
Problems from “An introduction to Lie groups and Lie algebras” by A. Kirillov Jr.

Homework 1

2.1. Let G be a Lie group and H — a closed Lie subgroup.

(1) Let H be the closure of H in G. Show that H is a subgroup in G.
(2) Show that each coset Hx, x ∈ H, is open and dense in H.
(3) Show that H = H, that is, every Lie subgroup is closed.

2.2.

(1) Show that every discrete normal subgroup of a connected Lie group is central (hint: consider
the map G→ N : g 7→ ghg−1 where h is a fixed element in N).

(2) By applying part (a) to kernel of the map G̃ → G, show that for any connected Lie group
G, the fundamental group π1(G) is commutative.

2.3. Let f : G1 → G2 be a morphism of connected Lie groups such that f∗ : T1G1 → T1G2 is an
isomorphism (such a morphism is sometimes called local isomorphism). Show that f is a covering
map, and Ker f is a discrete central subgroup.

2.4. Let Fn(C) be the set of all flags in Cn. Show that

Fn(C) = GL(n,C)/B(n,C) = U(n)/T (n)

where B(n,C) is the group of invertible complex upper triangular matrices, and T (n) is the group
of diagonal unitary matrices (which is easily shown to be the n-dimensional torus (R/Z)n). Deduce
from this that Fn(C) is a compact complex manifold and find its dimension over C.

2.5. Let Gn,k be the set of all dimension k subspaces in Rn (usually called the Grassmanian).
Show that Gn,k is a homogeneous space for the group O(n,R) and thus can be identified with coset
space O(n,R)/H for appropriate H. Use it to prove that Gn,k is a manifold and find its dimension.

2.6. Show that if G = GL(n,R) ⊂ End(Rn) so that each tangent space is canonically identified
with End(Rn), then (Lg)∗v = gv where the product in the right-hand side is the usual product of
matrices, and similarly for the right action. Also, the adjoint action is given by Ad g(v) = gvg−1.
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Homework 2

2.7. Define a bilinear form on su(2) by (a, b) = 1
2 tr(ab

t
). Show that this form is symmetric,

positive definite, and invariant under the adjoint action of SU(2).
2.8. Define a basis in su(2) by

iσ1 =

(
0 i
i 0

)
iσ2 =

(
0 1
−1 0

)
iσ3 =

(
i 0
0 −i

)
Show that the map

ϕ : SU(2)→ GL(3,R), g 7→ matrix of Ad g in the basis iσ1, iσ2, iσ3

gives a morphism of Lie groups SU(2)→ SO(3,R).
2.9. Let ϕ : SU(2) → SO(3,R) be the morphism defined in the previous problem. Compute

explicitly the map of tangent spaces ϕ∗ : su(2) → so(3,R) and show that ϕ∗ is an isomorphism.
Deduce from this that Kerϕ is a discrete normal subgroup in SU(2), and that Imϕ is an open
subgroup in SO(3,R).

2.10. Prove that the map ϕ used in two previous exercises establishes an isomorphism SU(2)/Z2 →
SO(3,R) and thus, since SU(2) ' S3, SO(3,R) ' RP3.

2.11. Show that for n ≥ 1, we have π0(SU(n + 1)) = π0(SU(n)), π0(U(n + 1)) = π0(U(n)) and
deduce from it that groups U(n), SU(n) are connected for all n. Similarly, show that for n ≥ 2,
we have π1(SU(n + 1)) = π1(SU(n)), π1(U(n + 1)) = π1(U(n)) and deduce from it that for n ≥ 2,
SU(n) is simply-connected and π1(U(n)) = Z.

2.12. Show that for n ≥ 2, we have π0(SO(n + 1,R)) = π0(SO(n,R)) and deduce from it that
groups SO(n) are connected for all n ≥ 2. Similarly, show that for n ≥ 3, π1(SO(n + 1,R)) =
π1(SO(n,R)) and deduce from it that for n ≥ 3, π1(SO(n,R)) = Z2.

2.13. Using Gram-Schmidt orthogonalization process, show that GL(n,R)/O(n,R) is diffeomor-
phic to the space of upper-triangular matrices with positive entries on the diagonal. Deduce from
this that GL(n,R) is homotopic (as a topological space) to O(n,R).

2.14. Let Ln be the set of all Lagrangian subspaces in R2n with the standard symplectic form
ω. (A subspace V is Lagrangian if dimV = n and ω(x, y) = 0 for any x, y ∈ V .)

Show that the group Sp(n,R) acts transitively on Ln and use it to define on Ln a structure of a
smooth manifold and find its dimension.

2.15. Let H = {a + bi + cj + dk | a, b, c, d ∈ R} be the algebra of quaternions, defined by
ij = k = −ji, jk = i = −kj, ki = j = −ik, i2 = j2 = k2 = −1, and let Hn = {(h1, . . . , hn) | hi ∈ H}.
In particular, the subalgebra generated by 1, i coincides with the field C of complex numbers.

Note that Hn has a structure of both left and right module over H defined by

h(h1, . . . , hn) = (hh1, . . . , hhn), (h1, . . . , hn)h = (h1h, . . . , hnh)

(1) Let EndH(Hn) be the algebra of endomorphisms of Hn considered as right H-module:

EndH(Hn) = {A : Hn → Hn | A(h + h′) = A(h) +A(h′), A(hh) = A(h)h}

Show that EndH(Hn) is naturally identified with the algebra of n×nmatrices with quaternion
entries.

(2) Define an H–valued form ( , ) on Hn by

(h,h′) =
∑
i

hih
′
i

where a+ bi+ cj + dk = a− bi− cj − dk. (Note that uv = vu.)
Let U(n,H) be the group of “unitary quaternionic transformations”:

U(n,H) = {A ∈ EndH(Hn) | (Ah, Ah′) = (h,h′)}.

Show that this is indeed a group and that a matrix A is in U(n,H) iff A∗A = 1, where
(A∗)ij = Aji.
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(3) Define a map C2n ' Hn by

(z1, . . . , z2n) 7→ (z1 + jzn+1, . . . , zn + jz2n)

Show that it is an isomorphism of complex vector spaces (if we consider Hn as a complex
vector space by z(h1, . . . hn) = (h1z, . . . , hnz)) and that this isomorphism identifies

EndH(Hn) = {A ∈ EndC(C2n) | A = J−1AJ}

where J :=

(
0 Idn
−Idn 0

)
. (Hint: use jz = zj for any z ∈ C to show that h 7→ hj is

identified with z 7→ Jz.)
(4) Show that under identification C2n ' Hn defined above, the quaternionic form ( , ) is iden-

tified with
(z, z′)− j〈z, z′〉

where (z, z′) =
∑
ziz
′
i is the standard Hermitian form in C2n and

〈z, z′〉 =
n∑
i=1

(zi+nz
′
i − ziz′i+n)

is the standard bilinear skew-symmetric form in C2n. Deduce from this that the group
U(n,H) is identified with Sp(n) = Sp(n,C) ∩ SU(2n).

2.16.

(1) Show that Sp(1) ' SU(2) ' S3.
(2) Using the previous exercise, show that we have a natural transitive action of Sp(n) on the

sphere S4n−1 and a stabilizer of a point is isomorphic to Sp(n− 1).
(3) Deduce that π1(Sp(n+ 1)) = π1(Sp(n)), π0(Sp(n+ 1)) = π0(Sp(n)).
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Homework 4

3.1. Consider the group SL(2,R). Show that the element X =

(
−1 1
0 −1

)
is not in the image of

the exponential map. (Hint: if X = exp(x), what are the eigenvalues of x?).
3.5.

(1) Prove that R3 with the commutator given by the cross-product is a Lie algebra. Show that
this Lie algebra is isomorphic to so(3,R).

(2) Let ϕ : so(3,R) → R3 be the isomorphism of part (1). Prove that under this isomorphism,
the standard action of so(3) on R3 is identified with the action of R3 on itself given by the
cross-product:

a · ~v = ϕ(a)× ~v, a ∈ so(3), ~v ∈ R3

where a · ~v is the usual multiplication of a matrix by a vector.

This problem explains common use of cross-products in mechanics: angular velocities and angular
momenta are actually elements of Lie algebra so(3,R) (to be precise, angular momenta are elements
of the dual vector space, (so(3,R))∗, but we can ignore this difference). To avoid explaining this, most
textbooks write angular velocities as vectors in R3 and use cross-product instead of commutator.
Of course, this would completely fail in dimensions other than 3, where so(n,R) is not isomorphic
to Rn even as a vector space.

3.6. Let Pn be the space of polynomials with real coefficients of degree ≤ n in variable x. The
Lie group G = R acts on Pn by translations of the argument: ρ(t)(x) = x+ t, t ∈ G. Show that the
corresponding action of the Lie algebra g = R is given by ρ(a) = a∂x, a ∈ g, and deduce from this
the Taylor formula for polynomials:

f(x+ t) =
∑
n≥0

(t∂x)n

n!
f.

3.7. Let G be the Lie group of all maps A : R → R having the form A(x) = ax + b, a 6= 0.
Describe explicitly the corresponding Lie algebra. [There are two ways to do this problem. The
easy way is to embed G ⊂ GL(2,R), which makes the problem trivial. More straightforward way is
to explicitly construct some basis in the tangent space, construct the corresponding one-parameter
subgroups, and compute the commutator using the formula

exp(x) exp(y) exp(−x) exp(−y) = exp([x, y] + ...).

The second way is recommended to those who want to understand how the correspondence between
Lie groups and Lie algebras works.]

3.8. Let SL(2,C) act on CP1 in the usual way:[
a b
c d

]
(x : y) = (ax+ by : cx+ dy).

This defines an action of g = sl(2,C) by vector fields on CP1. Write explicitly vector fields corre-
sponding to h, e, f in terms of coordinate t = x/y on the open cell C ⊂ CP1.

3.9. Let G be a Lie group with Lie algebra g, Aut(g) the group of automorphisms of g, and
Der(g) be the Lie algebra of derivations of g.

(1) Show that g 7→ Ad g gives a morphism of Lie groups G → Aut(g); similarly, x 7→ adx is a
morphism of Lie algebras g→ Der g. (The automorphisms of the form Ad g are called inner
automorphisms; the derivations of the form adx, x ∈ g are called inner derivations.)

(2) Show that for f ∈ Der g, x ∈ g, one has [f, adx] = ad f(x) as operators in g, and deduce
from this that ad(g) is an ideal in Der g.

3.11. Let Jx, Jy, Jz be the standard basis in so(3,R) ∼= R3 (the Lie bracket is the cross product).
The standard action of SO(3,R) on R3 defines an action of so(3,R) by vector fields on R3. Abusing
the language, we will use the same notation Jx, Jy, Jz for the corresponding vector fields on R3. Let
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∆sph = J2
x + J2

y + J2
z ; this is a second order differential operator on R3, which is usually called the

spherical Laplace operator, or the Laplace operator on the sphere.

(1) Write ∆sph in terms of x, y, z, ∂x, ∂y, ∂z.
(2) Show that ∆sph is well defined as a differential operator on a sphere S2 = {(x, y, z) |

x2 + y2 + z2 = 1}, i.e., if f is a function on R3 then (∆sphf)|S2 only depends on f |S2 .
(3) Show that the usual Laplace operator ∆ = ∂2x + ∂2y + ∂2z can be written in the form

∆ = 1
r2 ∆sph + ∆radial, where ∆radial is a differential operator written in terms of r =√

x2 + y2 + z2 and r∂r = x∂x + y∂y + z∂z.
(4) Show that ∆sph is rotation invariant: for any function f and g ∈ SO(3,R), ∆sph(gf) =

g(∆sphf).
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Homework 5

3.13.

(1) Let g be a three-dimensional real Lie algebra with basis x, y, z and commutation rela-
tions [x, y] = z, [z, x] = [z, y] = 0 (this algebra is called Heisenberg algebra). Without
using Campbell-Hausdorff formula, show that in the corresponding Lie group, one has
exp(tx) exp(sy) = exp(tsz) exp(sy) exp(tx) and construct explicitly the connected, simply
connected Lie group corresponding to g.

(2) Generalize the previous part to the Lie algebra g = V ⊕ Rz, where V is a real vector space
with non-degenerate skew-symmetric form ω and the commutation relations are given by
[v1, v2] = ω(v1, v2)z, [z, v] = 0.

3.15. Let G be a complex connected simply-connected Lie group, with Lie algebra g = Lie(G),
and let k ⊂ g be a real form of g.

(1) Define the R-linear map θ : g → g by θ(x + iy) = x − iy, x, y ∈ k. Show that θ is an
automorphism of g (considered as a real Lie algebra), and that it can be uniquely lifted to
an automorphism θ : G→ G of the group G (considered as a real Lie group).

(2) Let K = Gθ. Show that K is a real Lie group with Lie algebra k.

3.16. Let Sp(n) be the unitary quaternionic group. Show that sp(n)C = sp(n,C). Thus Sp(n) is
a compact real form of Sp(n,C).

3.17. Let so(p, q) = Lie(SO(p, q)). Show that its complexification is so(p, q)C = so(p+ q,C).
3.18. Let

S =

(
0 −1
1 0

)
∈ SL(2,C).

(1) Show that S = exp
(
π
2 (f − e)

)
, where e, f ∈ sl(2,C) are standard basis elements.

(2) Compute AdS in the basis e, f, h.

3.19. Let G be a complex connected Lie group.

(1) Show that g 7→ Ad g is an analytic map G→ gl(g).
(2) Assume that G is compact. Show that then Ad g = 1 for any g ∈ G.
(3) Show that any connected compact complex group must be commutative.
(4) Show that if G is a connected complex compact group, then the exponential map gives an

isomorphism of Lie groups
g/L ' G

for some lattice L ⊂ g (i.e. a free abelian group of rank equal to 2 dim g).
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Homework 6

4.2. Let V = C2 be the standard 2-dimensional representation of the Lie algebra sl(2,C) with
basis e1, e2, and let SkV be the symmetric power of V .

(1) Write explicitly the action of e, f, h ∈ sl(2,C) in the basis ei1e
k−i
2 if ee1 = 0, ee2 = e1,

fe1 = e2, fe2 = 0, he1 = e1, he2 = −e2.
(2) Show that S2V is isomorphic to the adjoint representation of sl(2,C).
(3) Recall that each representation of sl(2,C) can be considered as a representation of so(3,R).

Which of representations SkV can be lifted to a representation of SO(3,R)?

4.4. Let V be a representation of sl(2,C), and let C ∈ End(V ) be defined by

C = ρ(e)ρ(f) + ρ(f)ρ(e) +
1

2
ρ(h)2.

(1) Show that C commutes with the action of sl(2,C): for any x ∈ sl(2,C), we have [ρ(x), C] = 0.
[Hint: use that for any a, b, c ∈ End(V ), one has [a, bc] = [a, b]c+ b[a, c].]

(2) Show that if V = Vk is an irreducible representation with highest weight k, then C is a
scalar operator: C = ck id. Compute the constant ck.

(3) Recall that we have an isomorphism so(3,C) ' sl(2,C). Show that this isomorphism iden-
tifies operator C above with a multiple of ρ(Jx)2 + ρ(Jy)2 + ρ(Jz)

2.

The element C introduced here is a special case of more general notion of Casimir element for a
simple Lie algebra.

4.7. Let g be a Lie algebra, and ( , ) — a symmetric ad-invariant bilinear form on g. Show that
the element ω ∈ (g∗)⊗3 given by

ω(x, y, z) = ([x, y], z)

is skew-symmetric and ad-invariant.
4.9. Let C be the standard cube in R3: C = {|xi| ≤ 1}, and let S be the set of faces of C (thus,

S consists of 6 elements). Consider the 6-dimensional complex vector V space of functions on S,
and define A : V → V by

(Af)(σ) =
1

4

∑
σ′

f(σ′)

where the sum is taken over all faces σ′ which are neighbors of σ (i.e., have a common edge with σ).
The goal of this problem is to diagonalize A.

(1) Let G = {g ∈ O(3,R) | g(C) = C} be the group of symmetries of C. Show that A commutes
with the natural action of G on V .

(2) Let z = −I ∈ G. Show that as a representation of G, V can be decomposed in the direct
sum

V = V+ ⊕ V−, V± = {f ∈ V | zf = ±f}.
(3) Show that as a representation of G, V+ can be decomposed in the direct sum

V+ = V 0
+ ⊕ V 1

+, V 0
+ = {f ∈ V+ |

∑
σ

f(σ) = 0}, V 1
+ = C · 1

where 1 denotes the constant function on S whose value at every σ ∈ S is 1.
(4) Find the eigenvalues of A on V−, V

0
+, V

1
+.

[Note: in fact, each of V−, V
0
+, V

1
+ is an irreducible representation of G, but you do not need this

fact.]
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Homework 7

4.1. Let ϕ : SU(2)→ SO(3,R) be the covering map.

(1) Show that Kerϕ = {1,−1} = {1, eπih}.
(2) Using this, show that representations of SO(3,R) are the same as representations of sl(2,C)

satisfying eπiρ(h) = id.

4.11. Show that if V is a finite-dimensional representation of sl(2,C), then V '
⊕
nkVk, and

nk = dimV [k]− dimV [k + 2]. Show also that
∑
n2k = dimV [0],

∑
n2k+1 = dimV [1].

4.12. Show that the symmetric power representation SkC2 is isomorphic to the irreducible
representation Vk with highest weight k.

5.1.

(1) Let V be a representation of g and W ⊂ V be a subrepresentation. Then BV = BW +BV/W ,
where BV (x, y) = tr(ρV (x)ρV (y)).

(2) Let I ⊂ g be an ideal. Then the restriction of the Killing form of g to I coincides with the
Killing form of I.

5.2. Show that for g = sl(n,C), the Killing form is given by K(x, y) = 2n tr(xy).
5.3. Let g ⊂ gl(n,C) be the subspace consisting of block-triangular matrices:

g =

{(
A B
0 D

)}
where A is a k × k matrix, B is a k × (n− k) matrix, and D is a (n− k)× (n− k) matrix.

(1) Show that g is a Lie subalgebra (this is a special case of so-called parabolic subalgebras).

(2) Show that radical of g consists of matrices of the form

(
λ · I B

0 µ · I

)
, and describe g/ rad(g).

5.4. Show that the bilinear form tr(xy) on sp(n,K) is non-degenerate.
5.5. Let g be a real Lie algebra with a positive definite Killing form. Show that then g = 0.

[Hint: g ⊂ so(g).]
5.6. Let g be a simple Lie algebra.

(1) Show that the invariant bilinear form is unique up to a factor.
(2) Show that g ' g∗ as representations of g.

5.7. Let V be a finite-dimensional complex vector space and let A : V → V be an upper-triangular
operator. Let F k ⊂ End(V ), −n ≤ k ≤ n be the subspace spanned by matrix units Eij with i−j ≤ k.
Show that then adA.F k ⊂ F k−1 and thus, adA : End(V )→ End(V ) is nilpotent.
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Homework 8

6.1. Show that the Casimir operator for g = so(3,R) is given by C = 1
2 (J2

x + J2
y + J2

z ); thus, it

follows that J2
x + J2

y + J2
z ∈ Uso(3,R) is central.

6.2. Show that for g = gl(n,C), the definition of a semisimple element (an element x such as adx
is a semisimple operator) coincides to the usual definition of a semisimple operator.

6.3. Show that if h ⊂ g is a Cartan subalgebra in a complex semisimple Lie algebra, then h is
a nilpotent subalgebra which coincides with its normalizer n(h) = {x ∈ g | adx.h ⊂ h}. (This is
the usual definition of a Cartan subalgebra which can be used for any Lie algebra, not necessarily a
semisimple one.)

6.4. Let g be a complex Lie algebra which has a root decomposition:

g = h⊕
⊕
α∈R

gα

where R is a finite subset in h∗−{0}, h is commutative and for h ∈ h, x ∈ gα, we have [h, x] = 〈h, α〉x.
Show that then g is semisimple, and h is a Cartan subalgebra.

6.5. Let h ⊂ so(4,C) be the subalgebra consisting of matrices of the form
a

−a
b

−b


(entries not shown are zeros). Show that then h is a Cartan subalgebra and find the corresponding
root decomposition.

6.6.

(1) Define a bilinear form B on W = Λ2C4 by ω1 ∧ ω2 = B(ω1, ω2)e1 ∧ e2 ∧ e3 ∧ e4. Show that
B is a symmetric non-degenerate form and construct an orthonormal basis for B.

(2) Let g = so(W,B) = {x ∈ gl(W ) | B(xω1, ω2) +B(ω1, xω2) = 0}. Show that g ' so(6,C).
(3) Show that the form B is invariant under the natural action of sl(4,C) on Λ2C4.
(4) Using results of the previous parts, construct a homomorphism sl(4,C)→ so(6,C) and prove

that it is an isomorphism.
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Homework 10

7.1. Let R ⊂ Rn be given by

R = {±ei,±2ei | 1 ≤ i ≤ n} ∪ {±ei ± ej | 1 ≤ i, j ≤ n, i 6= j}
where ei is the standard basis in Rn. Show that R is a non-reduced root system. (This root system
is usually denoted BCn.)

7.2.

(1) Let R ⊂ E be a root system. Show that the set

R∨ = {α∨ | α ∈ R} ⊂ E∗

where α∨ ∈ E∗ is the coroot corresponding to α is also a root system. It is usually called
the dual root system of R.

(2) Let Π = {α1, . . . , αr} ⊂ R be the set of simple roots. Show that the set Π∨ = {α∨1 , . . . , α∨r } ⊂
R∨ is the set of simple roots of R∨. [Note: this is not completely trivial, as α 7→ α∨ is not
a linear map.]

7.4. Show that |P/Q| = |detA|, where A is the Cartan matrix: aij = 〈α∨i , αj〉.
7.5. Compute explicitly the group P/Q for root systems An, Dn.
7.8. Let C+ be the closure of the positive Weyl chamber, and λ ∈ C+, w ∈ W be such that

w(λ) ∈ C+.

(1) Show that λ ∈ C+ ∩ w−1(C+).
(2) Let Lα ⊂ E be a root hyperplane which separates C+ and w−1C+. Show that then λ ∈ Lα.
(3) Show that w(λ) = λ.

Deduce from this that every W -orbit in E contains a unique element from C+.
7.9. Let w0 ∈ W be the longest element in the Weyl group W . Show that then for any w ∈ W ,

we have l(ww0) = l(w0w) = l(w0)− l(w).
7.10. Let W = Sn be the Weyl group of root system An−1. Show that the longest element

w0 ∈W is the permutation w0 = (n n− 1 . . . 1).
7.11.

(1) Let R be a reduced root system of rank 2, with simple roots α1, α2. Show that the longest
element in the corresponding Weyl group is

w0 = s1s2s1 · · · = s2s1s2 . . . (m factors in each of the products)

where m depends on the angle ϕ between α1, α2: ϕ = π − π
m (so m = 2 for A1 ×A1, m = 3

for A2, m = 4 for B2, m = 6 for G2). If you can not think of any other proof, give a
case-by-case proof.

(2) Show that the following relations hold in W (these are called Coxeter relations):

s2i = 1, (sisj)
mij = 1,

where mij is determined by the angle between αi, αj in the same way as in the previous
part.

(It can be shown that the Coxeter relations is a defining set of relations for the Weyl group:
W could be defined as the group generated by elements si subject to Coxeter relations. A
proof of this fact can be found in the book of Humphreys “Reflection groups and Coxeter
groups”.)
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Homework 11

7.7. Let w = si1 . . . sil be a reduced expression. Show that then

{α ∈ R+ | w(α) ∈ R−} = {β1, . . . , βl}
where βk = si1 . . . sik−1

(αik)

7.12. Let ϕ : R1
∼−→ R2 be an isomorphism between irreducible root systems. Show that then ϕ

is a composition of an isometry and a scalar operator: (ϕ(v), ϕ(w)) = c(v, w) for any v, w ∈ E1.
7.13.

(1) Let n± be the positive and negative nilpotent subalgebras in a semisimple complex Lie
algebra. Show that n± are indeed nilpotent.

(2) Let b = n+ ⊕ h. Show that b is solvable.

7.14.

(1) Show that if two vertices in a Dynkin diagram are connected by a single edge, then the
corresponding simple roots are in the same W -orbit.

(2) Show that for a reduced irreducible root system, the Weyl group acts transitively on the set
of all roots of the same length.

7.15. Let R ⊂ E be an irreducible root system. Show that then E is an irreducible representation
of the Weyl group W .

7.16. Let G be a connected complex Lie group such that g = Lie(G) is semisimple. Fix a root
decomposition of g.

(1) Choose α ∈ R and let iα : sl(2,C)→ g be the embedding corresponding to the root α. This
embedding can be lifted to a morphism iα : SL(2,C)→ G.

Let

Sα = iα

(
0 −1
1 0

)
= exp

(π
2

(fα − eα)
)
∈ G

Show that AdSα(hα) = −hα and that AdSα(h) = h if h ∈ h, 〈h, α〉 = 0. Deduce from this
that the action of Sα on g∗ preserves h∗ and that restriction of AdSα to h∗ coincides with
the reflection sα.

(2) Show that the Weyl groupW acts on h∗ by inner automorphisms: for any w ∈W , there exists
an element w̃ ∈ G such that Ad w̃|h∗ = w. [Note, however, that in general, w̃1w2 6= w̃1w̃2.]
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