Problems from "An introduction to Lie groups and Lie algebras" by A. Kirillov Jr.

Homework 1

2.1. Let G be a Lie group and H - a closed Lie subgroup.
(1) Let \bar{H} be the closure of H in G. Show that \bar{H} is a subgroup in G.
(2) Show that each coset $H x, x \in \bar{H}$, is open and dense in \bar{H}.
(3) Show that $\bar{H}=H$, that is, every Lie subgroup is closed.
2.2.
(1) Show that every discrete normal subgroup of a connected Lie group is central (hint: consider the map $G \rightarrow N: g \mapsto g h g^{-1}$ where h is a fixed element in $\left.N\right)$.
(2) By applying part (a) to kernel of the map $\widetilde{G} \rightarrow G$, show that for any connected Lie group G, the fundamental group $\pi_{1}(G)$ is commutative.
2.3. Let $f: G_{1} \rightarrow G_{2}$ be a morphism of connected Lie groups such that $f_{*}: T_{1} G_{1} \rightarrow T_{1} G_{2}$ is an isomorphism (such a morphism is sometimes called local isomorphism). Show that f is a covering map, and $\operatorname{Ker} f$ is a discrete central subgroup.
2.4. Let $\mathcal{F}_{n}(\mathbb{C})$ be the set of all flags in \mathbb{C}^{n}. Show that

$$
\mathcal{F}_{n}(\mathbb{C})=\mathrm{GL}(n, \mathbb{C}) / B(n, \mathbb{C})=\mathrm{U}(n) / T(n)
$$

where $B(n, \mathbb{C})$ is the group of invertible complex upper triangular matrices, and $T(n)$ is the group of diagonal unitary matrices (which is easily shown to be the n-dimensional torus $\left.(\mathbb{R} / \mathbb{Z})^{n}\right)$. Deduce from this that $\mathcal{F}_{n}(\mathbb{C})$ is a compact complex manifold and find its dimension over \mathbb{C}.
2.5. Let $G_{n, k}$ be the set of all dimension k subspaces in \mathbb{R}^{n} (usually called the Grassmanian). Show that $G_{n, k}$ is a homogeneous space for the group $\mathrm{O}(n, \mathbb{R})$ and thus can be identified with coset space $\mathrm{O}(n, \mathbb{R}) / H$ for appropriate H. Use it to prove that $G_{n, k}$ is a manifold and find its dimension.
2.6. Show that if $G=\operatorname{GL}(n, \mathbb{R}) \subset \operatorname{End}\left(\mathbb{R}^{n}\right)$ so that each tangent space is canonically identified with $\operatorname{End}\left(\mathbb{R}^{n}\right)$, then $\left(L_{g}\right)_{*} v=g v$ where the product in the right-hand side is the usual product of matrices, and similarly for the right action. Also, the adjoint action is given by $\operatorname{Ad} g(v)=g v g^{-1}$.

Homework 2

2.7. Define a bilinear form on $\mathfrak{s u}(2)$ by $(a, b)=\frac{1}{2} \operatorname{tr}\left(a b^{t}\right)$. Show that this form is symmetric, positive definite, and invariant under the adjoint action of $\operatorname{SU}(2)$.
2.8. Define a basis in $\mathfrak{s u}(2)$ by

$$
i \sigma_{1}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) \quad i \sigma_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad i \sigma_{3}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)
$$

Show that the map

$$
\varphi: \mathrm{SU}(2) \rightarrow \mathrm{GL}(3, \mathbb{R}), g \mapsto \text { matrix of } \operatorname{Ad} g \text { in the basis } i \sigma_{1}, i \sigma_{2}, i \sigma_{3}
$$

gives a morphism of Lie groups $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3, \mathbb{R})$.
2.9. Let $\varphi: \mathrm{SU}(2) \rightarrow \mathrm{SO}(3, \mathbb{R})$ be the morphism defined in the previous problem. Compute explicitly the map of tangent spaces $\varphi_{*}: \mathfrak{s u}(2) \rightarrow \mathfrak{s o}(3, \mathbb{R})$ and show that φ_{*} is an isomorphism. Deduce from this that $\operatorname{Ker} \varphi$ is a discrete normal subgroup in $\operatorname{SU}(2)$, and that $\operatorname{Im} \varphi$ is an open subgroup in $\mathrm{SO}(3, \mathbb{R})$.
2.10. Prove that the map φ used in two previous exercises establishes an isomorphism $\operatorname{SU}(2) / \mathbb{Z}_{2} \rightarrow$ $\mathrm{SO}(3, \mathbb{R})$ and thus, since $\mathrm{SU}(2) \simeq S^{3}, \mathrm{SO}(3, \mathbb{R}) \simeq \mathbb{R} \mathbb{P}^{3}$.
2.11. Show that for $n \geq 1$, we have $\pi_{0}(\mathrm{SU}(n+1))=\pi_{0}(\mathrm{SU}(n)), \pi_{0}(\mathrm{U}(n+1))=\pi_{0}(\mathrm{U}(n))$ and deduce from it that groups $\mathrm{U}(n), \mathrm{SU}(n)$ are connected for all n. Similarly, show that for $n \geq 2$, we have $\pi_{1}(\mathrm{SU}(n+1))=\pi_{1}(\mathrm{SU}(n)), \pi_{1}(\mathrm{U}(n+1))=\pi_{1}(\mathrm{U}(n))$ and deduce from it that for $n \geq 2$, $\mathrm{SU}(n)$ is simply-connected and $\pi_{1}(\mathrm{U}(n))=\mathbb{Z}$.
2.12. Show that for $n \geq 2$, we have $\pi_{0}(\mathrm{SO}(n+1, \mathbb{R}))=\pi_{0}(\mathrm{SO}(n, \mathbb{R}))$ and deduce from it that groups $\operatorname{SO}(n)$ are connected for all $n \geq 2$. Similarly, show that for $n \geq 3, \pi_{1}(\operatorname{SO}(n+1, \mathbb{R}))=$ $\pi_{1}(\mathrm{SO}(n, \mathbb{R}))$ and deduce from it that for $n \geq 3, \pi_{1}(\mathrm{SO}(n, \mathbb{R}))=\mathbb{Z}_{2}$.
2.13. Using Gram-Schmidt orthogonalization process, show that $\mathrm{GL}(n, \mathbb{R}) / \mathrm{O}(n, \mathbb{R})$ is diffeomorphic to the space of upper-triangular matrices with positive entries on the diagonal. Deduce from this that $\mathrm{GL}(n, \mathbb{R})$ is homotopic (as a topological space) to $\mathrm{O}(n, \mathbb{R})$.
2.14. Let L_{n} be the set of all Lagrangian subspaces in $\mathbb{R}^{2 n}$ with the standard symplectic form ω. (A subspace V is Lagrangian if $\operatorname{dim} V=n$ and $\omega(x, y)=0$ for any $x, y \in V$.)

Show that the group $\operatorname{Sp}(n, \mathbb{R})$ acts transitively on L_{n} and use it to define on L_{n} a structure of a smooth manifold and find its dimension.
2.15. Let $\mathbb{H}=\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}\}$ be the algebra of quaternions, defined by $i j=k=-j i, j k=i=-k j, k i=j=-i k, i^{2}=j^{2}=k^{2}=-1$, and let $\mathbb{H}^{n}=\left\{\left(h_{1}, \ldots, h_{n}\right) \mid h_{i} \in \mathbb{H}\right\}$. In particular, the subalgebra generated by $1, i$ coincides with the field \mathbb{C} of complex numbers.

Note that \mathbb{H}^{n} has a structure of both left and right module over \mathbb{H} defined by

$$
h\left(h_{1}, \ldots, h_{n}\right)=\left(h h_{1}, \ldots, h h_{n}\right), \quad\left(h_{1}, \ldots, h_{n}\right) h=\left(h_{1} h, \ldots, h_{n} h\right)
$$

(1) Let $\operatorname{End}_{\mathbb{H}}\left(\mathbb{H}^{n}\right)$ be the algebra of endomorphisms of \mathbb{H}^{n} considered as right \mathbb{H}-module:

$$
\operatorname{End}_{\mathbb{H}}\left(\mathbb{H}^{n}\right)=\left\{A: \mathbb{H}^{n} \rightarrow \mathbb{H}^{n} \mid A\left(\mathbf{h}+\mathbf{h}^{\prime}\right)=A(\mathbf{h})+A\left(\mathbf{h}^{\prime}\right), A(\mathbf{h} h)=A(\mathbf{h}) h\right\}
$$

Show that $\operatorname{End}_{\mathbb{H}}\left(\mathbb{H}^{n}\right)$ is naturally identified with the algebra of $n \times n$ matrices with quaternion entries.
(2) Define an \mathbb{H}-valued form (,) on \mathbb{H}^{n} by

$$
\left(\mathbf{h}, \mathbf{h}^{\prime}\right)=\sum_{i} \overline{h_{i}} h_{i}^{\prime}
$$

where $\overline{a+b i+c j+d k}=a-b i-c j-d k$. (Note that $\overline{u v}=\overline{v u}$.
Let $\mathrm{U}(n, \mathbb{H})$ be the group of "unitary quaternionic transformations":

$$
\mathrm{U}(n, \mathbb{H})=\left\{A \in \operatorname{End}_{\mathbb{H}}\left(\mathbb{H}^{n}\right) \mid\left(A \mathbf{h}, A \mathbf{h}^{\prime}\right)=\left(\mathbf{h}, \mathbf{h}^{\prime}\right)\right\} .
$$

Show that this is indeed a group and that a matrix A is in $\mathrm{U}(n, \mathbb{H})$ iff $A^{*} A=1$, where $\left(A^{*}\right)_{i j}=\overline{A_{j i}}$.
(3) Define a map $\mathbb{C}^{2 n} \simeq \mathbb{H}^{n}$ by

$$
\left(z_{1}, \ldots, z_{2 n}\right) \mapsto\left(z_{1}+j z_{n+1}, \ldots, z_{n}+j z_{2 n}\right)
$$

Show that it is an isomorphism of complex vector spaces (if we consider \mathbb{H}^{n} as a complex vector space by $\left.z\left(h_{1}, \ldots h_{n}\right)=\left(h_{1} z, \ldots, h_{n} z\right)\right)$ and that this isomorphism identifies

$$
\operatorname{End}_{\mathbb{H}}\left(\mathbb{H}^{n}\right)=\left\{A \in \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{2 n}\right) \mid \bar{A}=J^{-1} A J\right\}
$$

where $J:=\left(\begin{array}{cc}0 & \operatorname{Id}_{n} \\ -\operatorname{Id}_{n} & 0\end{array}\right)$. (Hint: use $j z=\bar{z} j$ for any $z \in \mathbb{C}$ to show that $\mathbf{h} \mapsto \mathbf{h} j$ is identified with $\mathbf{z} \mapsto J \overline{\mathbf{z}}$.)
(4) Show that under identification $\mathbb{C}^{2 n} \simeq \mathbb{H}^{n}$ defined above, the quaternionic form (,) is identified with

$$
\left(\mathbf{z}, \mathbf{z}^{\prime}\right)-j\left\langle\mathbf{z}, \mathbf{z}^{\prime}\right\rangle
$$

where $\left(\mathbf{z}, \mathbf{z}^{\prime}\right)=\sum \overline{z_{i}} z_{i}^{\prime}$ is the standard Hermitian form in $\mathbb{C}^{2 n}$ and

$$
\left\langle\mathbf{z}, \mathbf{z}^{\prime}\right\rangle=\sum_{i=1}^{n}\left(z_{i+n} z_{i}^{\prime}-z_{i} z_{i+n}^{\prime}\right)
$$

is the standard bilinear skew-symmetric form in $\mathbb{C}^{2 n}$. Deduce from this that the group $\mathrm{U}(n, \mathbb{H})$ is identified with $\operatorname{Sp}(n)=\operatorname{Sp}(n, \mathbb{C}) \cap \mathrm{SU}(2 n)$.

2.16.

(1) Show that $\mathrm{Sp}(1) \simeq \mathrm{SU}(2) \simeq S^{3}$.
(2) Using the previous exercise, show that we have a natural transitive action of $\operatorname{Sp}(n)$ on the sphere $S^{4 n-1}$ and a stabilizer of a point is isomorphic to $\operatorname{Sp}(n-1)$.
(3) Deduce that $\pi_{1}(\operatorname{Sp}(n+1))=\pi_{1}(\operatorname{Sp}(n)), \pi_{0}(\operatorname{Sp}(n+1))=\pi_{0}(\operatorname{Sp}(n))$.

Homework 4

3.1. Consider the group $\operatorname{SL}(2, \mathbb{R})$. Show that the element $X=\left(\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right)$ is not in the image of the exponential map. (Hint: if $X=\exp (x)$, what are the eigenvalues of x ?).

3.5.

(1) Prove that \mathbb{R}^{3} with the commutator given by the cross-product is a Lie algebra. Show that this Lie algebra is isomorphic to $\mathfrak{s o}(3, \mathbb{R})$.
(2) Let $\varphi: \mathfrak{s o}(3, \mathbb{R}) \rightarrow \mathbb{R}^{3}$ be the isomorphism of part (1). Prove that under this isomorphism, the standard action of $\mathfrak{s o}(3)$ on \mathbb{R}^{3} is identified with the action of \mathbb{R}^{3} on itself given by the cross-product:

$$
a \cdot \vec{v}=\varphi(a) \times \vec{v}, \quad a \in \mathfrak{s o}(3), \vec{v} \in \mathbb{R}^{3}
$$

where $a \cdot \vec{v}$ is the usual multiplication of a matrix by a vector.
This problem explains common use of cross-products in mechanics: angular velocities and angular momenta are actually elements of Lie algebra $\mathfrak{s o}(3, \mathbb{R})$ (to be precise, angular momenta are elements of the dual vector space, $(\mathfrak{s o}(3, \mathbb{R}))^{*}$, but we can ignore this difference). To avoid explaining this, most textbooks write angular velocities as vectors in \mathbb{R}^{3} and use cross-product instead of commutator. Of course, this would completely fail in dimensions other than 3 , where $\mathfrak{s o}(n, \mathbb{R})$ is not isomorphic to \mathbb{R}^{n} even as a vector space.
3.6. Let P_{n} be the space of polynomials with real coefficients of degree $\leq n$ in variable x. The Lie group $G=\mathbb{R}$ acts on P_{n} by translations of the argument: $\rho(t)(x)=x+t, t \in G$. Show that the corresponding action of the Lie algebra $\mathfrak{g}=\mathbb{R}$ is given by $\rho(a)=a \partial_{x}, a \in \mathfrak{g}$, and deduce from this the Taylor formula for polynomials:

$$
f(x+t)=\sum_{n \geq 0} \frac{\left(t \partial_{x}\right)^{n}}{n!} f
$$

3.7. Let G be the Lie group of all maps $A: \mathbb{R} \rightarrow \mathbb{R}$ having the form $A(x)=a x+b, a \neq 0$. Describe explicitly the corresponding Lie algebra. [There are two ways to do this problem. The easy way is to embed $G \subset G L(2, \mathbb{R})$, which makes the problem trivial. More straightforward way is to explicitly construct some basis in the tangent space, construct the corresponding one-parameter subgroups, and compute the commutator using the formula

$$
\exp (x) \exp (y) \exp (-x) \exp (-y)=\exp ([x, y]+\ldots)
$$

The second way is recommended to those who want to understand how the correspondence between Lie groups and Lie algebras works.]
3.8. Let $\operatorname{SL}(2, \mathbb{C})$ act on $\mathbb{C P}^{1}$ in the usual way:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right](x: y)=(a x+b y: c x+d y)
$$

This defines an action of $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$ by vector fields on $\mathbb{C P}^{1}$. Write explicitly vector fields corresponding to h, e, f in terms of coordinate $t=x / y$ on the open cell $\mathbb{C} \subset \mathbb{C P}^{1}$.
3.9. Let G be a Lie group with Lie algebra \mathfrak{g}, $\operatorname{Aut}(\mathfrak{g})$ the group of automorphisms of \mathfrak{g}, and $\operatorname{Der}(\mathfrak{g})$ be the Lie algebra of derivations of \mathfrak{g}.
(1) Show that $g \mapsto \operatorname{Ad} g$ gives a morphism of Lie groups $G \rightarrow \operatorname{Aut}(\mathfrak{g})$; similarly, $x \mapsto \operatorname{ad} x$ is a morphism of Lie algebras $\mathfrak{g} \rightarrow$ Der \mathfrak{g}. (The automorphisms of the form $\operatorname{Ad} g$ are called inner automorphisms; the derivations of the form $\operatorname{ad} x, x \in \mathfrak{g}$ are called inner derivations.)
(2) Show that for $f \in \operatorname{Der} \mathfrak{g}, x \in \mathfrak{g}$, one has $[f, \operatorname{ad} x]=\operatorname{ad} f(x)$ as operators in \mathfrak{g}, and deduce from this that $\operatorname{ad}(\mathfrak{g})$ is an ideal in Der \mathfrak{g}.
3.11. Let J_{x}, J_{y}, J_{z} be the standard basis in $\mathfrak{s o}(3, \mathbb{R}) \cong \mathbb{R}^{3}$ (the Lie bracket is the cross product). The standard action of $\operatorname{SO}(3, \mathbb{R})$ on \mathbb{R}^{3} defines an action of $\mathfrak{s o}(3, \mathbb{R})$ by vector fields on \mathbb{R}^{3}. Abusing the language, we will use the same notation J_{x}, J_{y}, J_{z} for the corresponding vector fields on \mathbb{R}^{3}. Let
$\Delta_{s p h}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}$; this is a second order differential operator on \mathbb{R}^{3}, which is usually called the spherical Laplace operator, or the Laplace operator on the sphere.
(1) Write $\Delta_{s p h}$ in terms of $x, y, z, \partial_{x}, \partial_{y}, \partial_{z}$.
(2) Show that $\Delta_{s p h}$ is well defined as a differential operator on a sphere $S^{2}=\{(x, y, z) \mid$ $\left.x^{2}+y^{2}+z^{2}=1\right\}$, i.e., if f is a function on \mathbb{R}^{3} then $\left.\left(\Delta_{s p h} f\right)\right|_{S^{2}}$ only depends on $\left.f\right|_{S^{2}}$.
(3) Show that the usual Laplace operator $\Delta=\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}$ can be written in the form $\Delta=\frac{1}{r^{2}} \Delta_{\text {sph }}+\Delta_{\text {radial }}$, where $\Delta_{\text {radial }}$ is a differential operator written in terms of $r=$ $\sqrt{x^{2}+y^{2}+z^{2}}$ and $r \partial_{r}=x \partial_{x}+y \partial_{y}+z \partial_{z}$.
(4) Show that $\Delta_{s p h}$ is rotation invariant: for any function f and $g \in \operatorname{SO}(3, \mathbb{R}), \Delta_{\text {sph }}(g f)=$ $g\left(\Delta_{s p h} f\right)$.

Homework 5

3.13.

(1) Let \mathfrak{g} be a three-dimensional real Lie algebra with basis x, y, z and commutation relations $[x, y]=z,[z, x]=[z, y]=0$ (this algebra is called Heisenberg algebra). Without using Campbell-Hausdorff formula, show that in the corresponding Lie group, one has $\exp (t x) \exp (s y)=\exp (t s z) \exp (s y) \exp (t x)$ and construct explicitly the connected, simply connected Lie group corresponding to \mathfrak{g}.
(2) Generalize the previous part to the Lie algebra $\mathfrak{g}=V \oplus \mathbb{R} z$, where V is a real vector space with non-degenerate skew-symmetric form ω and the commutation relations are given by $\left[v_{1}, v_{2}\right]=\omega\left(v_{1}, v_{2}\right) z,[z, v]=0$.
3.15. Let G be a complex connected simply-connected Lie group, with Lie algebra $\mathfrak{g}=\operatorname{Lie}(G)$, and let $\mathfrak{k} \subset \mathfrak{g}$ be a real form of \mathfrak{g}.
(1) Define the \mathbb{R}-linear map $\theta: \mathfrak{g} \rightarrow \mathfrak{g}$ by $\theta(x+i y)=x-i y, x, y \in \mathfrak{k}$. Show that θ is an automorphism of \mathfrak{g} (considered as a real Lie algebra), and that it can be uniquely lifted to an automorphism $\theta: G \rightarrow G$ of the group G (considered as a real Lie group).
(2) Let $K=G^{\theta}$. Show that K is a real Lie group with Lie algebra \mathfrak{k}.
3.16. Let $\operatorname{Sp}(n)$ be the unitary quaternionic group. Show that $\mathfrak{s p}(n)_{\mathbb{C}}=\mathfrak{s p}(n, \mathbb{C})$. Thus $\operatorname{Sp}(n)$ is a compact real form of $\operatorname{Sp}(n, \mathbb{C})$.
3.17. Let $\mathfrak{s o}(p, q)=\operatorname{Lie}(\operatorname{SO}(p, q))$. Show that its complexification is $\mathfrak{s o}(p, q)_{\mathbb{C}}=\mathfrak{s o}(p+q, \mathbb{C})$.
3.18. Let

$$
S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \in \mathrm{SL}(2, \mathbb{C})
$$

(1) Show that $S=\exp \left(\frac{\pi}{2}(f-e)\right)$, where $e, f \in \mathfrak{s l}(2, \mathbb{C})$ are standard basis elements.
(2) Compute $\operatorname{Ad} S$ in the basis e, f, h.
3.19. Let G be a complex connected Lie group.
(1) Show that $g \mapsto \operatorname{Ad} g$ is an analytic map $G \rightarrow \mathfrak{g l}(\mathfrak{g})$.
(2) Assume that G is compact. Show that then $\operatorname{Ad} g=1$ for any $g \in G$.
(3) Show that any connected compact complex group must be commutative.
(4) Show that if G is a connected complex compact group, then the exponential map gives an isomorphism of Lie groups

$$
\mathfrak{g} / L \simeq G
$$

for some lattice $L \subset \mathfrak{g}$ (i.e. a free abelian group of rank equal to $2 \operatorname{dim} \mathfrak{g}$).

Homework 6

4.2. Let $V=\mathbb{C}^{2}$ be the standard 2-dimensional representation of the Lie algebra $\mathfrak{s l}(2, \mathbb{C})$ with basis e_{1}, e_{2}, and let $S^{k} V$ be the symmetric power of V.
(1) Write explicitly the action of $e, f, h \in \mathfrak{s l}(2, \mathbb{C})$ in the basis $e_{1}^{i} e_{2}^{k-i}$ if $e e_{1}=0, e e_{2}=e_{1}$, $f e_{1}=e_{2}, f e_{2}=0, h e_{1}=e_{1}, h e_{2}=-e_{2}$.
(2) Show that $S^{2} V$ is isomorphic to the adjoint representation of $\mathfrak{s l}(2, \mathbb{C})$.
(3) Recall that each representation of $\mathfrak{s l}(2, \mathbb{C})$ can be considered as a representation of $\mathfrak{s o}(3, \mathbb{R})$. Which of representations $S^{k} V$ can be lifted to a representation of $\mathrm{SO}(3, \mathbb{R})$?
4.4. Let V be a representation of $\mathfrak{s l}(2, \mathbb{C})$, and let $C \in \operatorname{End}(V)$ be defined by

$$
C=\rho(e) \rho(f)+\rho(f) \rho(e)+\frac{1}{2} \rho(h)^{2} .
$$

(1) Show that C commutes with the action of $\mathfrak{s l}(2, \mathbb{C})$: for any $x \in \mathfrak{s l}(2, \mathbb{C})$, we have $[\rho(x), C]=0$. [Hint: use that for any $a, b, c \in \operatorname{End}(V)$, one has $[a, b c]=[a, b] c+b[a, c]$.]
(2) Show that if $V=V_{k}$ is an irreducible representation with highest weight k, then C is a scalar operator: $C=c_{k}$ id. Compute the constant c_{k}.
(3) Recall that we have an isomorphism $\mathfrak{s o}(3, \mathbb{C}) \simeq \mathfrak{s l}(2, \mathbb{C})$. Show that this isomorphism identifies operator C above with a multiple of $\rho\left(J_{x}\right)^{2}+\rho\left(J_{y}\right)^{2}+\rho\left(J_{z}\right)^{2}$.
The element C introduced here is a special case of more general notion of Casimir element for a simple Lie algebra.
4.7. Let \mathfrak{g} be a Lie algebra, and (,) - a symmetric ad-invariant bilinear form on \mathfrak{g}. Show that the element $\omega \in\left(\mathfrak{g}^{*}\right)^{\otimes 3}$ given by

$$
\omega(x, y, z)=([x, y], z)
$$

is skew-symmetric and ad-invariant.
4.9. Let C be the standard cube in $\mathbb{R}^{3}: C=\left\{\left|x_{i}\right| \leq 1\right\}$, and let S be the set of faces of C (thus, S consists of 6 elements). Consider the 6 -dimensional complex vector V space of functions on S, and define $A: V \rightarrow V$ by

$$
(A f)(\sigma)=\frac{1}{4} \sum_{\sigma^{\prime}} f\left(\sigma^{\prime}\right)
$$

where the sum is taken over all faces σ^{\prime} which are neighbors of σ (i.e., have a common edge with σ). The goal of this problem is to diagonalize A.
(1) Let $G=\{g \in \mathrm{O}(3, \mathbb{R}) \mid g(C)=C\}$ be the group of symmetries of C. Show that A commutes with the natural action of G on V.
(2) Let $z=-I \in G$. Show that as a representation of G, V can be decomposed in the direct sum

$$
V=V_{+} \oplus V_{-}, \quad V_{ \pm}=\{f \in V \mid z f= \pm f\}
$$

(3) Show that as a representation of G, V_{+}can be decomposed in the direct sum

$$
V_{+}=V_{+}^{0} \oplus V_{+}^{1}, \quad V_{+}^{0}=\left\{f \in V_{+} \mid \sum_{\sigma} f(\sigma)=0\right\}, \quad V_{+}^{1}=\mathbb{C} \cdot 1
$$

where 1 denotes the constant function on S whose value at every $\sigma \in S$ is 1 .
(4) Find the eigenvalues of A on $V_{-}, V_{+}^{0}, V_{+}^{1}$.
[Note: in fact, each of $V_{-}, V_{+}^{0}, V_{+}^{1}$ is an irreducible representation of G, but you do not need this fact.]

Homework 7

4.1. Let $\varphi: \mathrm{SU}(2) \rightarrow \mathrm{SO}(3, \mathbb{R})$ be the covering map.
(1) Show that $\operatorname{Ker} \varphi=\{1,-1\}=\left\{1, e^{\pi i h}\right\}$.
(2) Using this, show that representations of $\mathrm{SO}(3, \mathbb{R})$ are the same as representations of $\mathfrak{s l}(2, \mathbb{C})$ satisfying $e^{\pi i \rho(h)}=\mathrm{id}$.
4.11. Show that if V is a finite-dimensional representation of $\mathfrak{s l}(2, \mathbb{C})$, then $V \simeq \bigoplus n_{k} V_{k}$, and $n_{k}=\operatorname{dim} V[k]-\operatorname{dim} V[k+2]$. Show also that $\sum n_{2 k}=\operatorname{dim} V[0], \sum n_{2 k+1}=\operatorname{dim} V[1]$.
4.12. Show that the symmetric power representation $S^{k} \mathbb{C}^{2}$ is isomorphic to the irreducible representation V_{k} with highest weight k.

5.1.

(1) Let V be a representation of \mathfrak{g} and $W \subset V$ be a subrepresentation. Then $B_{V}=B_{W}+B_{V / W}$, where $B_{V}(x, y)=\operatorname{tr}\left(\rho_{V}(x) \rho_{V}(y)\right)$.
(2) Let $I \subset \mathfrak{g}$ be an ideal. Then the restriction of the Killing form of \mathfrak{g} to I coincides with the Killing form of I.
5.2. Show that for $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{C})$, the Killing form is given by $K(x, y)=2 n \operatorname{tr}(x y)$.
5.3. Let $\mathfrak{g} \subset \mathfrak{g l}(n, \mathbb{C})$ be the subspace consisting of block-triangular matrices:

$$
\mathfrak{g}=\left\{\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right)\right\}
$$

where A is a $k \times k$ matrix, B is a $k \times(n-k)$ matrix, and D is a $(n-k) \times(n-k)$ matrix.
(1) Show that \mathfrak{g} is a Lie subalgebra (this is a special case of so-called parabolic subalgebras).
(2) Show that radical of \mathfrak{g} consists of matrices of the form $\left(\begin{array}{cc}\lambda \cdot I & B \\ 0 & \mu \cdot I\end{array}\right)$, and describe $\mathfrak{g} / \operatorname{rad}(\mathfrak{g})$.
5.4. Show that the bilinear form $\operatorname{tr}(x y)$ on $\mathfrak{s p}(n, \mathbb{K})$ is non-degenerate.
5.5. Let \mathfrak{g} be a real Lie algebra with a positive definite Killing form. Show that then $\mathfrak{g}=0$. [Hint: $\mathfrak{g} \subset \mathfrak{s o}(\mathfrak{g})$.]
5.6. Let \mathfrak{g} be a simple Lie algebra.
(1) Show that the invariant bilinear form is unique up to a factor.
(2) Show that $\mathfrak{g} \simeq \mathfrak{g}^{*}$ as representations of \mathfrak{g}.
5.7. Let V be a finite-dimensional complex vector space and let $A: V \rightarrow V$ be an upper-triangular operator. Let $F^{k} \subset \operatorname{End}(V),-n \leq k \leq n$ be the subspace spanned by matrix units $E_{i j}$ with $i-j \leq k$. Show that then $\operatorname{ad} A . F^{k} \subset F^{k-1}$ and thus, ad $A: \operatorname{End}(V) \rightarrow \operatorname{End}(V)$ is nilpotent.

Homework 8

6.1. Show that the Casimir operator for $\mathfrak{g}=\mathfrak{s o}(3, \mathbb{R})$ is given by $C=\frac{1}{2}\left(J_{x}^{2}+J_{y}^{2}+J_{z}^{2}\right)$; thus, it follows that $J_{x}^{2}+J_{y}^{2}+J_{z}^{2} \in U \mathfrak{s o}(3, \mathbb{R})$ is central.
6.2. Show that for $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})$, the definition of a semisimple element (an element x such as ad x is a semisimple operator) coincides to the usual definition of a semisimple operator.
6.3. Show that if $\mathfrak{h} \subset \mathfrak{g}$ is a Cartan subalgebra in a complex semisimple Lie algebra, then \mathfrak{h} is a nilpotent subalgebra which coincides with its normalizer $n(\mathfrak{h})=\{x \in g \mid \operatorname{ad} x \cdot \mathfrak{h} \subset \mathfrak{h}\}$. (This is the usual definition of a Cartan subalgebra which can be used for any Lie algebra, not necessarily a semisimple one.)
6.4. Let \mathfrak{g} be a complex Lie algebra which has a root decomposition:

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha}
$$

where R is a finite subset in $\mathfrak{h}^{*}-\{0\}, \mathfrak{h}$ is commutative and for $h \in \mathfrak{h}, x \in \mathfrak{g}_{\alpha}$, we have $[h, x]=\langle h, \alpha\rangle x$. Show that then \mathfrak{g} is semisimple, and \mathfrak{h} is a Cartan subalgebra.
6.5. Let $\mathfrak{h} \subset \mathfrak{s o}(4, \mathbb{C})$ be the subalgebra consisting of matrices of the form

$$
\left[\begin{array}{cccc}
& a & & \\
-a & & & \\
& & & b \\
& & -b &
\end{array}\right]
$$

(entries not shown are zeros). Show that then \mathfrak{h} is a Cartan subalgebra and find the corresponding root decomposition.

6.6.

(1) Define a bilinear form B on $W=\Lambda^{2} \mathbb{C}^{4}$ by $\omega_{1} \wedge \omega_{2}=B\left(\omega_{1}, \omega_{2}\right) e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}$. Show that B is a symmetric non-degenerate form and construct an orthonormal basis for B.
(2) Let $\mathfrak{g}=\mathfrak{s o}(W, B)=\left\{x \in \mathfrak{g l}(W) \mid B\left(x \omega_{1}, \omega_{2}\right)+B\left(\omega_{1}, x \omega_{2}\right)=0\right\}$. Show that $\mathfrak{g} \simeq \mathfrak{s o}(6, \mathbb{C})$.
(3) Show that the form B is invariant under the natural action of $\mathfrak{s l}(4, \mathbb{C})$ on $\Lambda^{2} \mathbb{C}^{4}$.
(4) Using results of the previous parts, construct a homomorphism $\mathfrak{s l}(4, \mathbb{C}) \rightarrow \mathfrak{s o}(6, \mathbb{C})$ and prove that it is an isomorphism.

Homework 10

7.1. Let $R \subset \mathbb{R}^{n}$ be given by

$$
R=\left\{ \pm e_{i}, \pm 2 e_{i} \mid 1 \leq i \leq n\right\} \cup\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i, j \leq n, i \neq j\right\}
$$

where e_{i} is the standard basis in \mathbb{R}^{n}. Show that R is a non-reduced root system. (This root system is usually denoted $B C_{n}$.)

7.2.

(1) Let $R \subset E$ be a root system. Show that the set

$$
R^{\vee}=\left\{\alpha^{\vee} \mid \alpha \in R\right\} \subset E^{*}
$$

where $\alpha^{\vee} \in E^{*}$ is the coroot corresponding to α is also a root system. It is usually called the dual root system of R.
(2) Let $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset R$ be the set of simple roots. Show that the set $\Pi^{\vee}=\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{r}^{\vee}\right\} \subset$ R^{\vee} is the set of simple roots of R^{\vee}. [Note: this is not completely trivial, as $\alpha \mapsto \alpha^{\vee}$ is not a linear map.]
7.4. Show that $|P / Q|=|\operatorname{det} A|$, where A is the Cartan matrix: $a_{i j}=\left\langle\alpha_{i}^{\vee}, \alpha_{j}\right\rangle$.
7.5. Compute explicitly the group P / Q for root systems A_{n}, D_{n}.
7.8. Let \bar{C}_{+}be the closure of the positive Weyl chamber, and $\lambda \in \bar{C}_{+}, w \in W$ be such that $w(\lambda) \in \bar{C}_{+}$.
(1) Show that $\lambda \in \bar{C}_{+} \cap w^{-1}\left(\bar{C}_{+}\right)$.
(2) Let $L_{\alpha} \subset E$ be a root hyperplane which separates C_{+}and $w^{-1} C_{+}$. Show that then $\lambda \in L_{\alpha}$.
(3) Show that $w(\lambda)=\lambda$.

Deduce from this that every W-orbit in E contains a unique element from \bar{C}_{+}.
7.9. Let $w_{0} \in W$ be the longest element in the Weyl group W. Show that then for any $w \in W$, we have $l\left(w w_{0}\right)=l\left(w_{0} w\right)=l\left(w_{0}\right)-l(w)$.
7.10. Let $W=S_{n}$ be the Weyl group of root system A_{n-1}. Show that the longest element $w_{0} \in W$ is the permutation $w_{0}=(n n-1 \ldots 1)$.

7.11.

(1) Let R be a reduced root system of rank 2 , with simple roots α_{1}, α_{2}. Show that the longest element in the corresponding Weyl group is

$$
w_{0}=s_{1} s_{2} s_{1} \cdots=s_{2} s_{1} s_{2} \cdots \quad(m \text { factors in each of the products })
$$

where m depends on the angle φ between $\alpha_{1}, \alpha_{2}: \varphi=\pi-\frac{\pi}{m}$ (so $m=2$ for $A_{1} \times A_{1}, m=3$ for $A_{2}, m=4$ for $B_{2}, m=6$ for G_{2}). If you can not think of any other proof, give a case-by-case proof.
(2) Show that the following relations hold in W (these are called Coxeter relations):

$$
s_{i}^{2}=1,\left(s_{i} s_{j}\right)^{m_{i j}}=1,
$$

where $m_{i j}$ is determined by the angle between α_{i}, α_{j} in the same way as in the previous part.
(It can be shown that the Coxeter relations is a defining set of relations for the Weyl group: W could be defined as the group generated by elements s_{i} subject to Coxeter relations. A proof of this fact can be found in the book of Humphreys "Reflection groups and Coxeter groups".)

Homework 11

7.7. Let $w=s_{i_{1}} \ldots s_{i_{l}}$ be a reduced expression. Show that then

$$
\left\{\alpha \in R_{+} \mid w(\alpha) \in R_{-}\right\}=\left\{\beta_{1}, \ldots, \beta_{l}\right\}
$$

where $\beta_{k}=s_{i_{1}} \ldots s_{i_{k-1}}\left(\alpha_{i_{k}}\right)$
7.12. Let $\varphi: R_{1} \xrightarrow{\sim} R_{2}$ be an isomorphism between irreducible root systems. Show that then φ is a composition of an isometry and a scalar operator: $(\varphi(v), \varphi(w))=c(v, w)$ for any $v, w \in E_{1}$.

7.13.

(1) Let $\mathfrak{n}_{ \pm}$be the positive and negative nilpotent subalgebras in a semisimple complex Lie algebra. Show that $\mathfrak{n}_{ \pm}$are indeed nilpotent.
(2) Let $\mathfrak{b}=\mathfrak{n}_{+} \oplus \mathfrak{h}$. Show that \mathfrak{b} is solvable.
7.14.
(1) Show that if two vertices in a Dynkin diagram are connected by a single edge, then the corresponding simple roots are in the same W-orbit.
(2) Show that for a reduced irreducible root system, the Weyl group acts transitively on the set of all roots of the same length.
7.15. Let $R \subset E$ be an irreducible root system. Show that then E is an irreducible representation of the Weyl group W.
7.16. Let G be a connected complex Lie group such that $\mathfrak{g}=\operatorname{Lie}(G)$ is semisimple. Fix a root decomposition of \mathfrak{g}.
(1) Choose $\alpha \in R$ and let $i_{\alpha}: \mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathfrak{g}$ be the embedding corresponding to the root α. This embedding can be lifted to a morphism $i_{\alpha}: \mathrm{SL}(2, \mathbb{C}) \rightarrow G$.

Let

$$
S_{\alpha}=i_{\alpha}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\exp \left(\frac{\pi}{2}\left(f_{\alpha}-e_{\alpha}\right)\right) \in G
$$

Show that $\operatorname{Ad} S_{\alpha}\left(h_{\alpha}\right)=-h_{\alpha}$ and that $\operatorname{Ad} S_{\alpha}(h)=h$ if $h \in \mathfrak{h},\langle h, \alpha\rangle=0$. Deduce from this that the action of S_{α} on \mathfrak{g}^{*} preserves \mathfrak{h}^{*} and that restriction of $\operatorname{Ad} S_{\alpha}$ to \mathfrak{h}^{*} coincides with the reflection s_{α}.
(2) Show that the Weyl group W acts on \mathfrak{h}^{*} by inner automorphisms: for any $w \in W$, there exists an element $\tilde{w} \in G$ such that $\left.\operatorname{Ad} \tilde{w}\right|_{\mathfrak{h}^{*}}=w$. [Note, however, that in general, $\widetilde{w_{1} w_{2}} \neq \tilde{w}_{1} \tilde{w}_{2}$.]

MIT OpenCourseWare
https://ocw.mit.edu

18.745 Lie Groups and Lie Algebras I

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

