exercise 15.2. Prove Lemma 15.1.

Definition 15.3. The commutant of g is the ideal [g, g].

Lemma 15.4. The quotient g/[g, g] is abelian; moreover, if I ⊂ g is
an ideal such that g/I is abelian then I ⊃ [g, g].

Exercise 15.5. Prove Lemma 15.4.

Example 15.6. The commutant of gln(k) is sln(k) (check it!).

Exercise 15.7. (i) Prove that if G is a connected Lie group with
Lie algebra g then the group commutant [G,G] (the subgroup of G
generated by elements ghg−1h−1, g, h ∈ G) is a Lie subgroup of G with
Lie algebra [g, g].

(ii) Let G̃ = R × H, where H is the Heisenberg group of real
matrices of the form

M(a, b, c) :=

1 a b
0 1 c
0 0 1

 , a, b, c ∈ R.

Let Γ ∼= Z2 ⊂ G̃ be the (closed) central subgroup generated by the

pairs (1,M(0, 0, 0) = Id) and (
√

2,M(0, 0, 1)). Let G = G̃/Γ. Show
that [G,G] is not closed in G (although by (i) it is a Lie subgroup).

(iii) Does [G,G] have to be closed in G if G is simply connected?
(Consider Hom(G,R) and apply the second fundamental theorem of
Lie theory).

15.2. Solvable Lie algebras. For a Lie algebra g define its derived
series recursively by the formulasD0(g) = g, Dn+1(g) = [Dn(g), Dn(g)].
This is a descending sequence of ideals in g.

Definition 15.8. A Lie algebra g is said to be solvable if Dn(g) = 0
for some n.
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Proposition 15.9. The following conditions on g are equivalent:
(i) g is solvable;
(ii) There exists a sequence of ideals g = g0 ⊃ g1 ⊃ ... ⊃ gm = 0

such that gi/gi+1 is abelian.

Proof. It is clear that (i) implies (ii), since we can take gi = Dig.
Conversely, by induction we see that Dig ⊂ gi, as desired. �

Proposition 15.10. (i) Any Lie subalgebra or quotient of a solvable
Lie algebra is solvable.

(ii) If I ⊂ g is an ideal and I, g/I are solvable then g is solvable.

Exercise 15.11. Prove Proposition 15.10.

15.3. Nilpotent Lie algebras. For a Lie algebra g define its lower
central series recursively by the formulas D0(g) = g, Dn+1(g) =
[g, Dn(g)]. This is a descending sequence of ideals in g.

Definition 15.12. A Lie algebra g is said to be nilpotent if Dn(g) = 0
for some n.

Proposition 15.13. The following conditions on g are equivalent:
(i) g is nilpotent;
(ii) There exists a sequence of ideals g = g0 ⊃ g1 ⊃ ... ⊃ gm = 0

such that [g, gi] ⊂ gi+1.

Proof. It is clear that (i) implies (ii), since we can take gi = Dig.
Conversely, by induction we see that Dig ⊂ gi, as desired. �

Remark 15.14. Any nilpotent Lie algebra is solvable since [g, gi] ⊂
gi+1 implies [gi, gi] ⊂ gi+1, hence gi/gi+1 is abelian.

Proposition 15.15. Any Lie subalgebra or quotient of a nilpotent Lie
algebra is nilpotent.

Exercise 15.16. Prove Proposition 15.15.

Example 15.17. (i) The Lie algebra of upper triangular matrices of
size n is solvable, but it is not nilpotent for n ≥ 2.

(ii) The Lie algebra of strictly upper triangular matrices is nilpotent.
(iii) The Lie algebra of all matrices of size n ≥ 2 is not solvable.

15.4. Lie’s theorem. One of the main technical tools of the structure
theory of finite dimensional Lie algebras is Lie’s theorem for solvable
Lie algebras. Before stating and proving this theorem, we will prove
the following auxiliary lemma, which will be used several times.
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Lemma 15.18. Let g = kx⊕h be a Lie algebra over a field k in which
h is an ideal (but [x, h] need not be 0). Let V be a finite dimensional
g-module and v ∈ V a common eigenvector of h:

av = λ(a)v, a ∈ h

where λ : h→ k is a character. Then:
(i) W := k[x]v is a g-submodule of V on which a− λ(a) is nilpotent

for all a ∈ h.
(ii) If in addition λ vanishes on [g, h] (i.e., λ([a, x]) = 0 for all

a ∈ h) then every a ∈ h acts on W by the scalar λ(a). Thus the
common eigenspace Vλ ⊂ V of h is a g-submodule.

(iii) The assumption (hence the conclusion) of (ii) always holds if
char(k) = 0.

Proof. (i) For a ∈ h we have

(15.1) axiv = xaxi−1v + [a, x]xi−1v.

Therefore, it follows by induction in i that axiv is a linear combination
of v, xv, ..., xiv, hence W ⊂ V is a submodule.

Let n be the smallest integer such that xnv is a linear combination
of xiv with i < n. Then vi := xi−1v for i = 1, ..., n is a basis of W and
dimW = n. It follows from (15.1) that the element a acts in this basis
by an upper triangular matrix with all diagonal entries equal λ(a), as
claimed.

(ii) It follows from (15.1) by induction in i that for every a ∈ h,
axiv = λ(a)xiv, as desired.

(iii) By (i), Tr(a|W ) = nλ(a) for all a ∈ h. On the other hand, if
a ∈ [g, g] then Tr(a|W ) = 0, thus nλ(a) = 0 in k. Since char(k) = 0,
this implies that λ(a) = 0. �

Theorem 15.19. (Lie’s theorem) Let k be an algebraically closed field
of characteristic zero, and g a finite dimensional solvable Lie algebra
over k. Then any irreducible finite dimensional representation of g is
1-dimensional.

Proof. Let V be a finite dimensional representation of g. It suffices to
show that V contains a common eigenvector of g. The proof is by in-
duction in dim g. The base is trivial so let us justify the induction step.
Since g is solvable, g 6= [g, g], so fix a subspace h ⊂ g of codimension 1
containing [g, g]. Since g/[g, g] is abelian, h is an ideal in g, hence solv-
able. Thus by the induction assumption, there is a nonzero common
eigenvector v ∈ V for h, i.e., there is a linear functional λ : h→ k such
that av = λ(a)v for all a ∈ h.
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Let x ∈ g be an element not belonging to h and W be the subspace of
V spanned by v, xv, x2v, .... By Lemma 15.18(i), W is a g-submodule of
V and a−λ(a) is nilpotent on W . Thus by Lemma 15.18(ii),(iii) every
a ∈ h acts on W by λ(a), in particular [g, g] acts by zero. Hence W is
a representation of the abelian Lie algebra g/[g, g]. Now the statement
follows since every finite dimensional representation of an abelian Lie
algebra has a common eigenvector. �

Remark 15.20. Lemma 15.18(iii) and Lie’s theorem do not hold in
characteristic p > 0. Indeed, let g be the Lie algebra with basis x, y
and [x, y] = y, and let V be the space with basis v0, ..., vp−1 and action
of g given by

xvi = ivi, yvi = vi+1,

where i+ 1 is taken modulo p. It is easy to see that V is irreducible.

Here is another formulation of Lie’s theorem:

Corollary 15.21. Every finite dimensional representation V of a finite
dimensional solvable Lie algebra g over an algebraically closed field k
of characteristic zero has a basis in which all elements of g act by upper
triangular matrices. In other words, there is a sequence of subrepre-
sentations 0 = V0 ⊂ V1 ⊂ ... ⊂ Vn = V such that dim(Vk+1/Vk) = 1.

In the case dim g = 1, this recovers the well known theorem in lin-
ear algebra that any linear operator on a finite dimensional k-vector
space is upper triangular in some basis (which is actually true in any
characteristic).

Proof. The proof is by induction in dimV (where the base is obvious).
By Lie’s theorem, there is a common eigenvector v0 ∈ V for g. Let
V ′ := V/kv0. Then by the induction assumption V ′ has a basis v′1, ..., v

′
n

in which g acts by upper triangular matrices. Let v1, ..., vn be any lifts
of v′1, ..., v

′
n to V . Then v0, v1, ..., vn is a basis of V in which g acts by

upper triangular matrices. �

Corollary 15.22. Over an algebraically closed field of characteristic
zero, the following hold.

(i) A solvable finite dimensional Lie algebra g admits a sequence of
ideals 0 = I0 ⊂ I1 ⊂ ... ⊂ In = g such that dim(Ik+1/Ik) = 1.

(ii) A finite dimensional Lie algebra g is solvable if and only if [g, g]
is nilpotent.

Proof. (i) Apply Corollary 15.21 to the adjoint representation of g.
(ii) If [g, g] is nilpotent then it is solvable and g/[g, g] is abelian, so g

is solvable. Conversely, if g is solvable then by Corollary 15.21 elements
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of [g, g] act on g, hence on [g, g] by strictly upper triangular matrices,
which implies the statement. �

Example 15.23. Let g, V be as in Remark 15.20 and h = g n V be
the semidirect product, i.e. h = g⊕ V as a space with

[(g1, v1), (g2, v2)] = ([g1, g2], g1v2 − g2v1).

Then h is a counterexample to Corollary 15.22 both (i) and (ii) in
characteristic p > 0.

15.5. Engel’s theorem. Another key tool of the structure theory of
finite dimensional Lie algebras is Engel’s theorem. Before stating
and proving this theorem, we prove an auxiliary result.

Theorem 15.24. Let V 6= 0 be a finite dimensional vector space over
any field k, and g ⊂ gl(V ) be a Lie algebra consisting of nilpotent
operators. Then there exists a nonzero vector v ∈ V such that gv = 0.

Proof. The proof is by induction on the dimension of g. The base case
g = 0 is trivial and we assume the dimension of g is positive.

First we find an ideal h of codimension one in g. Let h be a maximal
(proper) subalgebra of g, which exists by finite-dimensionality of g. We
claim that h ⊂ g is an ideal and has codimension one.

Indeed, for each a ∈ h, the operator ada induces a linear operator
g/h → g/h, and this operator is nilpotent (since a acts nilpotently
on V , it also acts nilpotently on gl(V ) = V ⊗ V ∗, hence the operator
ada : g → g is nilpotent). Thus, by the inductive hypothesis, there
exists a nonzero element x in g/h such that ada · x = 0 for each a ∈ h.
Let x be a lift of x to g. Then [a, x] ∈ h for all a ∈ h. Let h′ be the
span of h and x. Then h′ ⊂ g is a Lie subalgebra in which h is an ideal.
Hence, by maximality, h′ = g. This proves the claim.

Now let W = V h ⊂ V . By the inductive hypothesis, W 6= 0. Also
by Lemma 15.18(ii) (with λ = 0), W is a g-subrepresentation of V .

Now take w 6= 0 in W . Let k be the smallest positive integer such
that xkw = 0; it exists since x acts nilpotently on V . Let v = xk−1w ∈
W . Then v 6= 0 but hv = xv = 0, so gv = 0, as desired. �

Definition 15.25. An element x ∈ g is said to be nilpotent if the
operator adx : g→ g is nilpotent.

Corollary 15.26. (Engel’s theorem) A finite dimensional Lie algebra
g is nilpotent if and only if every element x ∈ g is nilpotent.

Proof. The “only if” direction is easy. To prove the “if” direction, note
that by Theorem 15.24, in some basis vi of g all elements adx act by
strictly upper triangular matrices. Let Im be the subspace of g spanned
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by the vectors v1, ..., vm. Then Im ⊂ Im+1 and [g, Im+1] ⊂ Im, hence g
is nilpotent. �
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16. Semisimple and reductive Lie algebras, the Cartan
criteria

16.1. Semisimple and reductive Lie algebras, the radical. Let
g be a finite dimensional Lie algebra over a field k.

Proposition 16.1. The sum of all solvable ideals of g is a solvable
ideal.

Definition 16.2. This ideal is called the radical of g and denoted
rad(g).

Proof. Let I, J be solvable ideals of g. Then I + J ⊂ g is an ideal, and
(I +J)/I = J/(I ∩J) is solvable, so I +J is solvable. Thus the sum of
finitely many solvable ideals is solvable. Hence the sum of all solvable
ideals in g is a solvable ideal, as desired. �

Definition 16.3. (i) g is called semisimple if rad(g) = 0, i.e., g does
not contain nonzero solvable ideals.

(ii) A non-abelian g is called simple if it contains no ideals other
than 0, g. In other words, a non-abelian g is simple if its adjoint rep-
resentation is irreducible (=simple).

Thus if g is both solvable and semisimple then g = 0.

Proposition 16.4. (i) We have rad(g ⊕ h) = rad(g) ⊕ rad(h). In
particular, the direct sum of semisimple Lie algebras is semisimple.

(ii) A simple Lie algebra is semisimple. Thus a direct sum of simple
Lie algebras is semisimple.

Proof. (i) The images of rad(g ⊕ h) in g and in h are solvable, hence
contained in rad(g), respectively rad(h). Thus

rad(g⊕ h) ⊂ rad(g)⊕ rad(h).

But rad(g)⊕ rad(h) is a solvable ideal in g⊕ h, so

rad(g⊕ h) = rad(g)⊕ rad(h).

(ii) The only nonzero ideal in g is g, and [g, g] = g since g is not
abelian. Hence g is not solvable. Thus g is semisimple. �

Example 16.5. The Lie algebra sl2(k) is simple if char(k) 6= 2. Like-
wise, so3(k) is simple.

Theorem 16.6. (weak Levi decomposition) The Lie algebra gss =
g/rad(g) is semisimple. Thus any g can be included in an exact se-
quence

0→ rad(g)→ g→ gss → 0,
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where rad(g) is a solvable ideal and gss is semisimple. Moreover, if
h ⊂ g is a solvable ideal such that g/h is semisimple then h = rad(g).

Proof. Let I ⊂ gss be a solvable ideal, and let Ĩ be its preimage in g.

Then Ĩ is a solvable ideal in g. Thus Ĩ = rad(g) and I = 0. �

In fact, in characteristic zero there is a stronger statement, which
says that the extension in Theorem 16.6 splits. Namely, given a Lie
algebra h and another Lie algebra a acting on h by derivations, we may
form the semidirect product Lie algebra a n h which is a ⊕ h as a
vector space with commutator defined by

[(a1, h1), (a2, h2)] = ([a1, a2], a1 ◦ h2 − a2 ◦ h1 + [h1, h2]).

Note that a special case of this construction has already appeared in
Example 15.23.

Theorem 16.7. (Levi decomposition) If char(k) = 0 then we have g ∼=
rad(g)⊕ gss as vector spaces, where gss ⊂ g is a semisimple subalgebra
(but not necessarily an ideal); i.e., g is isomorphic to the semidirect
product gss n rad(g). In other words, the projection p : g→ gss admits
an (in general, non-unique) splitting q : gss → g, i.e., a Lie algebra
map such that p ◦ q = Id.

Theorem 16.7 will be proved in Subsection 48.2.

Example 16.8. Let G be the group of motions of the Euclidean space
R3 (generated by rotations and translations). Then G = SO3(R)nR3,
so g = LieG = so3(R) n R3, hence rad(g) = R3 (abelian Lie algebra)
and gss = so3(R).

Proposition 16.9. Let char(k) = 0, k algebraically closed, and V be
an irreducible representation of g. Then rad(g) acts on V by scalars,
and [g, rad(g)] by zero.

Proof. By Lie’s theorem, there is a nonzero v ∈ V and λ ∈ rad(g)∗

such that av = λ(a)v for a ∈ rad(g). Let x ∈ g and gx ⊂ g be the Lie
subalgebra spanned by rad(g) and x. Let W be the span of xnv for
n ≥ 0. By Lemma 15.18(i), W is a gx-subrepresentation of V on which
a ∈ rad(g) has the only eigenvalue λ(a). Thus by Lemma 15.18(iii),
for a ∈ rad(g) we have λ([x, a]) = 0, so the λ-eigenspace Vλ of rad(g)
in V is a g-subrepresentation of V , which implies that Vλ = V since V
is irreducible. �

Definition 16.10. g is called reductive if rad(g) coincides with the
center z(g) of g.
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In other words, g is reductive if [g, rad(g)] = 0.
The Levi decomposition theorem implies that a reductive Lie algebra

in characteristic zero is a direct sum of a semisimple Lie algebra and
an abelian Lie algebra (its center). We will also prove this in Corollary
18.8.

16.2. Invariant inner products. Let B be a bilinear form on a Lie
algebra g. Recall that B is invariant if B([x, y], z) = B(x, [y, z]) for
any x, y, z ∈ g.

Example 16.11. If ρ : g→ gl(V ) is a finite dimensional representation
of g then the form

BV (x, y) := Tr(ρ(x)ρ(y))

is an invariant symmetric bilinear form on g. Indeed, the symmetry is
obvious and

BV ([x, y], z) = BV (x, [y, z]) = Tr|V (ρ(x)ρ(y)ρ(z)− ρ(x)ρ(z)ρ(y)).

Proposition 16.12. If B is a symmetric invariant bilinear form on g
and I ⊂ g is an ideal then the orthogonal complement I⊥ ⊂ g is also
an ideal. In particular, g⊥ = Ker(B) is an ideal in g.

Exercise 16.13. Prove Proposition 16.12.

Proposition 16.14. If BV is nondegenerate for some V then g is
reductive.

Proof. Let V1, ..., Vn be the simple composition factors of V ; i.e., V has
a filtration by subrepresentations such that FiV/Fi−1V = Vi, F0V = 0
and FnV = V . Then BV (x, y) =

∑
iBVi(x, y). Now, if x ∈ [g, rad(g)]

then x|Vi = 0, so BVi(x, y) = 0 for all y ∈ g, hence BV (x, y) = 0. �

Example 16.15. It is clear that if g = gln(k) and V = kn then
the form BV is nondegenerate, as BV (Eij, Ekl) = δilδjk. Thus g is
reductive. Also if n is not divisible by the characteristic of k then
sln(k) is semisimple, since it is orthogonal to scalars under BV (hence
reductive), and has trivial center. In fact, it is easy to show that in
this case sln(k) is a simple Lie algebra (another way to see that it is
semisimple).

In fact, we have the following proposition.

Proposition 16.16. All classical Lie algebras over K = R and C are
reductive.

Proof. Let g be a classical Lie algebra and V its standard matrix repre-
sentation. It is easy to check that the form BV on g is nondegenerate,
which implies that g is reductive. �
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For example, the Lie algebras son(K), sp2n(K), su(p, q) have trivial
center and therefore are semisimple.

16.3. The Killing form and the Cartan criteria.

Definition 16.17. The Killing form of a Lie algebra g is the form
Bg(x, y) = Tr(adx · ady).

The Killing form is denoted by Kg(x, y) or shortly by K(x, y).

Theorem 16.18. (Cartan criterion of solvability) A Lie algebra g over
a field k of characteristic zero is solvable if and only if [g, g] ⊂ Ker(K).

Theorem 16.19. (Cartan criterion of semisimplicity) A Lie algebra
g over a field k of characteristic zero is semisimple if and only if its
Killing form is nondegenerate.

Theorems 16.18 and 16.19 will be proved in the next section.

Corollary 16.20. On a simple Lie algebra, the Killing form is the
unique up to scaling invariant bilinear form.

Proof. Let g be a simple Lie algebra. Then the Killing form is a nonzero
(in fact, nondegenerate) invariant bilinear form on g. Also any invari-
ant bilinear form B on g can be viewed as a homomorphism of rep-
resentations B : g → g∗. Thus by Schur’s lemma it is unique up to
scaling. �

16.4. Jordan decomposition. To prove the Cartan criteria, we will
use the Jordan decomposition of a square matrix. Let us recall it.

Proposition 16.21. A square matrix A ∈ glN(k) over a field k of
characteristic zero can be uniquely written as As + An, where As ∈
glN(k) is semisimple (i.e. diagonalizes over the algebraic closure of
k) and An ∈ glN(k) is nilpotent in such a way that AsAn = AnAs.
Moreover, As = P (A) for some P ∈ k[x].

Proof. By the Chinese remainder theorem, there exists a polynomial
P ∈ k[x] such that for every eigenvalue λ of A we have P (x) = λ
modulo (x− λ)N , i.e.,

P (x)− λ = (x− λ)NQλ(x)

for some polynomial Qλ. Then on the generalized eigenspace V (λ) for
A, we have

P (A)− λ = (A− λ)NQλ(A) = 0,
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so As := P (A) is semisimple and An = A − P (A) is nilpotent, with
AnAs = AsAn. If A = A′s + A′n is another such decomposition then
A′s, A

′
n commute with A, hence with As and An. Also we have

As − A′s = A′n − An.
Thus this matrix is both semisimple and nilpotent, so it is zero. Finally,
since As, An are unique, they are invariant under the Galois group of
k over k and therefore have entries in k. �

Remark 16.22. 1. If k is algebraically closed, then A admits a basis
in which it is upper triangular, and As is the diagonal part while An is
the off-diagonal part of A.

2. Proposition 16.21 holds with the same proof in characteristic p if
the field k is perfect, i.e., the Frobenius map x → xp is surjective on
k. However, if k is not perfect, the proof fails: the fact that As, An
are Galois invariant does not imply that their entries are in k. Also
the statement fails: if k = Fp(t) and Aei = ei+1 for i = 1, .., p− 1 while
Aep = te1 then A has only one eigenvalue t1/p, so As = t1/p · Id, i.e.,
does not have entries in k.
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17. Proofs of the Cartan criteria, properties of semisimple
Lie algebras

17.1. Proof of the Cartan solvability criterion. It is clear that
g is solvable if and only if so is g ⊗k k, so we may assume that k is
algebraically closed.

For the “only if” part, note that by Lie’s theorem, g has a basis in
which the operators adx, x ∈ g, are upper triangular. Then [g, g] acts
in this basis by strictly upper triangular matrices, so K(x, y) = 0 for
x ∈ [g, g] and y ∈ g.

To prove the “if” part, let us prove the following lemma.

Lemma 17.1. Let g ⊂ gl(V ) be a Lie subalgebra such that for any
x ∈ [g, g] and y ∈ g we have Tr(xy) = 0. Then g is solvable.

Proof. Let x ∈ [g, g]. Let λi, i = 1, ...,m, be the distinct eigenvalues
of x. Let E ⊂ k be a Q-span of λi. Let b : E → Q be a linear
functional. There exists an interpolation polynomial Q ∈ k[t] such
that Q(λi − λj) = b(λi − λj) = b(λi)− b(λj) for all i, j.

By Proposition 16.21, we can write x as x = xs + xn. Then the
operator adxs is diagonalizable with eigenvalues λi − λj. So

Q(adxs) = adb,

where b : V → V is the operator acting by b(λj) on the generalized
λj-eigenspace of x.

Also we have

adx = adxs + adxn

a sum of commuting semisimple and nilpotent operators. Thus

adxs = (adx)s = P (adx),

and P (0) = 0 since 0 is an eigenvalue of adx. Thus

adb = R(adx),

where R(t) = Q(P (t)) and R(0) = 0.
Let x =

∑
j[yj, zj], yj, zj ∈ g, and dj be the dimension of the gener-

alized λj-eigenspace of x. Then∑
j

djb(λj)λj = Tr(bx) =

Tr(
∑
j

b[yj, zj]) = Tr(
∑
j

[b, yj]zj) = Tr(
∑
j

R(adx)(yj)zj).
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Since R(0) = 0, we have R(adx)(yj) ∈ [g, g], so by assumption we get∑
j

djb(λj)λj = 0.

Applying b, we get
∑

j djb(λj)
2 = 0. Thus b(λj) = 0 for all j. Hence

b = 0, so E = 0.
Thus, the only eigenvalue of x is 0, i.e., x is nilpotent. But then by

Engel’s theorem, [g, g] is nilpotent. Thus g is solvable. Thus proves
the lemma. �

Now the “if” part of the Cartan solvability criterion follows easily by
applying Lemma 17.1 to V = g and replacing g by the quotient g/z(g).

17.2. Proof of the Cartan semisimplicity criterion. Assume that
g is semisimple, and let I = Ker(Kg), an ideal in g. Then KI =
(Kg)|I = 0. Thus by Cartan’s solvability criterion I is solvable. Hence
I = 0.

Conversely, suppose Kg is nondegenerate. Then g is reductive. More-
over, the center of g is contained in the kernel of Kg, so it must be
trivial. Thus g is semisimple.

17.3. Properties of semisimple Lie algebras.

Proposition 17.2. Let char(k) = 0 and g be a finite dimensional Lie
algebra over k. Then g is semisimple iff g⊗k k is semisimple.

Proof. Immediately follows from Cartan’s criterion of semisimplicity.
Here is another proof (of the nontrivial direction): if g is semisimple
and I is a nonzero solvable ideal in g ⊗k k then it has a finite Galois
orbit I1, ..., In and I1 + ...+ In is a Galois invariant solvable ideal, so it
comes from a solvable ideal in g. �

Remark 17.3. This theorem fails if we replace the word “semisimple”
by “simple”: e.g., if g is a simple complex Lie algebra regarded as a
real Lie algebra then gC ∼= g⊕ g is semisimple but not simple.

Theorem 17.4. Let g be a semisimple Lie algebra and I ⊂ g an ideal.
Then there is an ideal J ⊂ g such that g = I ⊕ J .

Proof. Let I⊥ be the orthogonal complement of I with respect to the
Killing form, an ideal in g. Consider the intersection I ∩ I⊥. It is an
ideal in g with the zero Killing form. Thus, by the Cartan solvability
criterion, it is solvable. By definition of a semisimple Lie algebra, this
means that I ∩ I⊥ = 0, so we may take J = I⊥. �

We will see below (in Proposition 17.7) that J is in fact unique and
must equal I⊥.
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Corollary 17.5. A Lie algebra g is semisimple iff it is a direct sum of
simple Lie algebras.

Proof. We have already shown that a direct sum of simple Lie algebras
is semisimple. The opposite direction easily follows by induction from
Theorem 17.4. �

Corollary 17.6. If g is a semisimple Lie algebra, then [g, g] = g.

Proof. For a simple Lie algebra it is clear because [g, g] is an ideal in
g which cannot be zero (otherwise, g would be abelian). So the result
follows from Corollary 17.5. �

Proposition 17.7. Let g = g1 ⊕ ...⊕ gk be a semisimple Lie algebra,
with gi being simple. Then any ideal I in g is of the form I = ⊕i∈Sgi
for some subset S ⊂ {1, ..., k}.

Proof. The proof goes by induction in k. Let pk : g → gk be the
projection. Consider pk(I) ⊂ gk. Since gk is simple, either pk(I) = 0, in
which case I ⊂ g1⊕ ...⊕gk−1 and we can use the induction assumption,
or pk(I) = gk. Then [gk, I] = [gk, pk(I)] = gk. Since I is an ideal,
I ⊃ gk, so I = I ′ ⊕ gk for some subspace I ′ ⊂ g1 ⊕ ⊕ gk−1. It is
immediate that then I ′ is an ideal in g1 ⊕ ⊕ gk−1 and the result again
follows from the induction assumption. �

Corollary 17.8. Any ideal in a semisimple Lie algebra is semisimple.
Also, any quotient of a semisimple Lie algebra is semisimple.

Let Derg be the Lie algebra of derivations of a Lie algebra g. We
have a homomorphism ad : g → Derg whose kernel is the center z(g).
Thus if g has trivial center (e.g., is semisimple) then the map ad is
injective and identifies g with a Lie subalgebra of Derg. Moreover, for
d ∈ Derg and x ∈ g, we have

[d, adx](y) = d[x, y]− [x, dy] = [dx, y] = ad(dx)(y).

Thus g ⊂ Derg is an ideal.

Proposition 17.9. If g is semisimple then g = Derg.

Proof. Consider the invariant symmetric bilinear form

K(a, b) = Tr|g(ab)
on Derg. This is an extension of the Killing form of g to Derg, so
its restriction to g is nondegenerate. Let I = g⊥ be the orthogonal
complement of g in Derg underK. It follows that I is an ideal, I∩g = 0,
and I ⊕ g = Derg. Since both I and g are ideals, we have [g, I] = 0.
Thus for d ∈ I and x ∈ g, [d, adx] = ad(dx) = 0, so dx belongs to
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the center of g. Thus dx = 0, i.e., d = 0. It follows that I = 0, as
claimed. �

Corollary 17.10. Let g be a real or complex semisimple Lie algebra,
and G = Aut(g) ⊂ GL(g). Then G is a Lie group with LieG = g.
Thus G acts on g by the adjoint action.

Proof. It is easy to show that for any finite dimensional real or complex
Lie algebra g, Aut(g) is a Lie group with Lie algebra Der(g), so the
statement follows from Proposition 17.9. �
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18. Extensions of representations, Whitehead’s theorem,
complete reducibility

18.1. Extensions. Let g be a Lie algebra and U,W be representations
of g. We would like to classify all representations V which fit into a
short exact sequence

(18.1) 0→ U → V → W → 0,

i.e., U ⊂ V is a subrepresentation such that the surjection p : V → W
has kernel U and thus defines an isomorphism V/U ∼= W . In other
words, V is endowed with a 2-step filtration with F0V = U and F1V =
V such that F1V/F0V = W , so gr(V ) = U ⊕ W . To do so, pick a
splitting of this sequence as a sequence of vector spaces, i.e. an injection
i : W → V (not a homomorphism of representations, in general) such

that p ◦ i = IdW . This defines a linear isomorphism ĩ : U ⊕W → V
given by (u,w) 7→ u + i(w), which allows us to rewrite the action of g

on V as an action on U ⊕W . Since ĩ is not in general a morphism of
representations, this action is given by

ρ(x)(u,w) = (xu+ a(x)w, xw)

where a : g → Homk(W,U) is a linear map, and ĩ is a morphism of
representations iff a = 0.

What are the conditions on a to give rise to a representation? We
compute:

ρ([x, y])(u,w) = ([x, y]u+ a([x, y])w, [x, y]w),

[ρ(x), ρ(y)](u,w) = ([x, y]u+ ([x, a(y)] + [a(x), y])w, [x, y]w).

Thus the condition to give a representation is the Leibniz rule

a([x, y]) = [x, a(y)] + [a(x), y] = [x, a(y)]− [y, a(x)].

In general, if E is a representation of g then a linear function a : g→ E
such that

a([x, y]) = x ◦ a(y)− y ◦ a(x)

is called a 1− cocycle of g with values in E. The space of 1-cocycles
is denoted by Z1(g, E).

Example 18.1. We have Z1(g,k) = (g/[g, g])∗ and Z1(g, g) = Derg.

Thus we see that in our setting a : g → Homk(W,U) defines a
representation if and only if a ∈ Z1(g,Homk(W,U)). Denote the rep-
resentation V attached to such a by Va. Then we have a natural short
exact sequence

0→ U → Va → W → 0.
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It may, however, happen that some a 6= 0 defines a trivial extension
V ∼= U ⊕ W , i.e., Va ∼= V0, and more generally Va ∼= Vb for a 6= b.
Let us determine when this happens. More precisely, let us look for
isomorphisms f : Va → Vb preserving the structure of the short exact
sequences, i.e., such that gr(f) = Id. Then

f(u,w) = (u+ Aw,w)

where A : W → U is a linear map. Then we have

xf(u,w) = x(u+ Aw,w) = (xu+ xAw + b(x)w, xw)

and

fx(u,w) = f(xu+ a(x)w, xw) = (xu+ a(x)w + Axw, xw),

so we get that xf = fx iff

[x,A] = a(x)− b(x).

In particular, setting b = 0, we see that V is a trivial extension if and
only if a(x) = [x,A] for some A.

More generally, if E is a g-module, the linear function a : g → E
given by a(x) = xv for some v ∈ E is called the 1-coboundary of
v, and one writes a = dv. The space of 1-coboundaries is denoted
by B1(g, E); it is easy to see that it is a subspace of Z1(g, E), i.e., a
1-coboundary is always a 1-cocycle. Thus in our setting f : Va → Vb is
an isomorphism of representations iff

a− b = dA,

i.e., there is an isomorphism f : Va ∼= Vb with gr(f) = Id if and only if
a = b in the quotient space

Ext1(W,U) := Z1(g,Homk(W,U))/B1(g,Homk(W,U)).

The notation is justified by the fact that this space parametrizes ex-
tensions of W by U . More precisely, every short exact sequence (18.1)
gives rise to a class [V ] ∈ Ext1(W,U), and the extension defined by
this sequence is trivial iff [V ] = 0.

More generally, for a g-module E the space

H1(g, E) := Z1(g, E)/B1(g, E)

is called the first cohomology of g with coefficients in E. Thus,

Ext1(W,U) = H1(g,Homk(W,U)).

Lemma 18.2. A short exact sequence 0 → U → V → W → 0 gives
rise to an exact sequence

H1(g, U)→ H1(g, V )→ H1(g,W ).
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Exercise 18.3. Prove Lemma 18.2.

18.2. Whitehead’s theorem. We have shown in Corollary 17.6 and
Proposition 17.9 that for a semisimple g over a field of characteristic
zero, H1(g,k) = (g/[g, g])∗ = 0, and H1(g, g) = Derg/g = 0. In fact,
these are special cases of a more general theorem.

Theorem 18.4. (Whitehead) If g is semisimple in characteristic zero
then for every finite dimensional representation V of g, H1(g, V ) = 0.

18.3. Proof of Theorem 18.4. We will use the following lemma,
which holds over any field.

Lemma 18.5. Let E be a representation of a Lie algebra g and C ∈
U(g) be a central element which acts by 0 on the trivial representation
of g and by some scalar λ 6= 0 on E. Then H1(g, E) = 0.

Proof. We have seen that H1(g, E) = Ext1(k, E), so our job is to show
that any extension

0→ E → V → k→ 0

splits. Let p : V → k be the projection. We claim that there exists
a unique vector v ∈ V such that p(v) = 1 and Cv = 0. Indeed, pick
some w ∈ V with p(w) = 1. Then Cw ∈ E, so set v = w − λ−1Cw.
Since C2w = λCw, we have Cv = 0. Also if v′ is another such vector
then v − v′ ∈ E so C(v − v′) = λ(v − v′) = 0, hence v = v′.

Thus kv ⊂ V is a g-invariant complement to E (as C is central),
which implies the statement. �

It remains to construct a central element of U(g) for a semisimple
Lie algebra g to which we can apply Lemma 18.5. This can be done
as follows. Let ai be a basis of g and ai the dual basis under an
invariant inner product on g (for example, the Killing form). Define
the (quadratic) Casimir element

C :=
∑
i

aia
i.

It is easy to show that C is independent on the choice of the basis
(although it depends on the choice of the inner product). Also C is
central: for y ∈ g,

[y, C] =
∑
i

([y, ai]a
i + ai[y, a

i]) = 0

since ∑
i

([y, ai]⊗ ai + ai ⊗ [y, ai]) = 0
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(this is seen by taking the inner product of the first tensorand with
aj and using the invariance of the inner product). Finally, note that

for g = sl2, C is proportional to the Casimir element 2fe + h2

2
+ h =

ef + fe + h2

2
considered previously, as the basis f, e, h√

2
is dual to the

basis e, f, h√
2

under an invariant inner product of g.

The key lemma used in the proof of Theorem 18.4 is the following.

Lemma 18.6. Let g be semisimple in characteristic zero and V be
a nontrivial finite dimensional irreducible g-module. Then there is a
central element C ∈ U(g) such that C|k = 0 and C|V 6= 0.

Proof. Consider the invariant symmetric bilinear form on g

BV (x, y) = Tr|V (xy).

We claim that BV 6= 0. Indeed, let ḡ ⊂ gl(V ) be the image of g.
By Lemma 17.1, if BV = 0 then g is solvable, so, being the quotient
of a semisimple Lie algebra g, it must be zero, hence V is trivial, a
contradiction.

Let I = Ker(BV ). Then I ⊂ g is an ideal, so by Proposition 17.7,
g = I⊕g′ for some semisimple Lie algebra g′, and BV is nondegenerate
on g′. Let C be the Casimir element of U(g′) corresponding to the
inner product BV . Then TrV (C) =

∑
iBV (ai, a

i) = dim g′, so C|V =
dim g′

dimV
6= 0. Also it is clear that C|k = 0, so the lemma follows. �

Corollary 18.7. For any irreducible finite dimensional representation
V of a semisimple Lie algebra g over a field k of characteristic zero,
we have H1(g, V ) = 0.

Proof. If V is nontrivial, this follows from Lemmas 18.5 and 18.6. On
the other hand, if V = k then H1(g, V ) = (g/[g, g])∗ = 0. �

Now we can prove Theorem 18.4. By Lemma 18.2, it suffices to prove
the theorem for irreducible V , which is guaranteed by Corollary 18.7.

Corollary 18.8. A reductive Lie algebra g in characteristic zero is
uniquely a direct sum of a semisimple and abelian Lie algebra.

Proof. Consider the adjoint representation of g. It is a representation
of g′ = g/z(g), which fits into a short exact sequence

0→ z(g)→ g→ g′ → 0.

By complete reducibility, this sequence splits, i.e. we have a decompo-
sition g = g′⊕z(g) as a direct sum of ideals, and it is clearly unique. �
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18.4. Complete reducibility of representations of semisimple
Lie algebras.

Theorem 18.9. Every finite dimensional representation of a semisim-
ple Lie algebra g over a field of characteristic zero is completely re-
ducible, i.e., isomorphic to a direct sum of irreducible representations.

Proof. Theorem 18.4 implies that for any finite dimensional representa-
tions W,U of g one has Ext1(W,U) = 0. Thus any short exact sequence

0→ U → V → W → 0

splits, which implies the statement. �
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19. Structure of semisimple Lie algebras, I

19.1. Semisimple elements. Let x be an element of a Lie algebra
g over an algebraically closed field k. Let gλ ⊂ g be the generalized
eigenspace of adx with eigenvalue λ. Then g = ⊕λgλ.
Lemma 19.1. We have [gλ, gµ] ⊂ gλ+µ.

Proof. Let y ∈ gλ, z ∈ gµ. We have

(adx− λ− µ)N([y, z]) =∑
p+q+r+s=N

(−1)r+s
N !

p!q!r!s!
λrµs[(adx)p(y), (adx)q(z)] =

∑
k+`=N

N !

k!`!
[(adx− λ)k(y), (adx− µ)`(z)].

Thus if (adx− λ)n(y) = 0 and (adx− µ)m(z) = 0 then

(adx− λ− µ)m+n([y, z]) = 0,

so [y, z] ∈ gλ+µ. �

Definition 19.2. An element x of a Lie algebra g is called semisimple
if the operator adx is semisimple and nilpotent if this operator is
nilpotent.

It is clear that any element which is both semisimple and nilpotent
is central, so for a semisimple Lie algebra it must be zero. Note also
that for g = sln(k) this coincides with the usual definition.

Proposition 19.3. Let g be a semisimple Lie algebra over a field of
characteristic zero. Then every element x ∈ g has a unique decom-
position as x = xs + xn, where xs is semisimple, xn is nilpotent and
[xs, xn] = 0. Moreover, if y ∈ g and [x, y] = 0 then [xs, y] = [xn, y] = 0.

Proof. Recall that g ⊂ gl(g) via the adjoint representation. So we can
consider the Jordan decomposition x = xs + xn, with xs, xn ∈ gl(g).
We have xs(y) = λy for y ∈ gλ. Thus y 7→ xs(y) is a derivation of
g by Lemma 19.1. But by Proposition 17.9 every derivation of g is
inner, which implies that xs ∈ g, hence xn ∈ g. It is clear that xs is
semisimple, xn is nilpotent, and [xs, xn] = 0. Also if [x, y] = 0 then ady
preserves gλ for all λ, hence [xs, y] = 0 as linear operators on g and thus
as elements of g. This also implies that the decomposition is unique
since if x = x′s + x′n then [xs, x

′
s] = [xn, x

′
n] = 0, so xs− x′s = x′n− xn is

both semisimple and nilpotent, hence zero. �

Corollary 19.4. Any semisimple Lie algebra g 6= 0 over a field of
characteristic zero contains nonzero semisimple elements.
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Proof. Otherwise, by Proposition 19.3, every element x ∈ g is nilpo-
tent, which by Engel’s theorem would imply that g is nilpotent, hence
solvable, hence zero. �

19.2. Toral subalgebras. From now on we assume that char(k) = 0
unless specified otherwise.

Definition 19.5. An abelian Lie subalgebra h ⊂ g is called a toral
subalgebra if it consists of semisimple elements.12

Proposition 19.6. Let g be a semisimple Lie algebra, h ⊂ g a toral
subalgebra, and B a nondegenerate invariant symmetric bilinear form
on g (e.g., the Killing form).

(i) We have a decomposition g = ⊕α∈h∗gα, where gα is the subspace
of x ∈ g such that for h ∈ h we have [h, x] = α(h)x, and g0 ⊃ h.

(ii) We have [gα, gβ] ⊂ gα+β.
(iii) If α + β 6= 0 then gα and gβ are orthogonal under B.
(iv) B restricts to a nondegenerate pairing gα × g−α → k.

Proof. (i) is just the joint eigenspace decomposition for h acting in g.
(ii) is a very easy special case of Lemma 19.1. (iii) and (iv) follow from
the fact that B is nondegenerate and invariant. �

Corollary 19.7. (i) The Lie subalgebra g0 ⊂ g is reductive.
(ii) if x ∈ g0 then xs, xn ∈ g0.

Proof. (i) This follows from Proposition 16.14 and the fact that the
form (x, y) 7→ Tr|g(xy) on g0 is nondegenerate (Proposition 19.6(iv) for
the Killing form of g).

(ii) We have [h, x] = 0 for h ∈ h, so [h, xs] = 0, hence xs ∈ g0. �

19.3. Cartan subalgebras.

Definition 19.8. A Cartan subalgebra of a semisimple Lie algebra
g is a toral subalgebra h ⊂ g such that g0 = h.

Example 19.9. Let g = sln(k). Then the subalgebra h ⊂ g of diagonal
matrices is a Cartan subalgebra.

It is clear that any Cartan subalgebra is a maximal toral subalgebra
of g. The following theorem, stating the converse, shows that Cartan
subalgebras exist.

Theorem 19.10. Let h be a maximal toral subalgebra of g. Then h is
a Cartan subalgebra.

12In fact, we will see later that over an algebraically closed field of characteristic
zero, a finite dimensional Lie algebra consisting of semisimple elements is automat-
ically abelian.
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Proof. Let x ∈ g0, then by Corollary 19.7(ii) xs ∈ g0, so xs ∈ h by
maximality of h. Thus adx|g0 = adxn|g0 is nilpotent. So by Engel’s
theorem g0 is nilpotent. But it is also reductive, hence abelian.

Now let us show that every x ∈ g0 which is nilpotent in g must be
zero. Indeed, in this case, for any y ∈ g0, the operator adx ·ady : g→ g
is nilpotent (as [x, y] = 0), so Tr|g(adx · ady) = 0. But this form is
nondegenerate on g0, which implies that x = 0.

Thus for any x ∈ g0, xn = 0, so x = xs is semisimple. Hence g0 = h
and h is a Cartan subalgebra. �

We will show in Theorem 20.10 that all Cartan subalgebras of g are
conjugate under Aut(g), in particular they all have the same dimension,
which is called the rank of g.

19.4. Root decomposition.

Proposition 19.11. Let g be a semisimple Lie algebra, h ⊂ g a Cartan
subalgebra, and B a nondegenerate invariant symmetric bilinear form
on g (e.g., the Killing form).

(i) We have a decomposition g = h ⊕
⊕

α∈R gα, where gα is the
subspace of x ∈ g such that for h ∈ h we have [h, x] = α(h)x, and R is
the (finite) set of α ∈ h∗, α 6= 0, such that gα 6= 0.

(ii) We have [gα, gβ] ⊂ gα+β.
(iii) If α + β 6= 0 then gα and gβ are orthogonal under B.
(iv) B restricts to a nondegenerate pairing gα × g−α → k.

Proof. This immediately follows from Theorem 19.6. �

Definition 19.12. The set R is called the root system of g and its
elements are called roots.

Proposition 19.13. Let g1, ..., gn be simple Lie algebras and let g =
⊕igi.

(i) Let hi ⊂ gi be Cartan subalgebras of gi and Ri ⊂ h∗i the corre-
sponding root systems of gi. Then h = ⊕ihi is a Cartan subalgebra in
g and the corresponding root system R is the disjoint union of Ri.

(ii) Each Cartan subalgebra in g has the form h = ⊕ihi where hi ⊂ gi
is a Cartan subalgebra in gi.

Proof. (i) is obvious. To prove (ii), given a Cartan subalgebra h ⊂ g,
let hi be the projections of h to gi. It is easy to see that hi ⊂ gi
are Cartan subalgebras. Also h ⊂ ⊕ihi and the latter is toral, which
implies that h = ⊕ihi since h is a Cartan subalgebra. �

Example 19.14. Let g = sln(k). Then the subspace of diagonal matri-
ces h is a Cartan subalgebra (cf. Example 19.9), and it can be naturally
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identified with the space of vectors x = (x1, ..., xn) such that
∑

i xi = 0.
Let ei be the linear functionals on this space given by ei(x) = xi. We
have g = h ⊕

⊕
i6=j kEij and [x, Eij] = (xi − xj)Eij. Thus the root

system R consists of vectors ei−ej ∈ h∗ for i 6= j (so there are n(n−1)
roots).

Now let g be a semisimple Lie algebra and h ⊂ g a Cartan subal-
gebra. Let (, ) be a nondegenerate invariant symmetric bilinear form
on g, for example the Killing form. Since the restriction of (, ) to h is
nondegenerate, it defines an isomorphism h→ h∗ given by h 7→ (h, ?).
The inverse of this isomorphism will be denoted by α 7→ Hα. We also
have the inverse form on h∗ which we also will denote by (, ); it is given
by (α, β) := α(Hβ) = (Hα, Hβ).

Lemma 19.15. For any e ∈ gα, f ∈ g−α we have

[e, f ] = (e, f)Hα.

Proof. We have [e, f ] ∈ h so it is enough to show that the inner product
of both sides with any h ∈ h is the same. We have

([e, f ], h) = (e, [f, h]) = α(h)(e, f) = ((e, f)Hα, h),

as desired. �

Lemma 19.16. (i) If α is a root then (α, α) 6= 0.
(ii) Let e ∈ gα, f ∈ g−α be such that (e, f) = 2

(α,α)
, and let hα :=

2Hα
(α,α)

. Then e, f, hα satisfy the commutation relations of the Lie algebra

sl2.
(iii) hα is independent on the choice of (, ).

Proof. (i) Pick e ∈ gα, f ∈ g−α with (e, f) 6= 0. Let h := [e, f ] =
(e, f)Hα (by Lemma 19.15) and consider the Lie algebra a generated
by e, f, h. Then we see that

[h, e] = α(h)e = (α, α)(e, f)e, [h, f ] = −α(h)f = −(α, α)(e, f)f.

Thus if (α, α) = 0 then a is a solvable Lie algebra. By Lie’s theorem,
we can choose a basis in g such that operators ade, adf , adh are upper
triangular. Since h = [e, f ], adh will be strictly upper-triangular and
thus nilpotent. But since h ∈ h, it is also semisimple. Thus, adh = 0,
so h = 0 as g is semisimple. On the other hand, h = (e, f)Hα 6= 0.
This contradiction proves the first part of the theorem.

(ii) This follows immediately from the formulas in the proof of (i).
(iii) It’s enough to check the statement for a simple Lie algebra, and

in this case this is easy since (, ) is unique up to scaling by Corollary
16.20. �

104



The Lie subalgebra of g spanned by e, f, hα, which we’ve shown to
be isomorphic to sl2(k), will be denoted by sl2(k)α (we will see that gα
are 1-dimensional so it is independent on the choices).

Proposition 19.17. Let aα = kHα⊕
⊕

k 6=0 gkα ⊂ g. Then aα is a Lie
subalgebra of g.

Proof. This follows from the fact that for e ∈ gkα, f ∈ g−kα we have
[e, f ] = (e, f)Hkα = k(e, f)Hα. �

Corollary 19.18. (i) The space gα is 1-dimensional for each root α
of g.

(ii) If α is a root of g and k ≥ 2 is an integer then kα is not a root
of g.

Proof. For a root α the Lie algebra aα contains sl2(k)α, so it is a finite
dimensional representation of this Lie algebra. Also the kernel of hα on
this representation is spanned by hα, hence 1-dimensional, and eigenval-
ues of hα are even integers since α(hα) = 2. Thus by the representation
theory of sl2 (Subsection 11.4), this representation is irreducible, i.e.,
eigenspaces of hα (which are gkα and kHα) are 1-dimensional. There-
fore the map [e, ?] : gα → g2α is zero (as gα is spanned by e). So again
by representation theory of sl2 we have gkα = 0 for |k| ≥ 2. �

Theorem 19.19. Let g be a semisimple Lie algebra with Cartan sub-
algebra h and root decomposition g = h ⊕

⊕
α∈R gα. Let (, ) be a non-

degenerate symmetric invariant bilinear form on g.
(i) R spans h∗ as a vector space, and elements hα, α ∈ R span h as

a vector space.

(ii) For any two roots α, β, the number aα,β := β(hα) = 2(α,β)
(α,α)

is an
integer.

(iii) For α ∈ R, define the reflection operator sα : h∗ → h∗ by

sα(λ) = λ− λ(hα)α = λ− 2
(λ, α)

(α, α)
α.

Then for any roots α, β, sα(β) is also a root.
(iv) For roots α, β 6= ±α, the subspace Vα,β = ⊕k∈Zgβ+kα ⊂ g is an

irreducible representation of sl2(k)α.

Proof. (i) Suppose h ∈ h is such that α(h) = 0 for all roots α. Then
adh = 0, hence h = 0 as g is semisimple. This implies both statements.

(ii) aα,β is the eigenvalue of hα on eβ, hence an integer by the repre-
sentation theory of sl2 (Subsection 11.4).
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(iii) Let x ∈ gβ be nonzero. If β(hα) ≥ 0 then let y = f
β(hα)
α x. If

β(hα) ≤ 0 then let y = e
−β(hα)
α x. Then by representation theory of sl2,

y 6= 0. We also have [h, y] = sα(β)(h)y. This implies the statement.
(iv) It is clear that Vα,β is a representation. Also all hα-eigenspaces

in Vα,β are 1-dimensional, and the eigenvalues are either all odd or all
even. This implies that it is irreducible. �

Corollary 19.20. Let hR be the R-span of all hα. Then h = hR ⊕ ihR
and the restriction of the Killing form to hR is real-valued and positive
definite.

Proof. It follows from the previous theorem that the eigenvalues of adh,
h ∈ hR, are real. So hR ∩ ihR = 0, which implies the first statement.
Now, K(h, h) =

∑
i λ

2
i where λi are the eigenvalues of adh (which are

not all zero if h 6= 0). Thus K(h, h) > 0 if h 6= 0. �
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20. Structure of semisimple Lie algebras, II

20.1. Strongly regular (regular semisimple) elements. In this
section we will discuss another way of constructing Cartan subalgebras.
First consider an example.

Example 20.1. Let g = sln(C) and x ∈ g be a diagonal matrix with
distinct eigenvalues. Then the centralizer h = C(x) is the space of all
diagonal matrices of trace 0, which is a Cartan subalgebra. Thus the
same applies to any diagonalizable matrix with distinct eigenvalues, i.e.,
a generic matrix (one for which the discriminant of the characteristic
polynomial is nonzero).

So we may hope that if we take a generic element x in a semisimple
Lie algebra then its centralizer is a Cartan subalgebra. But for that we
have to define what we mean by generic.

Definition 20.2. The nullity n(x) of an element x ∈ g is the multi-
plicity of the eigenvalue 0 for the operator adx (i.e., the dimension of
the generalized 0-eigenspace). The rank rank(g) of g is the minimal
value of n(x). An element x is strongly regular if n(x) = rank(g).

Example 20.3. It is easy to check that for g = sln, x is strongly
regular if and only if its eigenvalues are distinct.

We will need the following auxiliary lemma.

Lemma 20.4. Let P (z1, ..., zn) be a nonzero complex polynomial, and
U ⊂ Cn be the set of points (z1, ..., zn) ∈ Cn such that P (z1, ..., zn) 6= 0.
Then U is path-connected, dense and open.

Proof. It is clear that U is open, since it is the preimage of the open set
C× ⊂ C under a continuous map. It is also dense, as its complement,
the hypersurface P = 0, cannot contain a ball. Finally, to see that it
is path-connected, take x,y ∈ U , and consider the polynomial Q(t) :=
P ((1 − t)x + ty). It has only finitely many zeros, hence the entire
complex line z = (1− t)x + ty except finitely many points is contained
in U . Clearly, x and y can be connected by a path inside this line
avoiding this finite set of points. �

Lemma 20.5. Let g be a complex semisimple Lie algebra. Then the
set gsr of strongly regular elements is connected, dense and open in g.

Proof. Consider the characteristic polynomial Px(t) of adx. We have

Px(t) = trank(g)(tm + am−1(x)tm−1 + ...+ a0(x)),
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where m = dim g−rankg and ai are some polynomials of x, with a0 6= 0.
Then x is strongly regular if and only if a0(x) 6= 0. This implies the
statement by Lemma 20.4. �

Proposition 20.6. Let g be a complex semisimple Lie algebra and
h ⊂ g a Cartan subalgebra. Then

(i) dim h = rank(g); and
(ii) the set hreg := h ∩ gsr coincides with the set

V := {h ∈ h : α(h) 6= 0 ∀α ∈ R}.

In particular, hreg is open and dense in h.

Proof. (i) Let G be a connected Lie group with Lie algebra g (we know
it exists, e.g. we can take G to be the connected component of the
identity in Aut(g)).

Lemma 20.7. Let φ : G × h → g be the map defined by φ(g, x) :=
Adg · x. Then the set U := φ(G× V ) ⊂ g is open.

Proof. Let us compute the differential φ∗ : g⊕h→ g at the point (1, x)
for x ∈ h. We obtain

φ∗(y, h) = [y, x] + h.

The kernel of this map is identified with the set of y ∈ g such that
[y, x] ∈ h. But then K([y, x], z) = K(y, [x, z]) = 0 for all z ∈ h, so
[y, x] = 0. Thus Kerφ∗ = C(x).

Now let x ∈ V . Then C(x) = h. Thus φ∗ is surjective by dimension
count, hence φ is a submersion at (1, x). This means that U := Imφ
contains x together with its neighborhood in g. Hence the same holds
for Adg · x, which implies that U is open. �

Since gsr is open and dense and U is open by Lemma 20.7 and non-
empty, we see that U ∩ gsr 6= ∅. But

n(Adg · x) = n(x) = dimC(x) = dim h.

for x ∈ V . This implies that rankg = dim h, which yields (i).
(ii) It is clear that for x ∈ h, we have

n(x) = dim Ker(adx) = dim h + #{α ∈ R : α(x) = 0}.

This implies the statement. �
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20.2. Conjugacy of Cartan subalgebras.

Theorem 20.8. (i) Let g be a complex semisimple Lie algebra and
let x ∈ g be a strongly regular semisimple element (which exists by
Proposition 20.6). Then the centralizer C(x) of x in g is a Cartan
subalgebra of g.

(ii) Any Cartan subalgebra of g is of this form.

Proof. Consider the eigenspace decomposition of adx: g = ⊕λgλ. Since
Cx is a toral subalgebra, the Lie algebra g0 = C(x) is reductive, with
dim(g0) = rankg.

We claim that g0 is also nilpotent. By Engel’s theorem, to establish
this, it suffices to show that the restriction of ady to g0 is nilpotent for
y ∈ g0. But ad(x + ty) = adx + tady is invertible on g/g0 for small
t, since it is so for t = 0 and the set of invertible matrices is open.
Thus ad(x + ty) must be nilpotent on g0, as the multiplicity of the
eigenvalue 0 for this operator must be (at least) rankg = dim g0. But
ad(x + ty) = tady on g0, which implies that ady is nilpotent on g0, as
desired.

Thus g0 is abelian. Moreover, for y, z ∈ g0 the operator adyn · adz
is nilpotent on g (as the product of two commuting operators one of
which is nilpotent), so Kg(yn, z) = 0, which implies that yn = 0, as Kg

restricts to a nondegenerate form on g0 and z is arbitrary. It follows
that any y ∈ g0 is semisimple, so g0 is a toral subalgebra. Moreover, it
is maximal since any element commuting with x is in g0. Thus g0 is a
Cartan subalgebra.

(ii) Let h ⊂ g be a Cartan subalgebra. By Proposition 20.6 it con-
tains a strongly regular element x, which is automatically semisimple.
Then h = C(x). �

Corollary 20.9. (i) Any strongly regular element x ∈ g is semisimple.
(ii) Such x is contained in a unique Cartan subalgebra, namely hx =

C(x).

Proof. (i) It is clear that if x is strongly regular then so is xs. Since
x ∈ C(xs) and as shown above C(xs) is a Cartan subalgebra, it follows
that x is semisimple.

(ii) Let h ⊂ g be a Cartan subalgebra containing x. Then h ⊃ hx,
thus by dimension count h = hx. �

We note that there is also a useful notion of a regular element,
which is an x ∈ g for which the ordinary (rather than generalized) 0-
eigenspace of adx (i.e., the centralizer C(x) of x) has dimension rankg.
Such elements don’t have to be semisimple, e.g. the nilpotent Jordan
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block in sln is regular. It follows from Corollary 20.9(i) that an element
is strongly regular if and only if it is both regular and semisimple. For
this reason, from now on we will follow standard terminology and call
strongly regular elements regular semisimple.

Theorem 20.10. Any two Cartan subalgebras of a complex semisimple
Lie algebra g are conjugate. I.e., if h1, h2 ⊂ g are two Cartan subalge-
bras and G a connected Lie group with Lie algebra g then there exists
an element g ∈ G such that Adg · h1 = h2.

Proof. By Corollary 20.9(ii), every element x ∈ gsr is contained in a
unique Cartan subalgebra hx. Introduce an equivalence relation on gsr

by setting x ∼ y if hx is conjugate to hy. It is clear that if x, y ∈ h
are regular elements in a Cartan subalgebra h then hx = hy = h, so for
any g ∈ G, Adg ·x ∼ y, and any element equivalent to y has this form.
So by Lemma 20.7 the equivalence class Uy of y is open. However, by
Lemma 20.5, gsr is connected. Thus there is only one equivalence class.
Hence any two Cartan subalgebras of the form hx for regular x are
conjugate. This implies the result, since by Theorem 20.8 any Cartan
subalgebra is of the form hx. �

Remark 20.11. The same results and proofs apply over any alge-
braically closed field k of characteristic zero if we use the Zariski topol-
ogy instead of the usual topology of Cn when working with the notions
of a connected, open and dense set.

20.3. Root systems of classical Lie algebras.

Example 20.12. Let g be the symplectic Lie algebra sp2n(k). Thus g
consists of square matrices A of size 2n such that

AJ + JAT = 0

where J =

(
0 1
−1 0

)
, with blocks being of size n. So we get A =(

a b
c −aT

)
, where b, c are symmetric. A Cartan subalgebra h is then

spanned by matrices A such that a = diag(x1, ..., xn) and b = c = 0.
So h ∼= kn. In this case we have roots coming from the a-part, which
are simply the roots ei − ej of gln ⊂ sp2n (defined by the condition
that b = c = 0) and also the roots coming from the b-part, which are
ei + ej (including i = j, when we get 2ei), and the c-part, which gives
the negatives of these roots, −ei − ej, including −2ei.

This is the root system of type Cn.

Example 20.13. Let g be the orthogonal Lie algebra so2n(k), preserv-
ing the quadratic form Q = x1xn+1 + ... + xnx2n. Then the story is
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almost the same. The Lie algebra g consists of square matrices A of
size 2n such that

AJ + JAT = 0

where J =

(
0 1
1 0

)
, with blocks being of size n. So we get A =(

a b
c −aT

)
, where b, c are now skew-symmetric. A Cartan subalgebra

h is again spanned by matrices A such that a = diag(x1, ..., xn) and
b = c = 0. So h ∼= kn. In this case we again have roots coming from
the a-part, which are simply the roots ei − ej of gln ⊂ so2n (defined
by the condition that b = c = 0) and also the roots coming form the
b-part, which are ei + ej (but now excluding i = j, so only for i 6= j),
and the c-part, which gives the negatives of these roots, −ei−ej, i 6= j.

This is the root system of type Dn.

Example 20.14. Let g be the orthogonal Lie algebra so2n+1(k), pre-
serving the quadratic form Q = x2

0 + x1xn+1 + ... + xnx2n. Then the
Lie algebra g consists of square matrices A of size 2n+ 1 such that

AJ + JAT = 0

where

J =

11 0 0
0 0 1n
0 1n 0

 ,

So we get

A =

 0 u −u
w a b
−w c −aT

 ,

where b, c are skew-symmetric. A Cartan subalgebra h is spanned by
matrices A such that a = diag(x1, ..., xn) and b = c = 0, u = w = 0. So
h ∼= kn. In this case we again have roots coming from the a-part, which
are simply the roots ei − ej of gln ⊂ so2n+1 (defined by the condition
that b = c = 0, u = w = 0) and also the roots coming form the b-part,
which are ei + ej, i 6= j, and the c-part, which gives the negatives of
these roots, −ei − ej, i 6= j. But we also have the roots coming from
the w-part, which are ei, and from the u part, which are −ei.

This is the root system of type Bn.
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21. Root systems

21.1. Abstract root systems. Let E ∼= Rr be a Euclidean space with
a positive definite inner product.

Definition 21.1. An abstract root system is a finite set R ⊂ E \ 0
satisfying the following axioms:

(R1) R spans E;

(R2) For all α, β ∈ R the number nαβ := 2(α,β)
(α,α)

is an integer;

(R3) If α, β ∈ R then sα(β) := β − nαβα ∈ R.
Elements of R are called roots. The number r = dimE is called the

rank of R.

In particular, taking β = α in R3 yields that R is centrally symmet-
ric, i.e., R = −R. Also note that sα is the reflection with respect to
the hyperplane (α, x) = 0, so R3 just says that R is invariant under
such reflections.

Note also that if R ⊂ E is a root system, E ⊂ E a subspace, and
R′ = R ∩ E then R′ is also a root system inside E ′ = Span(R′) ⊂ E.

For a root α the corresponding coroot α∨ ∈ E∗ is defined by the

formula α∨(x) = 2(α,x)
(α,α)

. Thus α∨(α) = 2, nαβ = α∨(β) and sα(β) =

β − α∨(β)α.

Definition 21.2. A root system R is reduced if for α, cα ∈ R, we
have c = ±1.

Proposition 21.3. If g is a semisimple Lie algebra and h ⊂ g a Car-
tan subalgebra then the corresponding set of roots R is a reduced root
system, and α∨ = hα.

Proof. This follows immediately from Theorem 19.19. �

Example 21.4. 1. The root system of sln is called An−1. In this
case, as we have seen in Example 19.14, the roots are ei − ej, and
sei−ej = (ij), the transposition of the i-th and j-th coordinates.

2. The subset {1, 2,−1,−2} of R is a root system which is not
reduced.

Definition 21.5. Let R1 ⊂ E1, R2 ⊂ E2 be root systems. An isomor-
phism of root systems φ : R1 → R2 is an isomorphism φ : E1 → E2

which maps R1 to R2 and preserves the numbers nαβ.

So an isomorphism does not have to preserve the inner product, e.g.
it may rescale it.
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21.2. The Weyl group.

Definition 21.6. The Weyl group of a root system R is the group
of automorphisms of E generated by sα.

Proposition 21.7. W is a finite subgroup of O(E) which preserves R.

Proof. Since sα are orthogonal reflections, W ⊂ O(E). By R3, sα
preserves R. By R1 an element of W is determined by its action on R,
hence W is finite. �

Example 21.8. For the root system An−1, W = Sn, the symmetric
group. Note that for n ≥ 3, the automorphism x 7→ −x of R is not in
W , so W is, in general, a proper subgroup of Aut(R).

21.3. Root systems of rank 2. If α, β are linearly independent roots
in R and E ′ ⊂ E is spanned by α, β then R′ = R∩E ′ is a root system
in E ′ of rank 2. So to classify reduced root systems, it is important to
classify reduced root systems of rank 2 first.

Theorem 21.9. Let R be a reduced root system and α, β ∈ R be two
linearly independent roots with |α| ≥ |β|. Let φ be the angle between α
and β. Then we have one of the following possibilities:

(1) φ = π/2, nαβ = nβα = 0;
(2a) φ = 2π/3, |α|2 = |β|2, nαβ = nβα = −1;
(2b) φ = π/3, |α|2 = |β|2, nαβ = nβα = 1;
(3a) φ = 3π/4, |α|2 = 2|β|2, nαβ = −1, nβα = −2;
(3b) φ = π/4, |α|2 = 2|β|2, nαβ = 1, nβα = 2;
(4a) φ = 5π/6, |α|2 = 3|β|2, nαβ = −1, nβα = −3;
(4b) φ = π/6, |α|2 = 3|β|2, nαβ = 1, nβα = 3.

Proof. We have (α, β) = 2|α| · |β| cosφ, so nαβ = 2 |β||α| cosφ. Thus

nαβnβα = 4 cos2 φ. Hence this number can only take values 0, 1, 2, 3 (as

it is an integer by R2) and
nαβ
nβα

= |α|2
|β|2 if nαβ 6= 0. The rest is obtained

by analysis of each case. �

In fact, all these possibilities are realized. Namely, we have root
systems A1 × A1, A2, B2 = C2 (the root system of the Lie algebras
sp4 and so5, which are in fact isomorphic, consisting of the vertices
and midpoints of edges of a square), and G2, generated by α, β with
(α, α) = 6, (β, β) = 2, (α, β) = −3, and roots being ±α,±β, ±(α+β),
±(α + 2β), ±(α + 3β), ±(2α + 3β).

Theorem 21.10. Any reduced rank 2 root system R is of the form
A1 × A1, A2, B2 or G2.
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Proof. Pick independent roots α, β ∈ R such that the angle φ is as
large as possible. Then φ ≥ π/2 (otherwise can replace α with −α), so
we are in one of the cases 1, 2a, 3a, 4a. Now the statement follows by
inspection of each case, giving A1×A1, A2, B2 and G2 respectively. �

Corollary 21.11. If α, β ∈ R are independent roots with (α, β) < 0
then α + β ∈ R.

Proof. This is easy to see from the classification of rank 2 root systems.
�

The root systems of rank 2 are shown in the following picture.

21.4. Positive and simple roots. Let R be a reduced root system
and t ∈ E∗ be such that t(α) 6= 0 for any α ∈ R. We say that a root is
positive (with respect to t) if t(α) > 0 and negative if t(α) < 0. The
set of positive roots is denoted by R+ and of negative ones by R−, so
R+ = −R− and R = R+ ∪ R− (disjoint union). This decomposition is
called a polarization of R; it depends on the choice of t.

Example 21.12. Let R be of type An−1. Then for t = (t1, ..., tn)
we have t(α) 6= 0 for all α iff ti 6= tj for any i, j. E.g. suppose
t1 > t2 > ... > tn, then we have ei − ej ∈ R+ iff i < j. We see
that polarizations are in bijection with permutations in Sn, i.e., with
elements of the Weyl group, which acts simply transitively on them.
We will see that this is, in fact, the case for any reduced root system.

Definition 21.13. A root α ∈ R+ is simple if it is not a sum of two
other positive roots.

Lemma 21.14. Every positive root is a sum of simple roots.

Proof. If α is not simple then α = β + γ where β, γ ∈ R+. We have
t(α) = t(β) + t(γ), so t(β), t(γ) < t(α). If β or γ is not simple, we can
continue this process, and it will terminate since t has finitely many
values on R. �

Lemma 21.15. If α, β ∈ R+ are simple roots then (α, β) ≤ 0.
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Proof. Assume (α, β) > 0. Then (−α, β) < 0 so by Lemma 21.11
γ := β − α is a root. If γ is positive then β = α+ γ is not simple. If γ
is negative then −γ is positive so α = β + (−γ) is not simple. �

Theorem 21.16. The set Π ⊂ R+ of simple roots is a basis of E.

Proof. We will use the following linear algebra lemma:

Lemma 21.17. Let vi be vectors in a Euclidean space E such that
(vi, vj) ≤ 0 when i 6= j and t(vi) > 0 for some t ∈ E∗. Then vi are
linearly independent.

Proof. Suppose we have a nontrivial relation∑
i∈I

civi =
∑
i∈J

civi

where I, J are disjoint and ci > 0 (clearly, every nontrivial relation can
be written in this form). Evaluating t on this relation, we deduce that
both sides are nonzero. Now let us compute the square of the left hand
side:

0 < |
∑
i∈I

civi|2 = (
∑
i∈I

civi,
∑
j∈J

cjvj) ≤ 0.

This is a contradiction. �

Now the result follows from Lemma 21.15 and Lemma 21.17. �

Thus the set Π of simple roots has r elements: Π = (α1, ..., αr).

Example 21.18. Let us describe simple roots for classical root sys-
tems. Suppose the polarization is given by t = (t1, ..., tn) with decreas-
ing coordinates. Then:

1. For type An−1, i.e., g = sln, the simple roots are αi := ei − ei+1,
1 ≤ i ≤ n− 1.

2. For type Cn, i.e., g = sp2n, the simple roots are

α1 = e1 − e2, ..., αn−1 = en−1 − en, αn = 2en.

3. For type Bn, i.e., g = so2n+1, we have the same story as for Cn
except αn = en rather than 2en. Thus the simple roots are

α1 = e1 − e2, ..., αn−1 = en−1 − en, αn = en.

4. For type Dn, i.e., g = so2n, the simple roots are

α1 = e1−e2, ..., αn−2 = en−2−en−1, αn−1 = en−1−en, αn = en−1+en.

We thus obtain
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Corollary 21.19. Any root α ∈ R can be uniquely written as α =∑r
i=1 niαi, where ni ∈ Z. If α is positive then ni ≥ 0 for all i and if α

is negative then ni ≤ 0 for all i.

For a positive root α, its height h(α) is the number
∑
ni. So simple

roots are the roots of height 1, and the height of ei − ej in R = An−1

is j − i.

21.5. Dual root system. For a root system R, the set R∨ ⊂ E∗ of
α∨ for all α ∈ R is also a root system, such that (R∨)∨ = R. It is
called the dual root system to R. For example, Bn is dual to Cn,
while An−1, Dn and G2 are self-dual.

Moreover, it is easy to see that any polarization of R gives rise to
a polarization of R∨ (using the image t∨ of t under the isomorphism
E → E∗ induced by the inner product), and the corresponding system
Π∨ of simple roots consists of α∨i for αi ∈ Π.

21.6. Root and weight lattices. Recall that a lattice in a real vector
space E is a subgroup Q ⊂ E generated by a basis of E. Of course,
every lattice is conjugate to Zn ⊂ Rn by an element of GLn(R). Also
recall that for a lattice Q ⊂ E the dual lattice Q∗ ⊂ E∗ is the set of
f ∈ E∗ such that f(v) ∈ Z for all v ∈ Q. If Q is generated by a basis
ei of E then Q∗ is generated by the dual basis e∗i .

In particular, for a root system R we can define the root lattice
Q ⊂ E, which is generated by the simple roots αi with respect to some
polarization of R. Since Q is also generated by all roots in R, it is
independent on the choice of the polarization. Similarly, we can define
the coroot lattice Q∨ ⊂ E∗ generated by α∨, α ∈ R, which is just the
root lattice of R∨.

Also we define the weight lattice P ⊂ E to be the dual lattice to
Q∨: P = (Q∨)∗, and the coweight lattice P∨ ⊂ E∗ to be the dual
lattice to Q: P∨ = Q∗, so P∨ is the weight lattice of R∨. Thus

P = {λ ∈ E : (λ, α∨) ∈ Z ∀α ∈ R}, P∨ = {λ ∈ E∗ : (λ, α) ∈ Z ∀α ∈ R}.
Since for α, β ∈ R we have (α∨, β) = nαβ ∈ Z, we have Q ⊂ P ,

Q∨ ⊂ P∨.
Given a system of simple roots Π = {α1, ..., αr}, we define funda-

mental coweights ω∨i to be the dual basis to αi and fundamental
weights ωi to be the dual basis to α∨i : (ωi, α

∨
j ) = (ω∨i , αj) = δij. Thus

P is generated by ωi and P∨ by ω∨i .

Example 21.20. Let R be of type A1. Then (α, α∨) = 2 for the unique
positive root α, so ω = 1

2
α, thus P/Q = Z/2. More generally, if R is of

type An−1 and we identify Q ∼= Q∨, P ∼= P∨, then P becomes the set of
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λ = (λ1, ..., λn) ∈ Rn such that
∑

i λi = 0 and λi − λj ∈ Z. So we have
a homomorphism φ : P → R/Z given by φ(λ) = λi mod Z (for any i).
Since

∑
i λi = 0, we have φ : P → Z/n, and Kerφ = Q (integer vectors

with sum zero). Also it is easy to see that φ is surjective (we may take
λi = k

n
for i 6= n and λn = k

n
− k, then φ(λ) = k

n
). Thus P/Q ∼= Z/n.
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22. Properties of the Weyl group

22.1. Weyl chambers. Suppose we have two polarizations of a root
system R defined by t, t′ ∈ E, and Π,Π′ are the corresponding systems
of simple roots. Are Π,Π′ equivalent in a suitable sense? The answer
turns out to be yes. To show this, we will need the notion of a Weyl
chamber.

Note that the polarization defined by t depends only on the signs
of (t, α), so does not change when t is continuously deformed with-
out crossing the hyperplanes (t, α) = 0. This motivates the following
definition:

Definition 22.1. A Weyl chamber is a connected component of
the complement of the root hyperplanes Lα given by the equations
(α, x) = 0 in E (α ∈ R).

Thus a Weyl chamber is defined by a system of strict homogeneous
linear inequalities ±(α, x) = 0, α ∈ R. More precisely, the set of
solutions of such a system is either empty or a Weyl chamber.

Thus the polarization defined by t depends only on the Weyl chamber
containing t.

The following lemma is geometrically obvious.

Lemma 22.2. (i) The closure C of a Weyl chamber C is a convex
cone.

(ii) The boundary of C is a union of codimension 1 faces Fi which
are convex cones inside one of the root hyperplanes defined inside it by
a system of non-strict homogeneous linear inequalities.

The root hyperplanes containing the faces Fi are called the walls of
C.

We have seen above that every Weyl chamber defines a polarization
of R. Conversely, every polarization defines the corresponding positive
Weyl chamber C+ defined by the conditions (α, x) > 0 for α ∈ R+

(this set is nonempty since it contains t, hence is a Weyl chamber).
Thus C+ is the set of vectors of the form

∑r
i=1 ciωi with ci > 0. So C+

has r faces Lα1 ∩ C+, ..., Lαr ∩ C+.

Lemma 22.3. These assignments are mutually inverse bijections be-
tween polarizations of R and Weyl chambers.

Exercise 22.4. Prove Lemma 22.3.

Since the Weyl group W permutes the roots, it acts on the set of
Weyl chambers.

Theorem 22.5. W acts transitively on the set of Weyl chambers.
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Proof. Let us say that Weyl chambers C,C ′ are adjacent if they share
a common face F ⊂ Lα. In this case it is easy to see that sα(C) = C ′.
Now given any Weyl chambers C,C ′, pick generic t ∈ C, t′ ∈ C ′ and
connect them with a straight segment. This will define a sequence of
Weyl chambers visited by this segment: C0 = C,C1, ..., Cm = C ′, and
Ci, Ci+1 are adjacent for each i. So Ci, Ci+1 lie in the same W -orbit.
Hence so do C,C ′. �

Corollary 22.6. Every Weyl chamber has r walls.

Proof. This follows since it is true for the positive Weyl chamber and by
Theorem 22.5 the Weyl group acts transitively on the Weyl chambers.

�

Corollary 22.7. Any two polarizations of R are related by the action
of an element w ∈ W . Thus if Π,Π′ are systems of simple roots corre-
sponding to two polarizations then there is w ∈ W such that w(Π) = Π′.

22.2. Simple reflections. Given a polarization of R and the corre-
sponding system of simple roots Π = {α1, ..., αr}, the simple reflec-
tions are the reflections sαi , denoted by si.

Lemma 22.8. For every Weyl chamber C there exist i1, ..., im such
that C = si1 ...sim(C+).

Proof. Pick t ∈ C, t+ ∈ C+ generically and connect them with a
straight segment as before. Let m be the number of chamber walls
crossed by this segment. The proof is by induction in m (with obvious
base). Let C ′ be the chamber entered by our segment from C and Lα
the wall separating C,C ′, so that C = sα(C ′). By the induction as-
sumption C ′ = u(C+), where u = si1 ...sim−1 . So Lα = u(Lαj) for some
j. Thus sα = usju

−1. Hence C = sα(C ′) = sαu(C+) = usj(C+), so we
get the result with im = j. �

Corollary 22.9. (i) The simple reflections si generate W ;
(ii) W (Π) = R.

Proof. (i) This follows since for any root α, the hyperplane Lα is a wall
of some Weyl chamber, so sα is a product of si.

(ii) Follows from (i). �

Thus R can be reconstructed from Π as W (Π), where W is the
subgroup of O(E) generated by si.

Example 22.10. For root system An−1 part (i) says that any element
of Sn is a product of transpositions of neighbors.
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22.3. Length of an element of the Weyl group. Let us say that
a root hyperplane Lα separates two Weyl chambers C,C ′ if they lie
on different sides of Lα.

Definition 22.11. The length `(w) of w ∈ W is the number of root
hyperplanes separating C+ and w(C+).

We have t ∈ C+, w(t) ∈ w(C+), so `(w) is the number of roots α
such that (t, α) > 0 but (w(t), α) = (t, w−1α) < 0. Note that if α is a
root satisfying this condition then β = −w−1α satisfies the conditions
(t, β) > 0, (t, wβ) < 0. Thus `(w) = `(w−1) and `(w) is the number
of positive roots which are mapped by w to negative roots. Note also
that the notion of length depends on the polarization of R (as it refers
to the positive chamber C+ defined using the polarization).

Example 22.12. Let si be a simple reflection. Then si(C+) is adjacent
to C+, with the only separating hyperplane being Lαi . Thus `(si) = 1.
It follows that the only positive root mapped by si to a negative root
is αi (namely, si(αi) = −αi), and thus si permutes R+ \ {αi}.
Proposition 22.13. Let ρ = 1

2

∑
α∈R+

α. Then (ρ, α∨i ) = 1 for all i.

Thus ρ =
∑r

i=1 ωi.

Proof. We have ρ = 1
2
αi+

1
2

∑
α∈R+,α6=αi α. Since si permutes R+\{αi},

we get siρ = ρ − αi. But for any λ, siλ = λ − (λ, α∨i )αi. This implies
the statement. �

The weight ρ plays an important role in representation theory of
semisimple Lie algebras. For instance, it occurs in the Weyl character
formula for these representations which we will soon derive.

Theorem 22.14. Let w = si1 ...sil be a representation of w ∈ W as
a product of simple reflections that has minimal possible length. Then
l = `(w).

Proof. As before, define a chain of Weyl chambers Ck = si1 ...sik(C+),
so that C0 = C+ and Cl = w(C+). We have seen that Ck and Ck−1 are
adjacent. So there is a zigzag path from C+ to w(C+) that intersects
at most l root hyperplanes (namely, the segment from Ck−1 to Ck
intersects only one hyperplane). Thus `(w) ≤ l. On the other hand,
pick generic points in C+ and w(C+) and connect them with a straight
segment. This segment intersects every separating root hyperplane
exactly once and does not intersect other root hyperplanes, so produces
an expression of w as a product of `(w) simple reflections. This implies
the statement. �

An expression w = si1 ...sil is called reduced if l = `(w).
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Proposition 22.15. The Weyl group W acts simply transitively on
Weyl chambers.

Proof. By Theorem 22.5 the action is transitive, so we just have to
show that if w(C+) = C+ then w = 1. But in this case `(w) = 0, so w
has to be a product of zero simple reflections, i.e., indeed w = 1. �

Thus we see that C+ is a fundamental domain of the action of W on
E.

Moreover, we have

Proposition 22.16. E/W = C+, i.e., every W -orbit on E has a
unique representative in C+.

Proof. Suppose λ, µ ∈ C+ and λ = wµ, where w ∈ W is shortest
possible. Assume the contrary, that w 6= 1. Pick a reduced decom-
position w = sil ...si1 . Let γ be the positive root which is mapped to
a negative root by w but not by silw, i.e., γ = si1 ...sil−1

αil . Then
0 ≤ (µ, γ) = (λ,wγ) ≤ 0. so (µ, γ) = 0. Thus

λ = wµ = sil ...si1µ = sil−1
...si1sγµ = sil−1

...si1µ

which is a contradiction since w was the shortest possible. �

Corollary 22.17. Let C− = −C+ be the negative Weyl chamber.
Then there exists a unique w0 ∈ W such that w0(C+) = C−. We have
`(w0) = |R+| and for any w 6= w0, `(w) < `(w0). Also w2

0 = 1.

Exercise 22.18. Prove Corollary 22.17.

The element w0 is therefore called the longest element of W .

Example 22.19. For the root system An−1 the element w0 is the order
reversing involution: w0(1, 2, ..., n) = (n, ..., 2, 1).
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23. Dynkin diagrams

23.1. Cartan matrices and Dynkin diagrams. Our goal now is to
classify reduced root systems, which is a key step in the classification of
semisimple Lie algebras. We have shown that classifying root systems
is equivalent to classifying sets Π of simple roots. So we need to classify
such sets Π. Before doing so, note that we have a nice notion of direct
product of root systems.

Namely, let R1 ⊂ E1 and R2 ⊂ E2 be two root systems. Let E =
E1⊕E2 (orthogonal decomposition) and R = R1tR2 (with R1 ⊥ R2).
If t1 ∈ E1, t2 ∈ E2 define polarizations of R1, R2 with systems of simple
roots Π1,Π2 then t = t1+t2 defines a polarization of R with Π = Π1tΠ2

(with Π1 ⊥ Π2 and Πi = Π ∩Ri).

Definition 23.1. A root system R is irreducible if it cannot be writ-
ten (nontrivially) in this way.

Lemma 23.2. If R is a root system with system of simple roots Π =
Π1 t Π2 with Π1 ⊥ Π2 then R = R1 t R2 where Ri is the root system
generated by Πi.

Proof. If α ∈ Π1, β ∈ Π2 then sα(β) = β, sβ(α) = α and sα and
sβ commute. So if Wi is the group generated by sα, α ∈ Πi then
W = W1 ×W2, with W1 acting trivially on Π2 and W2 on Π1. Thus

R = W (Π) = W (Π1 t Π2) = W1(Π1) tW2(Π2) = R1 tR2.

�

Proposition 23.3. Any root system is uniquely a union of irreducible
ones.

Proof. The decomposition is given by the maximal decomposition of Π
into mutually orthogonal systems of simple roots. �

Thus it suffices to classify irreducible root systems.
As noted above, a root system is determined by pairwise inner prod-

ucts of positive roots. However, it is more convenient to encode them
by the Cartan matrix A defined by

aij = nαjαi = (α∨i , αj).

The following properties of the Cartan matrix follow immediately from
Lemma 21.15, Theorem 21.9 and Theorem 21.16:

Proposition 23.4. (i) aii = 2;
(ii) aij is a nonpositive integer;
(iii) for any i 6= j, aijaji = 4 cos2 φ ∈ {0, 1, 2, 3}, where φ is the

angle between αi and αj;
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(iv) Let di = |αi|2. Then the matrix diaij is symmetric and positive
definite.

We will see later that conversely, any such matrix defines a root
system.

Example 23.5. 1. Type An−1: aii = 2, ai,i+1 = ai+1,i = −1, aij = 0
otherwise.

2. Type Bn: aii = 2, ai,i+1 = ai+1,i = −1 except that an,n−1 = −2.
3. Type Cn: transposed to Bn.
4. TypeDn: same as Bn but an−1,n−2 = an,n−2 = an−2,n = an−2,n−1 =

−1, an,n−1 = an−1,n = 0.

5. Type G2: A =

(
2 −1
−3 2

)
.

It is convenient to encode such matrices by Dynkin diagrams:
• Indices i are vertices;
• Vertices i and j are connected by aijaji lines;
• If aij 6= aji, i.e., |αi|2 6= |αj|2, then the arrow on the lines goes from

long root to short root (“less than” sign).
It is clear that such a diagram completely determines the Cartan

matrix (if we fix the labeling of vertices), and vice versa. Also it is clear
that the root system is irreducible if and only if its Dynkin diagram is
connected.

Proposition 23.6. The Cartan matrix determines the root system
uniquely.

Proof. We may assume the Dynkin diagram is connected. The Cartan
matrix determines, for any pair of simple roots, the angle between
them (which is right or obtuse) and the ratio of their lengths if they
are not orthogonal. By the classification of rank 2 root systems, this
determines the inner product on simple roots, up to scaling, which
implies the statement. �

23.2. Classification of Dynkin diagrams. The following theorem
gives a complete classification of irreducible root systems.

Theorem 23.7. (i) Connected Dynkin diagrams are classified by the
list given in the picture below, i.e., they are An, Bn, Cn, Dn, G2 which
we have already met, along with four more: F4, E6, E7, E8.

(ii) Every matrix satisfying the conditions of Proposition 23.4 is a
Cartan matrix of some root system.
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The proof of Theorem 23.7 is rather long but direct. It consists
of several steps. The first step is construction of the remaining root
systems F4, E6, E7, E8.

23.3. The root system F4.

Definition 23.8. The root system F4 is the union of the root system
B4 ⊂ R4 with the vectors(

±1
2
,±1

2
,±1

2
,±1

2

)
=

4∑
i=1

(±1
2
ei),

for all choices of signs.

Thus besides the roots of B4, which are ±ei±ej (24 of them, squared
length 2) and ±ei (8 of them, squared length 1), we have the 16 new
roots

∑4
i=1(±1

2
ei) (squared length 1); this gives a total of 48.

Exercise 23.9. Check that this is an irreducible root system.

To give a polarization of the F4 root system, pick t = (t1, t2, t3, t4)
with t1 � t2 � t3 � t4.

Exercise 23.10. Check that for this polarization, the simple positive
roots are, α1 = 1

2
(e1−e2−e3−e4), α2 = e4, α3 = e3−e4, α4 = e2−e3.

Thus α∨1 = e1− e2− e3− e4, α∨2 = 2e4, α∨3 = e3− e4, α∨4 = e2− e3. So
the Cartan matrix has the form

A =


2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2


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which gives the Dynkin diagram of F4.

23.4. The root system E8.

Definition 23.11. The root system E8 is the union of the root system
D8 ⊂ R8 with the vectors

∑8
i=1(±1

2
ei), for all choices of signs with even

number of minuses.

Thus besides the roots of D8, ±ei ± ej (112 of them), we have 128

new roots
∑8

i=1(±1
2
ei). So in total we have 240 roots. All roots have

squared length 2.

Exercise 23.12. Show that it is an irreducible root system.

To give a polarization of the E8 root system, pick t so that ti � ti+1.

Exercise 23.13. Check that for this polarization, the simple positive
roots are, α1 = 1

2
(e1 +e8−

∑7
i=2 ei), α2 = e7 +e8 and αi = e10−i−e11−i

for 3 ≤ i ≤ 8. Thus the roots α2, ..., α8 generate the root system D7,
while a13 = −1 and a1i = 0 for all i 6= 1, 3. In other words, the Cartan
matrix has the form

A =



2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


This recovers the Dynkin diagram E8.

23.5. The root system E7.

Definition 23.14. The root system E7 is the subsystem of E8 gener-
ated by α1, ..., α7.

Note that these roots (unlike α8 = e2 − e3) satisfy the equation
x1 + x2 = 0. Thus E7 is the intersection of E8 with this subspace. So
it includes the roots ±ei ± ej with 3 ≤ i, j ≤ 8 distinct (60 roots),

±(e1 − e2) (2 roots) and
∑8

i=1(±1
2
ei) with even number of minuses

and the opposite signs for e1 and e2 (64 roots). Altogether we get 126
roots. The Cartan matrix is the upper left corner 7 by 7 submatrix of
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the Cartan matrix of E8, so it is

A =



2 0 −1 0 0 0 0
0 2 0 −1 0 0 0
−1 0 2 −1 0 0 0
0 −1 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2


23.6. The root system E6.

Definition 23.15. The root system E6 is the subsystem of E8 and E7

generated by α1, ..., α6.

Note that these roots (unlike α8 = e2 − e3 and α7 = e3 − e4) satisfy
the equations x1 +x2 = 0, x2−x3 = 0. Thus E6 is the intersection of E8

with this subspace. So it includes the roots ±ei ± ej with 4 ≤ i, j ≤ 8

distinct (40 roots), and
∑8

i=1(±1
2
ei) with even number of minuses and

the opposite signs for e1 and e2 and for e1 and e3 (32 roots). Altogether
we get 72 roots. The Cartan matrix is the upper left corner 6 by 6
submatrix of the Cartan matrix of E8, so it is

A =


2 0 −1 0 0 0
0 2 0 −1 0 0
−1 0 2 −1 0 0
0 −1 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2


This recovers the Dynkin diagram E6.

23.7. The elements ρ and ρ∨. Recall that the elements ρ ∈ h∗ and
ρ∨ ∈ h for a simple Lie algebra g are defined by the conditions (ρ, α∨i ) =
(ρ∨, αi) = 1 for all i (note that ρ is not a root in general, and ρ∨ is not
an instance of the assignment α 7→ α∨ for roots α). So for classical Lie
algebras they can be computed from Example 21.18. Namely, we get

ρAn−1 = ρ∨An−1
= (n−1

2
, n−3

2
, ...,−n−1

2
),

ρBn = ρ∨Cn = (2n−1
2
, ..., 3

2
, 1

2
),

ρCn = ρ∨Bn = (n, n− 1, ..., 1),

ρDn = ρ∨Dn = (n− 1, n− 2, ..., 0).
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Exercise 23.16. Show that the elements ρ and ρ∨ for exceptional root
systems (in the above realizations) are as follows:

ρG2 = 3α + 5β, ρ∨G2
= 5α∨ + 3β∨,

ρF4 = (11
2
, 5

2
, 3

2
, 1

2
), ρ∨F4

= (8, 3, 2, 1),

ρE8 = ρ∨E8
= (23, 6, 5, 4, 3, 2, 1, 0),

ρE7 = ρ∨E7
= (17

2
,−17

2
, 5, 4, 3, 2, 1, 0),

ρE6 = ρ∨E6
= (4,−4,−4, 4, 3, 2, 1, 0).

(recall that we realized E6, E7, E8 inside R8).

23.8. Proof of Theorem 23.7. Now that we have shown that there
exist root systems attached to all Cartan matrices, it remains to classify
Cartan matrices (or Dynkin diagrams), i.e. show that there are no
others than those we have considered. For this purpose we consider
Dynkin diagrams as graphs with certain kind of special edges (with
one, two or three lines and a possible orientation). Note first that
any subgraph of a Dynkin diagram must itself be a Dynkin diagram,
since a principal submatrix of a positive definite symmetric matrix is
itself positive definite. On the other hand, consider untwisted and
twisted affine Dynkin diagrams depicted on the first picture at
https://en.wikipedia.org/wiki/Affine_Lie_algebra. These are
not Dynkin diagrams since the corresponding matrix A is degenerate,
hence not positive definite.

Exercise 23.17. Prove this by showing that in each case there exists
a nonzero vector v such that Av = 0. For example, in the simply
laced case (only simple edges), this amounts to finding a labeling of
the vertices by nonzero numbers such that the sum of labels of the
neighbors to each vertex is twice the label of that vertex, and in the
non-simply laced case it’s a weighted version of that.

Thus they cannot occur inside a Dynkin diagram.
We conclude that a Dynkin diagram is a tree. Indeed, it cannot have

a loop with simple edges, since this is the affine diagram Ãn−1, which
has a null vector (1, ..., 1). If there is a loop with non-simple edges,
this is even worse - this vector will have a negative inner product with
itself.

Further, it cannot have vertices with more than four simple edges

coming out since it cannot have a subdiagram D̃4 (and for non-simple
edges it is even worse, as before). Thus all the vertices of our tree are
i-valent for i ≤ 3.
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Also we cannot have a subdiagram D̃n, n ≥ 5, which implies that
there is at most one trivalent vertex.

Further, if there is a triple edge then the diagram is G2. There is

no way to attach any edge to the G2 diagram because D
(3)
4 and G̃2 are

forbidden.
Next, if there is a trivalent vertex then there cannot be a non-simple

edge anywhere in the diagram (as we have forbidden affine diagrams

A
(2)
2k−1, B̃n). So in this case the diagram is simply laced, so it must

be on our list (Dn, E6, E7, E8) since it cannot contain affine diagrams

Ẽ6, Ẽ7, Ẽ8.
It remains to consider chain-shaped diagrams. They can’t contain

two double edges (affine diagrams A
(2)
2k , D

(2)
k+1, C̃n). Thus if the double

edge is at the end, we can only get Bn and Cn.
Finally, if the double edge is in the middle, we can’t have affine

subdiagram F̃4 or E
(2)
6 , so our diagram must be F4. Theorem 23.7 is

proved.

Remark 23.18. Note that we have exceptional isomorphismsD2
∼=

A1 × A1, D3
∼= A3, B2

∼= C2. Otherwise the listed root systems are
distinct.

23.9. Simply laced and non-simply laced diagrams. As we al-
ready mentioned, a Dynkin diagram (or the corresponding root sys-
tem) is called simply laced if all the edges are simple, i.e. aij = 0,−1
for i 6= j. This is equivalent to the Cartan matrix being symmetric,
or to all roots having the same length. The connected simply-laced di-
agrams are An, n ≥ 1;Dn, n ≥ 4;E6, E7, E8. The remaining diagrams
Bn, Cn, F4, G2 are not simply laced, but they contain roots of only two
squared lengths, whose ratio is 2 for double edge (Bn, Cn, F4) and 3 for
triple edge (G2). The roots of the bigger length are called long and of
the smaller length are called short.

It is easy to see that long and short roots form a root system of the
same rank (but not necessarily irreducible). For instance, in G2 both
form a root system of type A2, and in B2 both are A1×A1. In B3 long
roots form D3 and short ones form A1 × A1 × A1. However, only long
roots form a root subsystem, since a long positive root can be the sum
of two short ones, but not vice versa.
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24. Construction of a semisimple Lie algebra from a Dynkin
diagram

24.1. Serre relations. Let k be an algebraically closed field of char-
acteristic zero. We would like to show that any reduced root system
gives rise to a semisimple Lie algebra over k, and moreover a unique
one. To this end, it suffices to show that any reduced irreducible root
system gives rise to a unique (finite dimensional) simple Lie algebra.

Let g be a finite dimensional simple Lie algebra over k with Cartan
subalgebra h ⊂ g and root system R ⊂ h∗ (which is thus reduced
and irreducible). Fix a polarization of R with the set of simple roots
Π = (α1, ..., αr), and let A = (aij) be the Cartan matrix of R. We have
a decomposition g = n+ ⊕ h ⊕ n−, where n± := ⊕α∈R±gα are the Lie
subalgebras spanned by positive, respectively negative root vectors.
Pick elements ei ∈ gαi , fi ∈ g−αi so that ei, fi, hi = [ei, fi] form an
sl2-triple.

Theorem 24.1. (Serre relations) (i) The elements ei, fi, hi, i = 1, ..., r
generate g.

(ii) These elements satisfy the following relations:

[hi, hj] = 0, [hi, ej] = aijej, [hi, fj] = −aijfj, [ei, fj] = δijhi,

(adei)
1−aijej = 0, (adfi)

1−aijfj = 0, i 6= j.

The last two sets of relations are called Serre relations. Note that
if aij = 0 then the Serre relations just say that [ei, ej] = [fi, fj] = 0.

Proof. (i) We know that hi form a basis of h, so it suffices to show that
ei generate n+ and fi generate n−. We only prove the first statement,
the second being the same for the opposite polarization.

Let n′+ ⊂ n+ be the Lie subalgebra generated by ei. It is clear that
n′+ = ⊕α∈R′+gα where R′+ ⊂ R+. Assume the contrary, that R′+ 6= R+.

Pick α ∈ R+ \ R′+ with the smallest height (it is not a simple root).
Then gα−αi ⊂ n′+, so [ei, gα−αi ] = 0. Let x ∈ g−α be a nonzero element.
We have

([x, ei], y) = (x, [ei, y]) = 0

for any y ∈ gα−αi . Thus [x, ei] = 0 for all i, which implies, by the
representation theory of sl2 (Subsection 11.4), that (α, α∨i ) ≤ 0 for all
i, hence (α, αi) ≤ 0 for all i. This would imply that (α, α) ≤ 0, a
contradiction. This proves (i).

(ii) All the relations except the Serre relations follow from the def-
inition and properties of root systems. So only the Serre relations re-
quire proof. We prove only the relation involving fi, the other one
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being the same for the opposite polarization. Consider the (sl2)i-
submodule Mij of g generated by fj. It is finite dimensional and
we have [hi, fj] = −aijfj, [ei, fj] = 0. Thus by the representation
theory of sl2 (Subsection 11.4) we must have Mij

∼= V−aij . Hence
(adfi)

−aij+1fj = 0. �

24.2. The Serre presentation for semisimple Lie algebras. Now
for any reduced root system R let g(R) be the Lie algebra generated
by ei, fi, hi, i = 1, ..., r, with defining relations being the relations
of Theorem 24.1. Precisely, this means that g(R) is the quotient of
the free Lie algebra FL3r with generators ei, fi, hi modulo the Lie ideal
generated by the differences of the left and right hand sides of these
relations.

Theorem 24.2. (Serre) (i) The Lie subalgebra n+ of g(R) generated
by ei has the Serre relations (adei)

1−aijej = 0 as the defining relations.
Similarly, the Lie subalgebra n− of g(R) generated by fi has the Serre
relations (adfi)

1−aijfj = 0 as the defining relations. In particular,
ei, fi 6= 0 in g(R). Moreover, hi are linearly independent.

(ii) g(R) is a sum of finite dimensional modules over every simple
root subalgebra (sl2)i = (ei, fi, hi).

(iii) g(R) is finite dimensional.
(iv) g(R) is semisimple and has root system R.

Proof. It is easy to see that g(R1 t R2) = g(R1)⊕ g(R2), so it suffices
to prove the theorem for irreducible root systems.

(i) Consider the (in general, infinite dimensional) Lie algebra g̃(R)
generated by ei, fi, hi with the defining relations of Theorem 24.1 with-
out the Serre relations. This Lie algebra is Z-graded, with deg(ei) = 1,
deg(fi) = −1, deg(hi) = 0. Thus we have a decomposition

g̃(R) = ñ+ ⊕ h̃⊕ ñ−,

where ñ+, h̃ and ñ− are Lie subalgebras spanned by elements of positive,
zero and negative degree, respectively. Moreover, it is easy to see that

ñ+ is generated by ei, ñ− is generated by fi, and h̃ is spanned by hi
(indeed, any commutator can be simplified to have only ei, only fi, or
only a single hi).

Lemma 24.3. (i) The Lie algebra ñ+ is free on the generators ei and
ñ− is free on the generators fi.

(ii) hi are linearly independent in h̃ (i.e., h̃ ∼= h).

Proof. (i) We prove only the second statement, the first one being the
same for the opposite polarization. Let h′ be a vector space with basis
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h′i, i = 1, ..., r and consider the Lie algebra a := h′ n FLr, where FLr
is freely generated by f ′1, ..., f

′
r and

[h′i, f
′
j] = −aijf ′j, [h′i, h

′
j] = 0.

Consider the universal enveloping algebra

U = U(a) = k[h′1, ..., h
′
r]n k〈f ′1, ..., f ′r〉,

which as a vector space is naturally identified with the tensor product
k〈f1, ..., fr〉 ⊗ k[h′1, ..., h

′
r], via f ⊗ h 7→ fh (by Proposition 14.4). Now

define an action of g̃(R) on the space U as follows. For P ∈ k[h′1, ..., h
′
r]

and w a word in f ′i of weight −α, we set

hi(w ⊗ P ) = w ⊗ (h′i − α(hi))P, fi(w ⊗ P ) = f ′iw ⊗ P,

ei(f
′
j1
...f ′js ⊗ P ) =

∑
k:jk=i

f ′j1 ....f̂
′
jk
...f ′js ⊗ (h′i − (αjk+1

+ ...+ αjs)(hi))P

(where the hat means that the corresponding factor is omitted). It is
easy to check that this indeed defines an action, i.e., the relations of

g̃(R) are satisfied (check it!). Thus we have a linear map g̃(R) → U
given by x 7→ x(1). The restriction of this map to the Lie subalgebra
ñ− is a map φ : ñ− → FLr which sends every iterated commutator of
fi to itself. This implies that φ is an isomorphism, i.e., ñ− is free.

(ii) The elements hi(1) = h′i are linearly independent, hence so are
hi. �

Now consider the element S+
ij := (adei)

1−aijej in ñ+ and S−ij :=

(adfi)
1−aijfj in ñ−. It is easy to check that [fk, S

+
ij ] = 0 (this follows

easily from the representation theory of sl2, Subsection 11.4,–check it!).
Therefore, setting I+ to be the ideal in the Lie algebra ñ+ generated
by S+

ij , and I− to be the ideal in the Lie algebra ñ− generated by S−ij ,

we see that the ideal of Serre relations in g̃(R) is I+⊕ I−. Lemma 24.3
now implies (i).

(ii) The Serre relations imply that ej generates the representation
V−aij of (sl2)i for j 6= i, and so does fj. Also any element of h generates
V0 or V2 or the sum of the two, and ei, fi generate V2. This implies (ii)
since g(R) is generated by ei, fi, hi, and if x generates a representation
X of (sl2)i and y generates a representation Y then [x, y] generates a
quotient of X ⊗ Y .

(iii) We have g(R) = ⊕α∈Qgα, where gα are the subspaces of g(R) of
weight α, and g0 = h. Let Q+ be the Z+-span of αi. Then gα is zero
unless α ∈ Q+ or −α ∈ Q+, and is finite dimensional for any α.

We will now show that if gα 6= 0 then α ∈ R or α = 0, which
implies (iii). It suffices to consider α ∈ Q+. We prove the statement
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by induction in the height ht(α) =
∑

i ki where α =
∑

i kiαi. The
base case (height 1) is obvious, so we only need to justify the inductive
step. We have (α, ω∨i ) = ki ≥ 0 for all i. If there is only one i with
ki ≥ 0 then the statement is clear since gmαi = 0 if m ≥ 2. (as
n+ is generated by ei). So assume that there are at least two such
indices i. Since (α, α) > 0, there exists i such that (α, α∨i ) > 0. By
the representation theory of sl2 (Subsection 11.4), gsiα 6= 0. Clearly,
siα = α − (α, α∨i )αi /∈ −Q+ (since kj > 0 for at least two indices j),
so siα ∈ Q+ but has height smaller than α (as (α, α∨i ) > 0). So by the
induction assumption siα ∈ R, which implies α ∈ R. This proves (iii).

(iv) We see that g(R) = h ⊕
⊕

α∈R gα, where gα are 1-dimensional
(this follows from (ii),(iii) since every root can be mapped to a simple
root by a composition of simple reflections). Let I be a nonzero ideal
in g. Then I ⊃ gα for some α 6= 0. Also, by the representation theory
of sl2, Iβ 6= 0 implies Iwβ 6= 0 for all w ∈ W . Thus Iαi 6= 0 for some
i, i.e., ei ∈ I. Hence hi, fi ∈ I. Now let J be the set of indices j for
which ej, fj, hj ∈ I (or, equivalently, just ej ∈ I); we have shown it is
nonempty. Since [hj, ek] = ajkek, we find that if j ∈ J and ajk 6= 0
(i.e., k is connected to j in the Dynkin diagram) then k ∈ J . Since
the Dynkin diagram is connected, J = [1, ..., r] and I = g. Thus g is
simple and clearly has root system R. This proves (iv) and completes
the proof of Serre’s theorem. �

Corollary 24.4. Isomorphism classes of simple Lie algebras over k are
in bijection with Dynkin diagrams An, n ≥ 1, Bn, n ≥ 2, Cn, n ≥ 3,
Dn, n ≥ 4, E6, E7, E8, F4 and G2.

132



25. Representation theory of semisimple Lie algebras

25.1. Representations of semisimple Lie algebras. We will now
develop representation theory of complex semisimple Lie algebras. The
representation theory of semisimple Lie algebras over an algebraically
closed field of characteristic zero is completely parallel, so we will stick
to the complex case. So all representations will be over C. We will
mostly be interested in finite dimensional representations; as we know,
they can be exponentiated to holomorphic representations of the cor-
responding simply connected Lie group G, which defines a bijection
between isomorphism classes of such representations of g and G.

Let g be a semisimple Lie algebra. Recall that by Theorem 18.9,
every finite dimensional representation of g is completely reducible,
so to classify finite dimensional representations it suffices to classify
irreducible representations.

As in the simplest case of sl2, a crucial tool is the decomposition of
a representation in a direct sum of eigenspaces of a Cartan subalgebra
h ⊂ g.

Definition 25.1. Let λ ∈ h∗, and V a representation of g (possibly
infinite dimensional). Then a vector v ∈ V is said to have weight λ
if hv = λ(h)v for all h ∈ h; such vectors are called weight vectors.
The subspace of such vectors is called the weight subspace of V of
weight λ and denoted by V [λ]. If V [λ] 6= 0, we say that λ is a weight
of V , and the set of weights of V is denoted by P (V ).

It is easy to see that gαV [λ] ⊂ V [λ+ α].
Let V ′ ⊂ V be the span of all weight vectors in V . Then it is clear

that V ′ = ⊕λ∈h∗V [λ].

Definition 25.2. We say that V has a weight decomposition (with
respect to a Cartan subalgebra h ⊂ g) if V ′ = V , i.e., if V = ⊕λ∈h∗V [λ].

Note that not every representation of g has a weight decomposition
(e.g., for V = U(g) with g acting by left multiplication all weight
subspaces are zero).

Proposition 25.3. Any finite dimensional representation V of g has
a weight decomposition. Moreover, all weights of V are integral, i.e.,
P (V ) is a finite subset of the weight lattice P ⊂ h∗ of g.

Proof. For each i = 1, ..., r, V is a finite dimensional representation of
the root subalgebra (sl2)i, so its element hi acts semisimply on V . Thus
h acts semisimply on V , hence V has a weight decomposition. Also
eigenvalues of hi are integers, so for any λ ∈ P (V ) we have λ(hi) =
(λ, α∨i ) ∈ Z, hence λ ∈ P . �
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Definition 25.4. A vector v in V [λ] is called a highest weight vector
of weight λ if eiv = 0 for all i, i.e., if n+v = 0. A representation V of
g is a highest weight representation with highest weight λ if it
is generated by such a nonzero vector.

Proposition 25.5. Any finite dimensional representation V 6= 0 con-
tains a nonzero highest weight vector of some weight λ. Thus every
irreducible finite dimensional representation of g is a highest weight
representation.

Proof. Note that P (V ) is a finite set. Let ρ∨ =
∑r

i=1 ω
∨
i . Pick λ ∈

P (V ) so that (λ, ρ∨) is maximal. Then λ+ αi /∈ P (V ) for any i, since
(λ+αi, ρ

∨) = (λ, ρ∨)+1. Hence for any nonzero v ∈ V [λ] (which exists
as λ ∈ P (V )) we have eiv = 0.

The second statement follows since an irreducible representation is
generated by any of its nonzero vectors. �

25.2. Verma modules. Even though we are mostly interested in finite
dimensional representations of g, it is useful to consider some infinite
dimensional representations, which are called Verma modules.

The Verma module Mλ is defined as “the largest highest weight rep-
resentation with highest weight λ”. Namely, it is generated by a single
highest weight vector vλ with defining relations hv = λ(h)v for h ∈ h
and eiv = 0. More formally speaking, we make the following definition.

Definition 25.6. Let Iλ ⊂ U(g) be the left ideal generated by the
elements h−λ(h), h ∈ h and ei, i = 1, ..., r. Then the Verma module
Mλ is the quotient U(g)/Iλ.

In this realization, the highest weight vector vλ is just the class of
the unit 1 of U(g).

Proposition 25.7. The map φ : U(n−)→ Mλ given by φ(x) = xvλ is
an isomorphism of left U(n−)-modules.

Proof. By the PBW theorem, the multiplication map

ξ : U(n−)⊗ U(h⊕ n+)→ U(g)

is a linear isomorphism. It is easy to see that ξ−1(Iλ) = U(n−) ⊗Kλ,
where

Kλ :=
∑
i

U(h⊕ n+)(hi − λ(hi)) +
∑
i

U(h⊕ n+)ei

is the kernel of the homomorphism λ+ : U(h ⊕ n+) → C given by
λ+(h) = λ(h), h ∈ h, λ+(ei) = 0. Thus, we have a natural isomorphism
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of left U(n−)-modules

U(n−) = U(n−)⊗ U(h⊕ n+)/Kλ →Mλ,

as claimed. �

Remark 25.8. The definition of Mλ means that it is the induced
module U(g)⊗U(h⊕n+) Cλ, where Cλ is the one-dimensional represen-
tation of h⊕ n+ on which it acts via λ+.

Recall that Q+ denotes the set of elements
∑r

i=1 kiαi where ki ∈ Z≥0.
We obtain

Corollary 25.9. Mλ has a weight decomposition with P (Mλ) = λ−Q+,
dimMλ[λ] = 1, and weight subspaces of Mλ are finite dimensional.

Proposition 25.10. (i) (Universal property of Verma modules) If V
is a representation of g and v ∈ V is a vector such that hv = λ(h)v for
h ∈ h and eiv = 0 for 1 ≤ i ≤ r then there is a unique homomorphism
η : Mλ → V such that η(vλ) = v. In particular, if V is generated
by such v 6= 0 (i.e., V is a highest weight representation with highest
weight vector v) then V is a quotient of Mλ.

(ii) Every highest weight representation has a weight decomposition
into finite dimensional weight subspaces.

Proof. (i) Uniqueness follows from the fact that vλ generates Mλ. To
construct η, note that we have a natural homomorphism of g-modules
η̃ : U(g) → V given by η̃(x) = xv. Moreover, η̃|Iλ = 0 thanks to the
relations satisfied by v, so η̃ descends to a map η : U(g)/Iλ = Mλ → V .
Moreover, if V is generated by v then this map is surjective, as desired.

(ii) This follows from (i) since a quotient of any representation with
a weight decomposition must itself have a weight decomposition. �

Corollary 25.11. Every highest weight representation V has a unique
highest weight generator, up to scaling.

Proof. Suppose v, w are two highest weight generators of V of weights
λ, µ. If λ = µ then they are proportional since dimV [λ] ≤ dimMλ[λ] =
1, as V is a quotient of Mλ. On the other hand, if λ 6= µ, then we can
assume without loss of generality that λ − µ /∈ Q+ (otherwise switch
λ, µ). Then µ /∈ λ−Q+, hence µ /∈ P (V ), a contradiction. �

Proposition 25.12. For every λ ∈ h∗, the Verma module Mλ has a
unique irreducible quotient Lλ. Moreover, Lλ is a quotient of every
highest weight g-module V with highest weight λ.

Proof. Let Y ⊂ Mλ be a proper submodule. Then Y has a weight de-
composition, and cannot contain a nonzero multiple of vλ (as otherwise
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Y = Mλ), so P (Y ) ⊂ (λ − Q+) \ {λ}. Now let Jλ be the sum of all
proper submodules Y ⊂ Mλ. Then P (Jλ) ⊂ (λ − Q+) \ {λ}, so Jλ is
also a proper submodule of Mλ (the maximal one). Thus, Lλ := Mλ/Jλ
is an irreducible highest weight module with highest weight λ. More-
over, if V is any nonzero quotient of Mλ then the kernel K of the
map Mλ → V is a proper submodule, hence contained in Jλ. Thus
the surjective map Mλ → Lλ descends to a surjective map V → Lλ.
The kernel of this map is a proper submodule of V , hence zero if V is
irreducible. Thus in the latter case V ∼= Lλ. �

Corollary 25.13. Irreducible highest weight g-modules are classified
by their highest weight λ ∈ h∗, via the bijection λ 7→ Lλ.

25.3. Finite dimensional modules. Since every finite dimensional
irreducible g-module is highest weight, it is of the form Lλ for λ be-
longing to some subset PF ⊂ P , the set of weights λ such that Lλ is
finite dimensional. So to obtain a final classification of finite dimen-
sional irreducible representations of g, we should determine the subset
PF .

Let P+ ⊂ P be the intersection of P with the closure of the dominant
Weyl chamber C+; i.e., P+ is the set of nonnegative integer linear
combinations of the fundamental weights ωi. In other words, P+ is the
set of λ ∈ P such that (λ, α∨i ) ∈ Z+ for 1 ≤ i ≤ r. Weights belonging
to P+ are called dominant integral.

Proposition 25.14. We have PF ⊂ P+.

Proof. The vector vλ is highest weight for (sl2)i with highest weight
λ(hi) = (λ, α∨i ). This must be a nonnegative integer for the corre-
sponding sl2-module to be finite dimensional. �

Lemma 25.15. If λ ∈ P+ then in Lλ, we have f
λ(hi)+1
i vλ = 0.

Proof. By the representation theory of sl2 (Subsection 11.4), we have

eif
λ(hi)+1
i vλ = 0. Also ejf

λ(hi)+1
i vλ = 0 for j 6= i since [ej, fi] = 0.

Thus, w := f
λ(hi)+1
i vλ is a highest weight vector in Lλ. So w cannot be

a generator (as the highest weight generator is unique up to scaling).
Thus w generates a proper submodule in Lλ, which must be zero since
Lλ is irreducible. �

Lemma 25.16. Let V be a g-module with weight decomposition into
finite dimensional weight subspaces. If V is a sum of finite dimensional
(sl2)i-modules for each i = 1, ..., r, then for each λ ∈ P and w ∈ W ,
dimV [λ] = dimV [wλ]. In particular, P (V ) is W -invariant.
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Proof. Since the Weyl group W is generated by the simple reflections
si, it suffices to prove the statement for w = si, and in fact to prove
that dimV [λ] ≤ dimV [siλ] (as s2

i = 1).
If (λ, α∨i ) = m ≥ 0 then consider the operator fmi : V [λ] → V [siλ].

We claim that this operator is injective, which implies the desired in-
equality. Indeed, let v ∈ V [λ] be a nonzero vector and E be the
representation of (sl2)i generated by v. Then E is finite dimensional,
and v ∈ E[m], so by the representation theory of sl2 (Subsection 11.4),
fmi v 6= 0, as claimed.

Similarly, if (λ, α∨i ) = −m ≤ 0 then the operator emi : V [λ]→ V [siλ]
is injective. This proves the lemma. �

Now we are ready to state the main classification theorem.

Theorem 25.17. For any λ ∈ P+, Lλ is finite dimensional; i.e.,
PF = P+. Thus finite dimensional irreducible representations of g
are classified, up to an isomorphism, by their highest weight λ ∈ P+,
via the bijection λ 7→ Lλ. Moreover, for any µ ∈ P and w ∈ W ,
dimLλ[µ] = dimLλ[wµ].

Proof. Since f
λ(hi)+1
i vλ = 0, we see that vλ generates the irreducible

finite dimensional (sl2)i-module of highest weight λ(hi). Also, ev-
ery nonzero element of g generates a finite dimensional (sl2)i-module.
But every vector of Lλ is a linear combination of vectors of the form
a1...aNvλ, ai ∈ g. Hence every vector in Lλ generates a finite dimen-
sional (sl2)i-module. Thus by Lemma 25.16, P (Lλ) is W -invariant.

Now let µ ∈ P (Lλ) ∩ P+. Then µ = λ− β, β ∈ Q+, so

(µ, ρ∨) = (λ, ρ∨)− (β, ρ∨) ≤ (λ, ρ∨).

So if µ =
∑

imiωi, mi ∈ Z+ then
∑

imi(ωi, ρ
∨) ≤ (λ, ρ∨). Since

(ωi, ρ
∨) ≥ 1

2
, this implies that P (Lλ) ∩ P+ is finite. But we know that

WP+ = P , hence W (P (Lλ) ∩ P+) = P (Lλ), as P (Lλ) is W -invariant.
It follows that P (Lλ) is finite, hence Lλ is finite dimensional. �

Example 25.18. For g = sl2 the dominant integral weights are posi-
tive integers n ∈ Z≥0, and it is easy to see that Ln = Vn.
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26. The Weyl character formula

26.1. Characters. Let V be a finite dimensional representation of a
semisimple Lie algebra g. Recall that the action of g on V can be expo-
nentiated to the action of the corresponding simply connected complex
Lie group G. Recall also that the character of a finite dimensional
representation V of any group G is the function

χV (g) = Tr|V (g).

Let us compute this character in our case. To this end, let h ⊂ g
be a Cartan subalgebra, h ∈ h, and let us compute χV (eh). Note
that this completely determines χV since it determines χV (ex) for any
semisimple element x ∈ g, and semisimple elements form a dense open
set in g (complement of zeros of some polynomial). So elements of the
form ex as above form a dense open set at least in some neighborhood
of 1 in G, and an analytic function on G is determined by its values on
any nonempty open set.

We know that V has a weight decomposition: V = ⊕µ∈PV [µ]. Thus
we have

χV (eh) =
∑
µ∈P

dimV [µ]eµ(h).

Consider the group algebra Z[P ]. It sits naturally inside the algebra of
analytic functions on h via λ 7→ eλ, where eλ(h) := eλ(h), and we see
that χV ∈ Z[P ], namely

χV =
∑
µ∈P

dimV [µ]eµ.

We will call the element χV the character of V .

26.2. Category O. Note that the above definition of character is a
purely formal algebraic definition, i.e., χV is simply the generating
function of dimensions of weight subspaces of V . So it makes sense
for any (possibly infinite dimensional) representation V with a weight
decomposition into finite dimensional weight subspaces, except we may
obtain an infinite sum. More precisely, we make the following defini-
tion.

Definition 26.1. The category Oint is the category of representations
V of g with weight decomposition into finite dimensional weight spaces
V = ⊕µ∈PV [µ], such that P (V ) is contained in the union of sets λi−Q+

for a finite collection of weights λ1, ..., λN ∈ P (depending on V ).13

13Usually one also adds the condition that V is a finitely generated U(g)-module,
but we don’t need this condition here, so we won’t impose it.
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Here the subscript “int” indicates that we consider only integral
weights (i.e., ones in P ). However, for brevity we will drop this sub-
script in this section and just denote this category by O.

For example, any highest weight module belongs to O.
Let R be the ring of series a :=

∑
µ∈P aµe

µ (aµ ∈ Z) such that the

set P (a) of µ with aµ 6= 0 is contained in the union of sets λi −Q+ for
a finite collection of weights λ1, ..., λN ∈ P . Then for every V ∈ O we
can define the character χV ∈ R. Moreover, it is easy to see that if

0→ X → Y → Z → 0

is a short exact sequence in O then χY = χX + χZ , and that for any
V, U ∈ O we have V ⊗ U ∈ O and χV⊗U = χV χU .

Example 26.2. Let V = Mλ be the Verma module. Recall that as
a vector space Mλ = U(n−)vλ, and that U(n−) = ⊗α∈R+C[e−α] (using
the PBW theorem). Thus∑

µ

U(n−)[µ]eµ =
1∏

α∈R+
(1− e−α)

and hence

χMλ
=

eλ∏
α∈R+

(1− e−α)
.

It is convenient to rewrite this formula as follows:

χMλ
=
eλ+ρ

∆
, ∆ :=

∏
α∈R+

(eα/2 − e−α/2).

The (trigonometric) polynomial ∆ is called the Weyl denominator.

Note that we have a homomorphism ε : W → Z/2 given by the
formula w 7→ det(w|h), i.e. w 7→ (−1)`(w); it is defined on simple reflec-
tions by si 7→ −1. This homomorphism is called the sign character.
For example, for type An−1 this is the sign of a permutation in Sn. We
will say that an element of f ∈ C[P ] is anti-invariant under W if
w(f) = (−1)`(w)f for all w ∈ W .

Proposition 26.3. The Weyl denominator ∆ is anti-invariant under
W .

Proof. Since si permutes positive roots not equal to αi and sends αi to
−αi, it follows that si∆ = −∆. �
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26.3. The Weyl character formula.

Theorem 26.4. (Weyl character formula) For any λ ∈ P+ the char-
acter χλ := χLλ of the irreducible finite dimensional representation Lλ
is given by

χλ =

∑
w∈W (−1)`(w)ew(λ+ρ)

∆
.

The proof of this theorem is in the next subsection.

Corollary 26.5. (Weyl denominator formula) One has

∆ =
∑
w∈W

(−1)`(w)ewρ.

Proof. This follows from the Weyl character formula by setting λ = 0
(as L0 = C is the trivial representation). �

For example, for g = sln Corollary 26.5 reduces to the usual product
formula for the Vandermonde determinant.

26.4. Proof of the Weyl character formula. Consider the product
∆χλ ∈ Z[P ]. We know that χλ is W -invariant, so this product is
W -anti-invariant. Thus,

∆χλ =
∑
µ∈P

cµe
µ,

where cwµ = (−1)`(w)cµ. Moreover, cµ = 0 unless µ ∈ λ+ ρ−Q+, and
cλ+ρ = 1. Thus to prove the Weyl character formula, we need to show
that cµ = 0 if µ ∈ P+ ∩ (λ+ ρ−Q+) and µ 6= λ+ ρ.

To this end, we will construct the above decomposition ∆χλ using
representation theory, so that this vanishing property is apparent from
the construction.

First recall from Subsection 18.3 that we have the Casimir element
C of U(g) given by the formula C =

∑
i aia

i for a basis ai ∈ g with dual
basis ai of g under the Killing form. This element is central, so acts
by a scalar on every highest weight (in particular, finite dimensional
irreducible) representation. We can write C in the form

C =
∑
j

x2
j +

∑
α∈R+

(e−αeα + eαe−α),

for an orthonormal basis xj of h. Since [eα, e−α] = hα, we find that

C =
∑
j

x2
j + 2

∑
α∈R+

e−αeα +
∑
α∈R+

hα.

Thus we get
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Lemma 26.6. If V is a highest weight representation with highest
weight λ then C|V = (λ, λ+ 2ρ) = |λ+ ρ|2 − |ρ|2.

Now we will define a sequence of modules K(b) from category O
parametrized by some binary strings b. This is done inductively. We
set K(∅) = Lλ. Now suppose K(b) is already defined. If K(b) = 0
then we set K(b0) = K(b1) = 0. Otherwise, pick a nonzero vector
vb ∈ K(b), of some weight ν(b) ∈ λ − Q+ such that the height of
λ− ν(b) takes the minimal possible value. Then vb is a highest weight
vector, and we can consider the corresponding homomorphism

ξb : Mνb → K(b).

Let K(b1), K(b0) be the kernel and cokernel of ξb. We have

χK(b1) − χMν(b)
+ χK(b) − χK(b0) = 0.

Thus we have

χK(b) = χMν(b)
− χK(b1) + χK(b0).

Now, it is clear that for every µ, every sufficiently long sequence b
satisfies K(b)[µ] = 0. So iterating this formula starting with b = ∅, we
will get

(26.1) χλ =
∑
b

(−1)Σ(b)χMν(b)

where Σ(b) is the sum of digits of b (which could a priori be an infinite
sum). So

∆χλ =
∑
b

(−1)Σ(b)eν(b)+ρ.

Also note that by induction in the length of b we can conclude that the
eigenvalue of C on Mν(b) is |λ+ ρ|2− |ρ|2 regardless of b, which implies
that

|ν(b) + ρ|2 = |λ+ ρ|2

for all b; in particular, this shows that the sum (26.1) is finite.
So it remains to show that if µ = λ + ρ− β ∈ P+ with β ∈ Q+ and

β 6= 0 then |µ|2 < |λ+ ρ|2. Indeed,

|λ+ ρ|2 − |µ|2 = |λ+ ρ|2 − |λ− β + ρ|2 =

2(λ+ ρ, β)− |β|2 > (λ+ ρ, β)− |β|2 = (λ+ ρ− β, β) ≥ 0.

This completes the proof of the Weyl character formula.

Exercise 26.7. Let Q be the root lattice of a simple Lie algebra g, Q+

its positive part. Define the Kostant partition function to be the
function p : Q → Z≥0 which attaches to β ∈ Q+ the number of ways

141



to write β as a sum of positive roots of g (where the order does not
matter), and p(β) = 0 if β /∈ Q+.

(i) Show that ∑
β∈Q+

p(β)e−β =
1∏

α∈R+
(1− e−α)

.

(ii) Prove the Kostant multiplicity formula

dimLλ[γ] =
∑
w∈W

(−1)`(w)p(w(λ+ ρ)− ρ− γ).

(iii) Compute p(k1α1 + k2α2) for g = sl3 and g = sp4.
(iv) Use (iii) to compute explicitly the weight multiplicities of the

irreducible representations Lλ for g = sl3 and g = sp4. (You should get
a sum of 6, respectively 8 terms, not particularly appealing, but easily
computable in each special case).

26.5. The Weyl dimension formula. Recall that the Weyl character
formula can be written as a trace formula: for h ∈ h

χλ(e
h) = Tr|Lλ(eh) =

∑
w∈W (−1)`(w)e(w(λ+ρ),h)∏
α∈R+

(e
1
2

(α,h) − e− 1
2

(α,h))
.

The dimension of Lλ should be obtained from this formula when h = 0.
However, we do not immediately get the answer since this formula
gives the character as a ratio of two trigonometric polynomials which
both vanish at h = 0, giving an indeterminacy. We know the limit
exists since the character is a trigonometric polynomial, but we need
to compute it. This can be done as follows.

Let us restrict attention to h = 2thρ where t ∈ R and hρ ∈ h
corresponds to ρ ∈ h∗ using the identification induced by the invariant
form. We have

χλ(e
2thρ) =

∑
w∈W (−1)`(w)e2t(w(λ+ρ),ρ)∏
α∈R+

(et(α,ρ) − e−t(α,ρ))
.

The key idea is that for this specialization the numerator can also be
factored using the denominator formula, which will allow us to resolve
the indeterminacy. Namely, we have

(26.2) χLλ(e2thρ) =

∏
α∈R+

(et(α,λ+ρ) − e−t(α,λ+ρ))∏
α∈R+

(et(α,ρ) − e−t(α,ρ))
.

Now sending t→ 0, we obtain
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Proposition 26.8. We have

dimLλ =

∏
α∈R+

(α, λ+ ρ)∏
α∈R+

(α, ρ)
.

Note that this number is an integer, but this is not obvious without
its interpretation as the dimension of a representation.

Formula (26.2) has a meaning even before taking the limit. Namely,
the eigenvalues of the element 2hρ define a Z-grading on the repre-
sentation Lλ called the principal grading, and we obtain a product
formula for the Poincaré polynomial of this grading.
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