Problems from "An introduction to Lie groups and Lie algebras" by A. Kirillov Jr.

Homework 1

2.1. Let G be a Lie group and H — a closed Lie subgroup.

- (1) Let \overline{H} be the closure of H in G. Show that \overline{H} is a subgroup in G.
- (2) Show that each coset $Hx, x \in \overline{H}$, is open and dense in \overline{H} .
- (3) Show that $\overline{H} = H$, that is, every Lie subgroup is closed.

2.2.

- (1) Show that every discrete normal subgroup of a connected Lie group is central (hint: consider the map $G \to N \colon g \mapsto ghg^{-1}$ where h is a fixed element in N).
- (2) By applying part (a) to kernel of the map $\widetilde{G} \to G$, show that for any connected Lie group G, the fundamental group $\pi_1(G)$ is commutative.

2.3. Let $f: G_1 \to G_2$ be a morphism of connected Lie groups such that $f_*: T_1G_1 \to T_1G_2$ is an isomorphism (such a morphism is sometimes called *local isomorphism*). Show that f is a covering map, and Ker f is a discrete central subgroup.

2.4. Let $\mathcal{F}_n(\mathbb{C})$ be the set of all flags in \mathbb{C}^n . Show that

 $\mathcal{F}_n(\mathbb{C}) = \mathrm{GL}(n,\mathbb{C})/B(n,\mathbb{C}) = \mathrm{U}(n)/T(n)$

where $B(n, \mathbb{C})$ is the group of invertible complex upper triangular matrices, and T(n) is the group of diagonal unitary matrices (which is easily shown to be the *n*-dimensional torus $(\mathbb{R}/\mathbb{Z})^n$). Deduce from this that $\mathcal{F}_n(\mathbb{C})$ is a compact complex manifold and find its dimension over \mathbb{C} .

2.5. Let $G_{n,k}$ be the set of all dimension k subspaces in \mathbb{R}^n (usually called the Grassmanian). Show that $G_{n,k}$ is a homogeneous space for the group $O(n, \mathbb{R})$ and thus can be identified with coset space $O(n, \mathbb{R})/H$ for appropriate H. Use it to prove that $G_{n,k}$ is a manifold and find its dimension.

2.6. Show that if $G = \operatorname{GL}(n, \mathbb{R}) \subset \operatorname{End}(\mathbb{R}^n)$ so that each tangent space is canonically identified with $\operatorname{End}(\mathbb{R}^n)$, then $(L_g)_*v = gv$ where the product in the right-hand side is the usual product of matrices, and similarly for the right action. Also, the adjoint action is given by $\operatorname{Ad} g(v) = gvg^{-1}$.

2.7. Define a bilinear form on $\mathfrak{su}(2)$ by $(a,b) = \frac{1}{2} \operatorname{tr}(a\overline{b}^t)$. Show that this form is symmetric, positive definite, and invariant under the adjoint action of $\operatorname{SU}(2)$.

2.8. Define a basis in $\mathfrak{su}(2)$ by

$$i\sigma_1 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$
 $i\sigma_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ $i\sigma_3 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$

Show that the map

$$\varphi \colon \mathrm{SU}(2) \to \mathrm{GL}(3,\mathbb{R}), \ g \mapsto \mathrm{matrix} \text{ of } \mathrm{Ad} \ g \text{ in the basis } i\sigma_1, i\sigma_2, i\sigma_3$$

gives a morphism of Lie groups $SU(2) \to SO(3, \mathbb{R})$.

2.9. Let φ : SU(2) \to SO(3, \mathbb{R}) be the morphism defined in the previous problem. Compute explicitly the map of tangent spaces $\varphi_* : \mathfrak{su}(2) \to \mathfrak{so}(3, \mathbb{R})$ and show that φ_* is an isomorphism. Deduce from this that Ker φ is a discrete normal subgroup in SU(2), and that Im φ is an open subgroup in SO(3, \mathbb{R}).

2.10. Prove that the map φ used in two previous exercises establishes an isomorphism $\mathrm{SU}(2)/\mathbb{Z}_2 \to \mathrm{SO}(3,\mathbb{R})$ and thus, since $\mathrm{SU}(2) \simeq S^3$, $\mathrm{SO}(3,\mathbb{R}) \simeq \mathbb{RP}^3$.

2.11. Show that for $n \ge 1$, we have $\pi_0(\mathrm{SU}(n+1)) = \pi_0(\mathrm{SU}(n))$, $\pi_0(\mathrm{U}(n+1)) = \pi_0(\mathrm{U}(n))$ and deduce from it that groups $\mathrm{U}(n)$, $\mathrm{SU}(n)$ are connected for all n. Similarly, show that for $n \ge 2$, we have $\pi_1(\mathrm{SU}(n+1)) = \pi_1(\mathrm{SU}(n))$, $\pi_1(\mathrm{U}(n+1)) = \pi_1(\mathrm{U}(n))$ and deduce from it that for $n \ge 2$, $\mathrm{SU}(n)$ is simply-connected and $\pi_1(\mathrm{U}(n)) = \mathbb{Z}$.

2.12. Show that for $n \ge 2$, we have $\pi_0(\mathrm{SO}(n+1,\mathbb{R})) = \pi_0(\mathrm{SO}(n,\mathbb{R}))$ and deduce from it that groups $\mathrm{SO}(n)$ are connected for all $n \ge 2$. Similarly, show that for $n \ge 3$, $\pi_1(\mathrm{SO}(n+1,\mathbb{R})) = \pi_1(\mathrm{SO}(n,\mathbb{R}))$ and deduce from it that for $n \ge 3$, $\pi_1(\mathrm{SO}(n,\mathbb{R})) = \mathbb{Z}_2$.

2.13. Using Gram-Schmidt orthogonalization process, show that $GL(n, \mathbb{R})/O(n, \mathbb{R})$ is diffeomorphic to the space of upper-triangular matrices with positive entries on the diagonal. Deduce from this that $GL(n, \mathbb{R})$ is homotopic (as a topological space) to $O(n, \mathbb{R})$.

2.14. Let L_n be the set of all Lagrangian subspaces in \mathbb{R}^{2n} with the standard symplectic form ω . (A subspace V is Lagrangian if dim V = n and $\omega(x, y) = 0$ for any $x, y \in V$.)

Show that the group $\text{Sp}(n, \mathbb{R})$ acts transitively on L_n and use it to define on L_n a structure of a smooth manifold and find its dimension.

2.15. Let $\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}$ be the algebra of quaternions, defined by $ij = k = -ji, jk = i = -kj, ki = j = -ik, i^2 = j^2 = k^2 = -1$, and let $\mathbb{H}^n = \{(h_1, \ldots, h_n) \mid h_i \in \mathbb{H}\}$. In particular, the subalgebra generated by 1, i coincides with the field \mathbb{C} of complex numbers.

Note that \mathbb{H}^n has a structure of both left and right module over \mathbb{H} defined by

$$h(h_1, \dots, h_n) = (hh_1, \dots, hh_n), \qquad (h_1, \dots, h_n)h = (h_1h, \dots, h_nh)$$

(1) Let $\operatorname{End}_{\mathbb{H}}(\mathbb{H}^n)$ be the algebra of endomorphisms of \mathbb{H}^n considered as right \mathbb{H} -module:

$$\operatorname{End}_{\mathbb{H}}(\mathbb{H}^n) = \{A \colon \mathbb{H}^n \to \mathbb{H}^n \mid A(\mathbf{h} + \mathbf{h}') = A(\mathbf{h}) + A(\mathbf{h}'), \ A(\mathbf{h}h) = A(\mathbf{h})h\}$$

Show that $\operatorname{End}_{\mathbb{H}}(\mathbb{H}^n)$ is naturally identified with the algebra of $n \times n$ matrices with quaternion entries.

(2) Define an \mathbb{H} -valued form (,) on \mathbb{H}^n by

$$(\mathbf{h},\mathbf{h}')=\sum_{i}\overline{h_{i}}h_{i}'$$

where $\overline{a + bi + cj + dk} = a - bi - cj - dk$. (Note that $\overline{uv} = \overline{vu}$.)

Let $U(n, \mathbb{H})$ be the group of "unitary quaternionic transformations":

 $U(n, \mathbb{H}) = \{ A \in \operatorname{End}_{\mathbb{H}}(\mathbb{H}^n) \mid (A\mathbf{h}, A\mathbf{h}') = (\mathbf{h}, \mathbf{h}') \}.$

Show that this is indeed a group and that a matrix A is in $U(n, \mathbb{H})$ iff $A^*A = 1$, where $(A^*)_{ij} = \overline{A_{ji}}$.

(3) Define a map $\mathbb{C}^{2n} \simeq \mathbb{H}^n$ by

$$(z_1,\ldots,z_{2n})\mapsto(z_1+jz_{n+1},\ldots,z_n+jz_{2n})$$

Show that it is an isomorphism of complex vector spaces (if we consider \mathbb{H}^n as a complex vector space by $z(h_1, \ldots, h_n) = (h_1 z, \ldots, h_n z)$ and that this isomorphism identifies

$$\operatorname{End}_{\mathbb{H}}(\mathbb{H}^n) = \{A \in \operatorname{End}_{\mathbb{C}}(\mathbb{C}^{2n}) \mid \overline{A} = J^{-1}AJ\}$$

where $J := \begin{pmatrix} 0 & \mathrm{Id}_n \\ -\mathrm{Id}_n & 0 \end{pmatrix}$. (Hint: use $jz = \overline{z}j$ for any $z \in \mathbb{C}$ to show that $\mathbf{h} \mapsto \mathbf{h}j$ is identified with $z \mapsto z \in \mathbb{C}$.) identified with $\mathbf{z} \mapsto J\overline{\mathbf{z}}$.)

(4) Show that under identification $\mathbb{C}^{2n} \simeq \mathbb{H}^n$ defined above, the quaternionic form (,) is identified with

$$(\mathbf{z},\mathbf{z}') - j\langle \mathbf{z},\mathbf{z}' \rangle$$

where $(\mathbf{z}, \mathbf{z}') = \sum \overline{z_i} z_i'$ is the standard Hermitian form in \mathbb{C}^{2n} and

$$\langle \mathbf{z}, \mathbf{z}' \rangle = \sum_{i=1}^{n} (z_{i+n} z'_i - z_i z'_{i+n})$$

is the standard bilinear skew-symmetric form in \mathbb{C}^{2n} . Deduce from this that the group $U(n, \mathbb{H})$ is identified with $Sp(n) = Sp(n, \mathbb{C}) \cap SU(2n)$.

2.16.

- (1) Show that $\operatorname{Sp}(1) \simeq \operatorname{SU}(2) \simeq S^3$.
- (2) Using the previous exercise, show that we have a natural transitive action of Sp(n) on the sphere S^{4n-1} and a stabilizer of a point is isomorphic to Sp(n-1).
- (3) Deduce that $\pi_1(\operatorname{Sp}(n+1)) = \pi_1(\operatorname{Sp}(n)), \pi_0(\operatorname{Sp}(n+1)) = \pi_0(\operatorname{Sp}(n)).$

3.1. Consider the group $SL(2, \mathbb{R})$. Show that the element $X = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$ is not in the image of the exponential map. (Hint: if $X = \exp(x)$, what are the eigenvalues of x?). **3.5.**

- (1) Prove that \mathbb{R}^3 with the commutator given by the cross-product is a Lie algebra. Show that this Lie algebra is isomorphic to $\mathfrak{so}(3,\mathbb{R})$.
- (2) Let $\varphi : \mathfrak{so}(3, \mathbb{R}) \to \mathbb{R}^3$ be the isomorphism of part (1). Prove that under this isomorphism, the standard action of $\mathfrak{so}(3)$ on \mathbb{R}^3 is identified with the action of \mathbb{R}^3 on itself given by the cross-product:

$$a \cdot \vec{v} = \varphi(a) \times \vec{v}, \qquad a \in \mathfrak{so}(3), \vec{v} \in \mathbb{R}^3$$

where $a \cdot \vec{v}$ is the usual multiplication of a matrix by a vector.

This problem explains common use of cross-products in mechanics: angular velocities and angular momenta are actually elements of Lie algebra $\mathfrak{so}(3,\mathbb{R})$ (to be precise, angular momenta are elements of the dual vector space, $(\mathfrak{so}(3,\mathbb{R}))^*$, but we can ignore this difference). To avoid explaining this, most textbooks write angular velocities as vectors in \mathbb{R}^3 and use cross-product instead of commutator. Of course, this would completely fail in dimensions other than 3, where $\mathfrak{so}(n,\mathbb{R})$ is not isomorphic to \mathbb{R}^n even as a vector space.

3.6. Let P_n be the space of polynomials with real coefficients of degree $\leq n$ in variable x. The Lie group $G = \mathbb{R}$ acts on P_n by translations of the argument: $\rho(t)(x) = x + t, t \in G$. Show that the corresponding action of the Lie algebra $\mathfrak{g} = \mathbb{R}$ is given by $\rho(a) = a\partial_x, a \in \mathfrak{g}$, and deduce from this the Taylor formula for polynomials:

$$f(x+t) = \sum_{n \ge 0} \frac{(t\partial_x)^n}{n!} f(x+t) = \sum_{n$$

3.7. Let G be the Lie group of all maps $A: \mathbb{R} \to \mathbb{R}$ having the form $A(x) = ax + b, a \neq 0$. Describe explicitly the corresponding Lie algebra. [There are two ways to do this problem. The easy way is to embed $G \subset GL(2, \mathbb{R})$, which makes the problem trivial. More straightforward way is to explicitly construct some basis in the tangent space, construct the corresponding one-parameter subgroups, and compute the commutator using the formula

$$\exp(x)\exp(y)\exp(-x)\exp(-y) = \exp([x, y] + \dots).$$

The second way is recommended to those who want to understand how the correspondence between Lie groups and Lie algebras works.]

3.8. Let $SL(2, \mathbb{C})$ act on \mathbb{CP}^1 in the usual way:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} (x : y) = (ax + by : cx + dy).$$

This defines an action of $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$ by vector fields on \mathbb{CP}^1 . Write explicitly vector fields corresponding to h, e, f in terms of coordinate t = x/y on the open cell $\mathbb{C} \subset \mathbb{CP}^1$.

3.9. Let G be a Lie group with Lie algebra \mathfrak{g} , Aut(\mathfrak{g}) the group of automorphisms of \mathfrak{g} , and Der(\mathfrak{g}) be the Lie algebra of derivations of \mathfrak{g} .

- (1) Show that $g \mapsto \operatorname{Ad} g$ gives a morphism of Lie groups $G \to \operatorname{Aut}(\mathfrak{g})$; similarly, $x \mapsto \operatorname{ad} x$ is a morphism of Lie algebras $\mathfrak{g} \to \operatorname{Der} \mathfrak{g}$. (The automorphisms of the form Ad g are called *inner* automorphisms; the derivations of the form ad $x, x \in \mathfrak{g}$ are called inner derivations.)
- (2) Show that for $f \in \text{Der }\mathfrak{g}$, $x \in \mathfrak{g}$, one has [f, ad x] = ad f(x) as operators in \mathfrak{g} , and deduce from this that $\text{ad}(\mathfrak{g})$ is an ideal in $\text{Der }\mathfrak{g}$.

3.11. Let J_x, J_y, J_z be the standard basis in $\mathfrak{so}(3, \mathbb{R}) \cong \mathbb{R}^3$ (the Lie bracket is the cross product). The standard action of SO(3, \mathbb{R}) on \mathbb{R}^3 defines an action of $\mathfrak{so}(3, \mathbb{R})$ by vector fields on \mathbb{R}^3 . Abusing the language, we will use the same notation J_x, J_y, J_z for the corresponding vector fields on \mathbb{R}^3 . Let $\Delta_{sph} = J_x^2 + J_y^2 + J_z^2$; this is a second order differential operator on \mathbb{R}^3 , which is usually called the spherical Laplace operator, or the Laplace operator on the sphere.

- (1) Write Δ_{sph} in terms of $x, y, z, \partial_x, \partial_y, \partial_z$.
- (1) Write Δ_{sph} in terms of x, y, z, o_x, o_y, o_y, o_y.
 (2) Show that Δ_{sph} is well defined as a differential operator on a sphere S² = {(x, y, z) | x² + y² + z² = 1}, i.e., if f is a function on ℝ³ then (Δ_{sph}f)|_{S²} only depends on f|_{S²}.
 (3) Show that the usual Laplace operator Δ = ∂²_x + ∂²_y + ∂²_z can be written in the form
- (3) Show that the usual Laplace operator $\Delta = \partial_x^2 + \partial_y^2 + \partial_z^2$ can be written in the form $\Delta = \frac{1}{r^2} \Delta_{sph} + \Delta_{radial}$, where Δ_{radial} is a differential operator written in terms of $r = \sqrt{x^2 + y^2 + z^2}$ and $r\partial_r = x\partial_x + y\partial_y + z\partial_z$.
- (4) Show that Δ_{sph} is rotation invariant: for any function f and $g \in SO(3, \mathbb{R})$, $\Delta_{sph}(gf) = g(\Delta_{sph}f)$.

3.13.

- (1) Let \mathfrak{g} be a three-dimensional real Lie algebra with basis x, y, z and commutation relations [x, y] = z, [z, x] = [z, y] = 0 (this algebra is called *Heisenberg algebra*). Without using Campbell-Hausdorff formula, show that in the corresponding Lie group, one has $\exp(tx) \exp(sy) = \exp(tsz) \exp(sy) \exp(tx)$ and construct explicitly the connected, simply connected Lie group corresponding to \mathfrak{g} .
- (2) Generalize the previous part to the Lie algebra $\mathfrak{g} = V \oplus \mathbb{R}z$, where V is a real vector space with non-degenerate skew-symmetric form ω and the commutation relations are given by $[v_1, v_2] = \omega(v_1, v_2)z$, [z, v] = 0.

3.15. Let G be a complex connected simply-connected Lie group, with Lie algebra $\mathfrak{g} = \operatorname{Lie}(G)$, and let $\mathfrak{k} \subset \mathfrak{g}$ be a real form of \mathfrak{g} .

- (1) Define the \mathbb{R} -linear map $\theta: \mathfrak{g} \to \mathfrak{g}$ by $\theta(x + iy) = x iy, x, y \in \mathfrak{k}$. Show that θ is an automorphism of \mathfrak{g} (considered as a real Lie algebra), and that it can be uniquely lifted to an automorphism $\theta: G \to G$ of the group G (considered as a real Lie group).
- (2) Let $K = G^{\theta}$. Show that K is a real Lie group with Lie algebra \mathfrak{k} .

3.16. Let $\operatorname{Sp}(n)$ be the unitary quaternionic group. Show that $\mathfrak{sp}(n)_{\mathbb{C}} = \mathfrak{sp}(n, \mathbb{C})$. Thus $\operatorname{Sp}(n)$ is a compact real form of $\operatorname{Sp}(n, \mathbb{C})$.

3.17. Let $\mathfrak{so}(p,q) = \operatorname{Lie}(\operatorname{SO}(p,q))$. Show that its complexification is $\mathfrak{so}(p,q)_{\mathbb{C}} = \mathfrak{so}(p+q,\mathbb{C})$. **3.18.** Let

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \mathrm{SL}(2, \mathbb{C}).$$

(1) Show that $S = \exp\left(\frac{\pi}{2}(f-e)\right)$, where $e, f \in \mathfrak{sl}(2,\mathbb{C})$ are standard basis elements.

(2) Compute Ad S in the basis e, f, h.

3.19. Let G be a complex connected Lie group.

- (1) Show that $g \mapsto \operatorname{Ad} g$ is an analytic map $G \to \mathfrak{gl}(\mathfrak{g})$.
- (2) Assume that G is compact. Show that then $\operatorname{Ad} g = 1$ for any $g \in G$.
- (3) Show that any connected compact complex group must be commutative.
- (4) Show that if G is a connected complex compact group, then the exponential map gives an isomorphism of Lie groups

$$\mathfrak{g}/L \simeq G$$

for some lattice $L \subset \mathfrak{g}$ (i.e. a free abelian group of rank equal to $2 \dim \mathfrak{g}$).

4.2. Let $V = \mathbb{C}^2$ be the standard 2-dimensional representation of the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$ with basis e_1, e_2 , and let $S^k V$ be the symmetric power of V.

- (1) Write explicitly the action of $e, f, h \in \mathfrak{sl}(2, \mathbb{C})$ in the basis $e_1^i e_2^{k-i}$ if $ee_1 = 0, ee_2 = e_1, fe_1 = e_2, fe_2 = 0, he_1 = e_1, he_2 = -e_2.$
- (2) Show that S^2V is isomorphic to the adjoint representation of $\mathfrak{sl}(2,\mathbb{C})$.
- (3) Recall that each representation of $\mathfrak{sl}(2,\mathbb{C})$ can be considered as a representation of $\mathfrak{so}(3,\mathbb{R})$. Which of representations $S^k V$ can be lifted to a representation of $\mathrm{SO}(3,\mathbb{R})$?
- **4.4.** Let V be a representation of $\mathfrak{sl}(2,\mathbb{C})$, and let $C \in \operatorname{End}(V)$ be defined by

$$C = \rho(e)\rho(f) + \rho(f)\rho(e) + \frac{1}{2}\rho(h)^{2}.$$

- (1) Show that C commutes with the action of $\mathfrak{sl}(2,\mathbb{C})$: for any $x \in \mathfrak{sl}(2,\mathbb{C})$, we have $[\rho(x), C] = 0$. [Hint: use that for any $a, b, c \in \operatorname{End}(V)$, one has [a, bc] = [a, b]c + b[a, c].]
- (2) Show that if $V = V_k$ is an irreducible representation with highest weight k, then C is a scalar operator: $C = c_k$ id. Compute the constant c_k .
- (3) Recall that we have an isomorphism $\mathfrak{so}(3,\mathbb{C}) \simeq \mathfrak{sl}(2,\mathbb{C})$. Show that this isomorphism identifies operator C above with a multiple of $\rho(J_x)^2 + \rho(J_y)^2 + \rho(J_z)^2$.

The element C introduced here is a special case of more general notion of Casimir element for a simple Lie algebra.

4.7. Let \mathfrak{g} be a Lie algebra, and (,) — a symmetric ad-invariant bilinear form on \mathfrak{g} . Show that the element $\omega \in (\mathfrak{g}^*)^{\otimes 3}$ given by

$$\omega(x, y, z) = ([x, y], z)$$

is skew-symmetric and ad-invariant.

4.9. Let C be the standard cube in \mathbb{R}^3 : $C = \{|x_i| \leq 1\}$, and let S be the set of faces of C (thus, S consists of 6 elements). Consider the 6-dimensional complex vector V space of functions on S, and define $A: V \to V$ by

$$(Af)(\sigma) = \frac{1}{4} \sum_{\sigma'} f(\sigma')$$

where the sum is taken over all faces σ' which are neighbors of σ (i.e., have a common edge with σ). The goal of this problem is to diagonalize A.

- (1) Let $G = \{g \in O(3, \mathbb{R}) \mid g(C) = C\}$ be the group of symmetries of C. Show that A commutes with the natural action of G on V.
- (2) Let $z = -I \in G$. Show that as a representation of G, V can be decomposed in the direct sum

$$V = V_+ \oplus V_-, \qquad V_{\pm} = \{ f \in V \mid zf = \pm f \}.$$

(3) Show that as a representation of G, V_+ can be decomposed in the direct sum

$$V_+ = V^0_+ \oplus V^1_+, \quad V^0_+ = \{ f \in V_+ \mid \sum_{\sigma} f(\sigma) = 0 \}, \quad V^1_+ = \mathbb{C} \cdot 1$$

where 1 denotes the constant function on S whose value at every $\sigma \in S$ is 1.

(4) Find the eigenvalues of A on V_-, V_+^0, V_+^1 .

[Note: in fact, each of $V_{-}, V_{+}^{0}, V_{+}^{1}$ is an irreducible representation of G, but you do not need this fact.]

- **4.1.** Let $\varphi \colon \mathrm{SU}(2) \to \mathrm{SO}(3,\mathbb{R})$ be the covering map.
- (1) Show that Ker $\varphi = \{1, -1\} = \{1, e^{\pi i h}\}.$
- (2) Using this, show that representations of $SO(3, \mathbb{R})$ are the same as representations of $\mathfrak{sl}(2, \mathbb{C})$ satisfying $e^{\pi i \rho(h)} = id$.

4.11. Show that if V is a finite-dimensional representation of $\mathfrak{sl}(2, \mathbb{C})$, then $V \simeq \bigoplus n_k V_k$, and $n_k = \dim V[k] - \dim V[k+2]$. Show also that $\sum n_{2k} = \dim V[0], \sum n_{2k+1} = \dim V[1]$. **4.12.** Show that the symmetric power representation $S^k \mathbb{C}^2$ is isomorphic to the irreducible

4.12. Show that the symmetric power representation $S^k \mathbb{C}^2$ is isomorphic to the irreducible representation V_k with highest weight k.

5.1.

- (1) Let V be a representation of \mathfrak{g} and $W \subset V$ be a subrepresentation. Then $B_V = B_W + B_{V/W}$, where $B_V(x, y) = \operatorname{tr}(\rho_V(x)\rho_V(y))$.
- (2) Let $I \subset \mathfrak{g}$ be an ideal. Then the restriction of the Killing form of \mathfrak{g} to I coincides with the Killing form of I.
- **5.2.** Show that for $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$, the Killing form is given by $K(x, y) = 2n \operatorname{tr}(xy)$.
- **5.3.** Let $\mathfrak{g} \subset \mathfrak{gl}(n, \mathbb{C})$ be the subspace consisting of block-triangular matrices:

$$\mathfrak{g} = \left\{ \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} \right\}$$

where A is a $k \times k$ matrix, B is a $k \times (n-k)$ matrix, and D is a $(n-k) \times (n-k)$ matrix.

- (1) Show that \mathfrak{g} is a Lie subalgebra (this is a special case of so-called *parabolic subalgebras*).
- (1) Show that \mathfrak{g} is a Lie consists of matrices of the form $\begin{pmatrix} \lambda \cdot I & B \\ 0 & \mu \cdot I \end{pmatrix}$, and describe $\mathfrak{g}/\operatorname{rad}(\mathfrak{g})$.
- **5.4.** Show that the bilinear form $\operatorname{tr}(xy)$ on $\mathfrak{sp}(n, \mathbb{K})$ is non-degenerate.

5.5. Let \mathfrak{g} be a real Lie algebra with a positive definite Killing form. Show that then $\mathfrak{g} = 0$. [Hint: $\mathfrak{g} \subset \mathfrak{so}(\mathfrak{g})$.]

5.6. Let \mathfrak{g} be a simple Lie algebra.

- (1) Show that the invariant bilinear form is unique up to a factor.
- (2) Show that $\mathfrak{g} \simeq \mathfrak{g}^*$ as representations of \mathfrak{g} .

5.7. Let V be a finite-dimensional complex vector space and let $A: V \to V$ be an upper-triangular operator. Let $F^k \subset \operatorname{End}(V), -n \leq k \leq n$ be the subspace spanned by matrix units E_{ij} with $i-j \leq k$. Show that then ad $A:F^k \subset F^{k-1}$ and thus, ad $A: \operatorname{End}(V) \to \operatorname{End}(V)$ is nilpotent.

6.1. Show that the Casimir operator for $\mathfrak{g} = \mathfrak{so}(3, \mathbb{R})$ is given by $C = \frac{1}{2}(J_x^2 + J_y^2 + J_z^2)$; thus, it follows that $J_x^2 + J_y^2 + J_z^2 \in U\mathfrak{so}(3, \mathbb{R})$ is central. **6.2.** Show that for $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{C})$, the definition of a semisimple element (an element x such as adx)

6.2. Show that for $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{C})$, the definition of a semisimple element (an element x such as $\mathrm{ad}x$ is a semisimple operator) coincides to the usual definition of a semisimple operator.

6.3. Show that if $\mathfrak{h} \subset \mathfrak{g}$ is a Cartan subalgebra in a complex semisimple Lie algebra, then \mathfrak{h} is a nilpotent subalgebra which coincides with its normalizer $n(\mathfrak{h}) = \{x \in g \mid \operatorname{ad} x.\mathfrak{h} \subset \mathfrak{h}\}$. (This is the usual definition of a Cartan subalgebra which can be used for any Lie algebra, not necessarily a semisimple one.)

6.4. Let \mathfrak{g} be a complex Lie algebra which has a root decomposition:

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in R}\mathfrak{g}_lpha$$
 .

where R is a finite subset in $\mathfrak{h}^* - \{0\}$, \mathfrak{h} is commutative and for $h \in \mathfrak{h}, x \in \mathfrak{g}_{\alpha}$, we have $[h, x] = \langle h, \alpha \rangle x$. Show that then \mathfrak{g} is semisimple, and \mathfrak{h} is a Cartan subalgebra.

6.5. Let $\mathfrak{h} \subset \mathfrak{so}(4,\mathbb{C})$ be the subalgebra consisting of matrices of the form

$$\begin{array}{c} a \\ -a \\ & b \\ -b \end{array}$$

(entries not shown are zeros). Show that then \mathfrak{h} is a Cartan subalgebra and find the corresponding root decomposition.

6.6.

- (1) Define a bilinear form B on $W = \Lambda^2 \mathbb{C}^4$ by $\omega_1 \wedge \omega_2 = B(\omega_1, \omega_2)e_1 \wedge e_2 \wedge e_3 \wedge e_4$. Show that B is a symmetric non-degenerate form and construct an orthonormal basis for B.
- (2) Let $\mathfrak{g} = \mathfrak{so}(W, B) = \{x \in \mathfrak{gl}(W) \mid B(x\omega_1, \omega_2) + B(\omega_1, x\omega_2) = 0\}$. Show that $\mathfrak{g} \simeq \mathfrak{so}(6, \mathbb{C})$.
- (3) Show that the form B is invariant under the natural action of $\mathfrak{sl}(4,\mathbb{C})$ on $\Lambda^2\mathbb{C}^4$.
- (4) Using results of the previous parts, construct a homomorphism $\mathfrak{sl}(4,\mathbb{C}) \to \mathfrak{so}(6,\mathbb{C})$ and prove that it is an isomorphism.

7.1. Let $R \subset \mathbb{R}^n$ be given by

$$R = \{ \pm e_i, \pm 2e_i \mid 1 \le i \le n \} \cup \{ \pm e_i \pm e_j \mid 1 \le i, j \le n, i \ne j \}$$

where e_i is the standard basis in \mathbb{R}^n . Show that R is a non-reduced root system. (This root system is usually denoted BC_n .)

7.2.

(1) Let $R \subset E$ be a root system. Show that the set

$$R^{\vee} = \{ \alpha^{\vee} \mid \alpha \in R \} \subset E^*$$

where $\alpha^{\vee} \in E^*$ is the coroot corresponding to α is also a root system. It is usually called the *dual root system* of R.

(2) Let $\Pi = \{\alpha_1, \ldots, \alpha_r\} \subset R$ be the set of simple roots. Show that the set $\Pi^{\vee} = \{\alpha_1^{\vee}, \ldots, \alpha_r^{\vee}\} \subset R^{\vee}$ is the set of simple roots of R^{\vee} . [Note: this is not completely trivial, as $\alpha \mapsto \alpha^{\vee}$ is not a linear map.]

7.4. Show that $|P/Q| = |\det A|$, where A is the Cartan matrix: $a_{ij} = \langle \alpha_i^{\vee}, \alpha_j \rangle$.

7.5. Compute explicitly the group P/Q for root systems A_n , D_n .

7.8. Let \overline{C}_+ be the closure of the positive Weyl chamber, and $\lambda \in \overline{C}_+$, $w \in W$ be such that $w(\lambda) \in \overline{C}_+$.

(1) Show that $\lambda \in \overline{C}_+ \cap w^{-1}(\overline{C}_+)$.

(2) Let $L_{\alpha} \subset E$ be a root hyperplane which separates C_{+} and $w^{-1}C_{+}$. Show that then $\lambda \in L_{\alpha}$. (3) Show that $w(\lambda) = \lambda$.

Deduce from this that every W-orbit in E contains a unique element from \overline{C}_+ .

7.9. Let $w_0 \in W$ be the longest element in the Weyl group W. Show that then for any $w \in W$, we have $l(ww_0) = l(w_0w) = l(w_0) - l(w)$.

7.10. Let $W = S_n$ be the Weyl group of root system A_{n-1} . Show that the longest element $w_0 \in W$ is the permutation $w_0 = (n \ n-1 \ \dots 1)$.

7.11.

(1) Let R be a reduced root system of rank 2, with simple roots α_1, α_2 . Show that the longest element in the corresponding Weyl group is

 $w_0 = s_1 s_2 s_1 \cdots = s_2 s_1 s_2 \ldots$ (*m* factors in each of the products)

where *m* depends on the angle φ between α_1, α_2 : $\varphi = \pi - \frac{\pi}{m}$ (so m = 2 for $A_1 \times A_1$, m = 3 for A_2 , m = 4 for B_2 , m = 6 for G_2). If you can not think of any other proof, give a case-by-case proof.

(2) Show that the following relations hold in W (these are called *Coxeter relations*):

$$s_i^2 = 1, \ (s_i s_j)^{m_{ij}} = 1,$$

where m_{ij} is determined by the angle between α_i, α_j in the same way as in the previous part.

(It can be shown that the Coxeter relations is a defining set of relations for the Weyl group: W could be defined as the group generated by elements s_i subject to Coxeter relations. A proof of this fact can be found in the book of Humphreys "Reflection groups and Coxeter groups".)

7.7. Let $w = s_{i_1} \dots s_{i_l}$ be a reduced expression. Show that then

$$\{\alpha \in R_+ \mid w(\alpha) \in R_-\} = \{\beta_1, \dots, \beta_l\}$$

where $\beta_k = s_{i_1} \dots s_{i_{k-1}}(\alpha_{i_k})$

7.12. Let $\varphi \colon R_1 \xrightarrow{\sim} R_2$ be an isomorphism between irreducible root systems. Show that then φ is a composition of an isometry and a scalar operator: $(\varphi(v), \varphi(w)) = c(v, w)$ for any $v, w \in E_1$. **7.13.**

- (1) Let \mathfrak{n}_{\pm} be the positive and negative nilpotent subalgebras in a semisimple complex Lie algebra. Show that \mathfrak{n}_{\pm} are indeed nilpotent.
- (2) Let $\mathfrak{b} = \mathfrak{n}_+ \oplus \mathfrak{h}$. Show that \mathfrak{b} is solvable.

7.14.

- (1) Show that if two vertices in a Dynkin diagram are connected by a single edge, then the corresponding simple roots are in the same W-orbit.
- (2) Show that for a reduced irreducible root system, the Weyl group acts transitively on the set of all roots of the same length.

7.15. Let $R \subset E$ be an irreducible root system. Show that then E is an irreducible representation of the Weyl group W.

7.16. Let G be a connected complex Lie group such that $\mathfrak{g} = \text{Lie}(G)$ is semisimple. Fix a root decomposition of \mathfrak{g} .

(1) Choose $\alpha \in R$ and let $i_{\alpha} \colon \mathfrak{sl}(2,\mathbb{C}) \to \mathfrak{g}$ be the embedding corresponding to the root α . This embedding can be lifted to a morphism $i_{\alpha} \colon \mathrm{SL}(2,\mathbb{C}) \to G$. Let

$$S_{\alpha} = i_{\alpha} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \exp\left(\frac{\pi}{2}(f_{\alpha} - e_{\alpha})\right) \in G$$

Show that $\operatorname{Ad} S_{\alpha}(h_{\alpha}) = -h_{\alpha}$ and that $\operatorname{Ad} S_{\alpha}(h) = h$ if $h \in \mathfrak{h}$, $\langle h, \alpha \rangle = 0$. Deduce from this that the action of S_{α} on \mathfrak{g}^* preserves \mathfrak{h}^* and that restriction of $\operatorname{Ad} S_{\alpha}$ to \mathfrak{h}^* coincides with the reflection s_{α} .

(2) Show that the Weyl group W acts on \mathfrak{h}^* by inner automorphisms: for any $w \in W$, there exists an element $\tilde{w} \in G$ such that $\operatorname{Ad} \tilde{w}|_{\mathfrak{h}^*} = w$. [Note, however, that in general, $\widetilde{w_1w_2} \neq \tilde{w}_1\tilde{w}_2$.] 18.745 Lie Groups and Lie Algebras I Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.