
8 General Lie Groups

In §6 we considered semisimple Lie groups; now we shall make a few remarks
about another major class of Lie groups, the solvable Lie groups.

If g is a Lie algebra the vector space spanned by all elements [X, Y]
(X, Y E g) is an ideal in g, called the derived algebra 2g of g. Then Dng
is defined inductively by DOg = g, D)n = D)(D)n-lg). The Lie algebra is
solvable if Dng = 0 for some n > 0. A Lie group is solvable if its Lie algebra
is solvable.

Proposition 8.1. Let g be a Lie algebra, a or b solvable ideals. Then a+ b
is also a solvable ideal.

Proof. a + b is of course an ideal. Now consider the map A + B -

B( mod (anb)) which is a well-defined homomorphism with kernel a. Thus
(a+ b)/a - b/(an b) so (a+ b)/a is solvable. Image of D)k(a+ b) in (a+ b/a)
is contained in Dk((a+ b)/a) so )k (a+b) C a for k large. Since a is solvable,
De)(a+ b) = 0 for large so a + b is solvable.

Thus if r C g is a solvable ideal of maximal dimension then every solvable
ideal is contained in r. Thus r is the union of all solvable ideals. It is called
the radical. The following basic result we now state without proof.

Theorem 8.2 (Levi decomposition.). Each Lie algebrag has the decom-
position

g=r+s rns ==0
where r is the radical and s is semi-simple.

Using that theorem we can prove the following fundamental theorem.

Theorem 8.3. For each Lie algebrag over R there exists a Lie group G
with Lie algebra g.

The local version of this theorem is the so-called third theorem of Lie
which will be proved later, The global version was proved by Cartan in 1930.
It is actually a simple consequence of Theorem 8.2.
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If A and B are abstract groups and b -* ab a homomorphism of B into
Aut (A) the semi-direct product A x . B is the group defined by the product

(a,b)(a',b') = (aab(a'),bb')

on A x B. This is indeed a group containing A as a normal subgroup.

Proposition 8.j Suppose A and B are connected Lie groups, a an ana-
lytic homomorphism of B into Aut (A). Let a and b denote their respective
Lie algebras. Then the group G = A x, B has Lie algebra

g-=a+b
with the bracket relation

IX +Y, X' + Y']= X, X'] + d(Y)(X') - d(Y')(X) + [Y,Y'],

where X, X' E a, Y, Y' E b and io is the map b -- dab of B into Aut (a).

Proof Since a and b are subalgebras of g it remains to prove

iX,Y] =-d,(Y)(X), X E a,Y E b.

The differential d is a homomorphism of b into D(a), the Lie algebra of
derivations of a. We have

daexpty = i(exp tY) = et d+(Y) 

Hence by the multiplication in A x B,

exp(-tX) exp(-tY) exp(tX) exp(tY) = exp(-tX)aexp(_ty) (exp(tX))

= exp(-tX) exp(t daxp(_ty)(X)) = exp(-tX) exp(te-t dO(Y)).

Expanding this in powers of t we deduce from Lemma 1.8, [X, Y] =
-dib(Y)(X) as desired.

Lemma 8 If g is a solvable Lie algebra then there exists a Lie group
G with Lie algebrag.

Proof. This is proved by induction on dim g. If dim = 1 we take
G = R. If dimg > 1 then Og $ g so there exists a subspace such that
0g C and dim') = dim g- 1. Let X g, X V . Then [h, g] C Vg C so

b is an ideal in g and g = b+RX. Let by induction H be a simply connected
Lie group with Lie algebra and A a Lie group with Lie algebra RX. The
derivation Y - X, Y] of 1iextends to a homomorphism a : A - Aut (b)
so by Proposition 8,q, H x, A serves as the desired G.

Now let g be an arbitrary Lie algebra over R. Assuming the Levi decom-
position g = r + s, we deduce from the Lemma 8.5, Proposition 8.. and
Corollary 6.5 that g is the Lie algebra of a Lie group.
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9 Differential FormsW

We shall now deal with the general theory of differential forms on a manifold
M and in a later section specializeto the case when M is a Lie group.

Let A be a commutative ring with identity element, E a module over
A. Let E* denote the set of all A-linear mappings of E into A. Then
E* is an A-module in an obvious fashion. It is called the dual of E.

Definition. Let M be a C manifold and put = Co(M). Let
Z,(M) denote the dual of the.a-module D'(M). The elements of Zx(M)
are called the differential 1-forms on M (or just 1-forms on M).

Let XE (M), t E X(M). Suppose that X vanishes on an open
set V. Then the function w(X) vanishes on V. In fact, if p V, there
exists a functionf E C°(M) such that f = 0 in a compact neighborhood
of p and f = outside V. Then fX =X and since w is -linear,
w(X) = fw(X). Hence (w(X)) (p) = 0. This shows also that a I-form
on M induces a I-form on any open submanifold of M. Using (3) we
obtain the following lemma.

Lemma 2.1. Let X E 2(M) and w E l(M). If Xp = 0 for some
p E M, then thefunction w(X) vanishesat p.

This lemma shows that given w E l(M), we can define the linear
function wp on M, by putting w,(X,) = (w(X)) (p) for X E Zl(M).
The set Zl(p) = {oJ: eto E 1(M)} is a vector space over R.

We have seen that a -form on M induces a -form on any open
submanifold. On the other hand, suppose is a I-form on an open
submanifold V of M and p a point in V. Then there exists a I-form 0
on M, and an open neighborhood N of p, p e N C V, such that and 
induce the same I-form on N. In fact, let C be a compact neighborhood
of p contained in V and let N be the interior of C. Select 0 e C-(M) of

*Note that in this section we have kept the original numbering
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compact support contained in V such that ' = I on C. Then a I-form
0 with the desired property can be defined by

(X) = #b(Xv) on V, #(X) = 0 outside V,

where X E lI(M)and Xv denotes the vector field on V induced by X.

Lemma 2.2. The space Zl(p) coincides with M*, the dual of M,.
We already know that Zl(p) C M,*. Now let xl , ..., x,} be a system

of coordinates valid on an open neighborhood U of p. Owing to (3),
there exist -forms wo on U such thatt w'(a/axj) = 8ij (I i,j < m).
Let L E M*, = L((a/ax),) and = SI-,l ao. Then there exists a
l-form on M and an open neighborhood N of p (N C U) such
that 0 and induce the same form on N. Then (0 )p = L and the
lemma is proved.

Each X E Dl(M) induces an -linear mapping w - w(X) of : 1(M)
into . If X, X2, the induced mappings are different (due to
Lemma 2.2). Thus, rD(M) can be regarded as a subset of (l,(M))*.

Lemma 2.3. The module Dl(M) coincideswith the dual of the module
=,(M).

Proof. Let F E I1(M)*. Then F(fw) = fF(w) for all f E C-(M)
and all woE D(M). This shows that if w vanishes on an open set V,
F(cw) also vanishes on V. Let p E M and {xl, ..., x,,} a system of local
coordinates valid on an open neighborhood U of p. Each -form on U
can be written Z.A fiwi wherefi e C0(U) and wi has the same meaning
as above. It follows easily that F(co) vanishes at p whenever w = 0;
consequently, the mapping wp -- (F(o)) (p) is a well-defined linear
function on ZA(p). By Lemma 2.2 there exists a unique vector X, E Mp
such that (F(w)) (p) = wo(Xp) for all t e D(M). Thus, F gives rise
to a family X, (p E M) of tangent vectors to M. For each q U we
can write

X= ai(q)

where aj(q) c R. For each i (1 < i < m) there exists a I-form ti on M
which coincides with woJin an open neighborhood Np of p, (N, C U).
Then (F(2i*))(q) = ci(X,) = a(q) for q E Np. This showsthat the func-
tions as are differentiable. If f E C-(M) and we denote the function
q -- Xjf(q E M) by Xf, then the mapping f -- Xf is a vector field on
M which satisfies w(X) = F(w) for all w E Z1 (M). This proves the
lemma.

tAs usual, 8,- = Oif i*j, bsi = 1 if i =j.
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The Tensor Algebra

Let A be a commutative ring with identity element. Let I be a set
and suppose that for each i e I there is given an A-module E. The
product set lj,,r Ei can be turned into an A-module as follows: If
e = {ej}, e' = {ei} are any two elements in FnEi (where e, e Ei), and
a E A, then e + e' and ae are given by

(e + e')- = e + e, (ae)t = aef for i e 1.

The module lHE is called the directproduct of the modules Ei. The
direct sum Vijl Ei is defined as the submodule of I1Et consisting of
those elements e = {ei} for which all e = 0 except for finitely many i.

Suppose now the set I is finite, say I--= {i, ..., s}. A mapping
f: El x ... x E -- F where F is an A-module is said to be A-multi-
linear if it is A-linear in each argument. The set of all A-multilinear
mappings of E x ... x E8 into F is again an A-module as follows:

(f +f') (e,., e,) =,f(el,..., e) +f'(el, ..., e,),

(af) (e, ..., e,) = a(f(e, ..., e)).

Supposethat all the factors El coincide. The A-multilinear mapping f
is called alternate if f(X 1, ..., X,) = 0 whenever at least two X i coincide.

Now, let M be a C- manifold and as usual we put a = C(lA). If
s is an integer, s > 1, we consider the -module

V X X ... X Il (s times)

and let Z. denote the -module of all -multilinear mappings of
Z' x ... x Z' into A. Similarly Zr denotes the a-module of all a-multi-
linear mappings of

Z X Z, X ... X 1 (r times)'

into 5. This notation is permissible since we have seen that the modules
'1 and , are duals of each other. More generally, let Z: denote the
'-module of all a-multilinear mappings of

a x ... X ... x l (Z r times, al s times)

into W.We often write Z:(M) instead of V. We have Z = Dr, DO= Ts
and we put Z° = .

A tensor field T on M of type (r, s) is by definition an element of
Z'(M). This tensor field T is said to be contravariant of degree r,



covariant of degree s. In particular, the tensor fields of type (0, 0),
(1, 0), and (0, 1) on M are just the differentiable functions on M, the
vector fields on M and the -forms on M, respectively.

If p is a point in M, we define ,(p) as the set of all R-multilinear
mappings of

M* X ... x M* X M X... x M (M* r times, Mp s times)

into R. The set Z (p) is a vector space over R and is nothing but the
tensor product

. M, ... M, ® M* ®... M* (MP r times, M* s times)

or otherwise written

r(p)= ® M, "M*.

We also put r°(p)= R. Consider now an element T E X,(M). We have

T(Ole, grr,e, Z4 ... fz,) =gl... gf,A... f(1, ... 0, Z, ..., Z)

for fo, gj E C7(M), Z E lD(M),0j E z,(M). It follows from Lemma 1.2
that if some Ojor some Zi vanishes on an open set V, then the function
T(l, ... 0,,Z1, ..., Z) vanishes on V. Let {xl, ..., x,} be a system of
coordinates valid on an open neighborhood U of p. Then there exist
vector fields Xi (1 i m) and I-forms cj (I j < m) on M and
an open neighborhood N of p, p E N C U such that on N

X = -- wj(X)= 8, ( i,ji m).

On N, Zi and 0j can be written

Z = fiXk, tj= gl,,o,
k-1 I-I

where fik, gl E C-(N), and by the remark above we have for q E N,

T( 1 ...l, Z, ..., Z) (q)

= gil *...grflk ...fsk.T(wo,..., .. , X, .., Xk,.)(q).

This shows that T(O1, ..., 0,, Z,, ..., Z) (p) = 0 if some Of or some Z,
vanishes at p. We can therefore define an element T E ,(p) by the
condition

TX01)11 ... ' (01),, (Z,) .. .... (Z,.),) = T(01, ... , 8,, Z,, ..., Z.) (A



The tensor field Tthus givesrise to a familyTp,p E M, where T E r:(p).
It is clear that if TP = 0 for all p, then T = 0. The element Tp e s(p)
depends differentiably on p in the sense that if N is a coordinate neigh-
borhood of p and T, (for q E N) is expressed as above in terms of bases
for Za(N) and l(N), then the coefficients are differentiable functions
on N. On the other hand, if there is a rule p -- T(p) which to each
p E M assigns a member T(p) of ,(p) in a differentiable manner (as
described above), then there exists a tensor field T of type (r, s) such
that Tp. = T(p) for all p E M. In the case when M is analytic it is clear
how to define analyticity of a tensor field T, generalizing the notion
of an analytic vector field.

The vector spaces %(p) and ZD(p) are dual to each other under the
nondegenerate bilinear form <(,)> on rE(p) x Z(p) defined by the
formula

<, ..-. e fi, ... Lf,e'; ... e f; ... . O-> =If,(e;)f;(e,),

where e, e are members of a basis of M, fi, f are members of a dual
basis of M*. It is then obvious that the formula holds if ej, e are arbitrary
elements of Mp and fj, fi are arbitrary elements of M,*. In particular,
the form <, > is independent of the choice of basis used in the definition.

Each T e ,(M) induces an -linear mapping of (M) into given
by the formula

(T(S)) (p) = (T,, S'> for S e (M).

If T(S) = 0 for all S E :(M), then T = 0 for all p E M, so T = 0.
Consequently, t:(M) can be regarded as a subset of ((M))*. We have
now the following generalization of Lemma 2.3.

Lemma 2.3'. The module a)(M) is the dual of r(M) (r, s > 0).
Except for a change in notation the proof is the same as that of

Lemma 2.3. To emphasize the duality we sometimes write (T, S>
instead of T(S), (T at, S ).

Let (or (M)) denote the direct sum of the -modules Zt(M),

Da= .
r.8sO

Similarly, if p M we consider the direct sum

() = ZS(p).
r.s-O
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The vector space (p) can be turned into an associative algebra over
R as follows: Let a = el ... e f ...er , b = e ... e;
Of; ... ®f, where e, e are members of a basis for Mp, fl, f; are
members of a dual basis for Mp. Then a ® b is defined by the formula

a b = ... e, . el O*... ( e, .fi® ... Of, Of ... -- ..

We put a ® 1 a, I b = b and extend the operation (a, b) - a ® b
to a bilinear mapping of 2(p) x :(p) into :(p). Then :(p) is an asso-
ciative algebra over R. The formula for a ® b now holds for arbitrary
elements e, e E M. and f, f E M*. Consequently, the multiplication
in :(p) is independent of the choice of basis.

The tensor product ® in Z is now defined as the a-bilinear mapping
(S, T) - S ® T of x into : such that

(S O T), = S T, S E :, T E S, p e M.

This turns the a-module into a ring satisfying

f(S ® T) = fS ® T = S Ofl'

for f E a, S, T E Z. In other words, is an associative algebra over
the ring a. The algebras Z9and D(p) are called the mixed tensor algebras
over M and M., respectively. The submodules

Z* = , Z, YWZ.
=-0 0

are subalgebras of Z (also denoted *(M) and ,*(M)) and the subspaces

)*(=)=, t"(p), *(P)= Z:(P)
r-0 a-0

are subalgebras of D(p).
Now let r, s be two integers > I, and let i, j be integers such that

I < i < r, I < j < s. Consider the R-linearmapping C: Z:(p) -
Z-i(P) defined by

Ci,el ...0e,Ofl0 ...Ofs)=<e,,f,>(el®...... ®e,Of,.. f .. Of),
where e, ..., e are members of a basis of M,,, f, ... , f, are members of
the dual basis of M*. (The symbol ^ over a letter means that the letter
is missing.) Now that the existence of Cij is established, we note that
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the formula for C holds for arbitrary elements e, ..., e, E M, fl ....
f, E Mp*. In particular, C is independent of the choice of basis.

There exists now a unique g-linear mapping Ctt: D(M) - D-I(M)
such that

(C,(2)) = C,(T,)

for all TE ZD(M) and all p E M. This mapping satisfies the relation

CIA(XI X,() , ... ,)
= X, oj> (X, ® ... X, oW... ... ® W.)

for all X1,..., X, ED, w1 , ...,w. e ,. The mapping Cf is called the
contraction of the ith contravariant index and the jth covariant index.

The Grassmann Algebra

As before, M denotes a C manifold and = C°(M). If s is an
integer > 1, let 9I (or 91s(M)) denote the set of alternate W-multilinear
mappings of Z x ... x a (s times) into . Then Ws is a submodule
of DZ. We put 10 = a and let 1 (or (M)) denote the direct sum
,1 = ,_s1o9 of the -modules d,. The elements of %(M) are called
exterior differentialforms on M. The elements of s, are called differential
s-forms (or just s-forms).

Let 6s denote the group of permutations of the set {I, 2, ..., s}. Each
a E s,induces an a-linear mapping of A' x ... x Z' onto itself given by

(Xl, ..., X,) - (X-y, .....X6-,)) (Xi E 1).

This mapping will also be denoted by a. Since each d E Z8 is a multi-
linear map of Z' x ... x Z' into W,the mapping d o a-' is well defined.
Moreover, the mapping d -* d ao- 1 is a one-to-one -linear mapping
of Za,onto itself. If we write a · d = d o a-l we have ar d = a · ( d).
Let (a) = I or - I according to whether a is an even or an odd
permutation. Consider the linear transformation As: Ds - s given by

A,(d,) = X Y ,(,) a, d,, d, E a,.

If s = 0, we put A,(d,) = d,. We extend A to an -linear mapping
A: * A, by putting A(d) = _0 As(ds) if d = - d,,d, E .



If T E ,, we have

= (r) e(a) d.

Hence, - (A(ds)) = (r) A,(d,). This shows that A,(s) C W, and
A(*) C 1I.On the other hand, if d, E W,,then a · d = (a) d for each
a E 6,. Since (a)2 = I, we find that

A,(d,) = d, if d, E Yl.

It follows that A2 = A and A(,*) = IR;in other words, A is a projec-
tion of *, onto lI.The mapping A is called alternation.

Let N denote the kernel of A. Obviously N is a submodule of *,.

Lemma 2.4. The module N is a two-sided ideal in *,.
It suffices to show that if nr E N rn )r, ds e Ds, then Ar4,(nr ® ds) =

A,+r(d, ® nr) = O. Let b+s = A+,,,(n, dJ); then

(r + s)!br+ = () a( (nr(d,),

where

a (nr ®d,) (XI, .., Xr.) = n,(X(l), ..., X,r)) d.(X.(r+l),...,X(cr+s)).

The elements in 6r+s which leave each number r + 1, ..., r + s fixed
constitute a subgroup G of S6,+,isomorphic to S,. Let S be a subset
of .+s containing exactly one element from each left coset oaG of

6r+s Then, since (al, 2) = (ua)e(a%),

Y e(-) a (nr d) = Y e(-o) fe(r) (aOT) (nr d.).
teG'Or+ eS reG

Let Xi E Zt1 (I < i < r + s), (Y1,..., +) = aO(X,... , Xr+s).Then

, S(T) ((.UT) (ntr ®d)) (X, ... , X,+,)
tEG

Thisshowsthatb = 0. Similarlyoneproves̀ 1(d, nr)= 0.
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For any two , w E I we can now define the exterior product

8 A w = A( ®co)

This turns the -module 91 into an associative algebra, isomorphic to
D*,N. The module I(M) of alternate 5i-multilinearfunctions with the
exterior multiplication is called the Grassmann algebraof the manifold M.

We can also for each p E M define the Grassmann algebra.9I(p) of the
tangent space M,. The elements of 9l(p) are the alternate, R-multilinear,
real-valued functions on Mp and the product (also denoted A) satisfies

0, A w, = ( A ),, 0, co E 1.

This turns 91(p)into an associative algebra containing the dual space
M*. If , e M,*, we have A w = -w A ; as a consequence one
derives easily the following rule:

Let 01,..., 1E M* and let u' = ,-. ajOj, I i, j 1, (a, R).
Then

wc A *.. A w' = det (aj) O' A ... A 8'.

For convenience we write down the exterior multiplication explicitly.
Let f, g E C'(M), E IfI, w E 9s, Xi E . Then

f A g =fg,

(IfA ) (Xi,..., X,) = f o(XI,... X,),

(o A g) (Xi, ...X,) = (XI, .X,),

( A c) (X, .....,X+) (4)

1 Z OX) co(Xc,..., X. ,.)) +,-·,1). X00+80,(r + s)! . ....

We also have the relation

A w = (- )rc A . (5)

Exterior Differentiation

Let M be a C- manifold, QI(M) the Grassmann algebra over M. The
operator d, the exterior differentiation, is described in the following
theorem.



Theorem 2.5. There exists a unique R-linear mapping d: 1(M) -- l(M)
with the following properties:

(i) d9Is C ,,s+ for each s > 0.

(ii) Iff E o (= Co(M)), then df is the -form given by df(X) = Xf,
X e ZI(M).

(iii) dod = 0.

(iv) d( A 2) = dAw2 (- i)', A dw2 ifwo E91r, wo2E(M).

Proof. Assuming the existence of d for M as well as for open sub-
manifolds of M, we first prove a formula for d ((9) below) which then
has the uniqueness as a corollary. Letp E M and x,, ..., xm,,a coordinate
system valid on an open neighborhood U of p. Let V be an open subset
of U such that is compact and p e V, P1C U. From (ii) we see that
the forms dxi (I i m) on U satisfy dxi(aaxj) = i on U. Hence
dxi (I i < m) is a basis of the Co( U)-module l(U); thus each element
in Z.(U) can be expressed in the form

CFl...ir dx (... 0 dxi,, Fi..., E C(U).

It follows that if 0 e 9(M) and if u denotes the form induced by 0
on U, then 8u can be written

Ou = fi,..., dx,, A ... A d,, fi .. , G C'(U). (6)

This is called an expression of u on U. We shall prove the formula

d(v) = (d) v.

Owing to Lemma 1.2 there exist functions ij ...i, E C-(M), i E Co(M)
(I i m) such that

/ X ...i 'P =f...i,, =X ... , = xmon V.

We consider the form

= i a i,.. , di, A... A d i,

on M. We have obviously wv = Ov. Moreover, since d(f(O - w)) =
df A ( - w) + fd(0 - w) for each f E C>(M), we can, choosing f
identically 0 outside V, identically 1 on an open subset of V, deduce
that (dO)v= (dw)v.



Since

dw = d ,,... i, A d, A ... A d,

owing to (iii) and (iv), and since d(fv) = (df)v for each f E C~(M),
we conclude that

(dW)v = dfi,..., A dxi A ... A dxi,. (7)

This proves the relation

(dO), = d(v) = dfi,... i, A dx,, A ... A d,,. (8)

On M itself we have the formula

(p+ 1)d-(Xt..., X,.,)= (-1)'+ X,, i ....X.,,)
f-I

+ (- l)ii([Xi, X,] ,Xl ....-, , ...., ... X+) (9)
i<)

for w e Iv(M) (p > 1), X E t(M). In fact, it suffices to prove it in
a coordinate neighborhood of each point; in that case it is a simple
consequence of (8). The uniqueness of d is now obvious.

On the other hand, to prove the existence of d, we define d by (9)
and (ii). Using the relation [X, fY] =f[X, Y] + (Xf) Y (f e 5; X,
Y V), it follows quickly that the right-hand side of (9) is -linear
in each variable Xi and vanishes whenever two variables coincide.
Hence dw e Ip+x if w E 9[,. If X E aV, let Xv denote the vector field
induced on V. Then X, Y]v = [Xv, YV] and therefore the relation
(dO)v = d(Ov) follows from (9). Next we observe that (8) follows from (9)
and (ii). Also

d(fg) = fdg + gdf (10)

as a consequence of (ii). To show that (iii) and (iv) hold, it suffices to
show that they hold in a coordinate neighborhood of each point of M.
But on V, (iv) is a simple consequence of (10) and (8). Moreover,
(8) and (ii) imply d(dx) = 0; consequently (using (iv)),

ga. - Tdx ^i =o

for each f E C(U). The relation (iii) now follows from (8) and (iv).



. Effect on Differential Forms

Let M and N be C manifolds and 0: M -- N a differentiable
mapping. Let w be an r-form on N. Then we can define an r-form
SI*w on M which satisfies

·P*o(X, ..., Xr) = (Y, ... , Y) o 

whenever the vector fields Xi and Yi (1 i < r) are -related. It
sufficesto put

(s*o).(AI, ... A,) = Wo,,)(d0,(Al),... dO,(A,))

for each p E M, and A, e M,. Iff e C-(N), we put O*f = f o and
by linearity 0*0 is defined for each 0 E I9(M). Then the following
formulas hold:

0d*(o) A w2) = 0*(wo) A *(W2), Wit W E 1(M); (5)

d(O*w) = 0*(dw). (6)

In fact, (5) follows from (4), § 2, and (6) is proved below. In the same
way we can define 0*T for an arbitrary covariant tensor field T e *,(M).
If M = N and 0 is a diffeomorphismof M onto itself such that * T = T,
we say that T is invariant under 0.

The computation of O*w in coordinates is very simple. Suppose U
and V are open sets in M and N, respectively, where the coordinate
systems

f: q - (x,(q), ...,xm(q)), 1: r - (y,(r), ..., y(r))

are valid. Assume ¢(U) C V. On U, 0 has a coordinate expression

yi = PJ(Xi,..., Xm) (1 i j 6 n).

If o E (N), the form wv has an expression

Wov = gj ... j, dy, A ... A dy, (7)

where gj, ... j, e C*(V). The form 0 *o induces the form (*w)u on U,
which has an expression

(O*o°) = ,...,dxr, ... A dxi,.

This expression is obtained just by substituting

y. = ~j(x,,*., =), dy= x, (I j n)

into (7). This follows from (5) if we observe that (2) implies

*(dyj)= ( ° ) dxi.

This proves (6) if w is a function, hence, by (7), in general.

23



Let V be a finite-dimensional vector space and Z1, ..., Z, a basis of V.
In order that a bilinear map (X, Y) -* [X, Y] of V x V into V turn V
into a Lie algebra it is necessary and sufficient that the structural constants
Yjk given by

1

satisfy the conditions

yijk + Yiki 0
n

rYijIkm + ,ijmrYik+ ijkrim = O.
j=1

Theorem Z,,.(the third theorem of Lie) Let Cik e R be constants
(I < i, j, k < n) satisfying the relations

cijk + cikj = 0 (8)

(CijCjk+ CijCjk + ikCjm) = 0. (9)

Then there exist an open neighborhood N of 0 in R' and a basis Y 1, ..., Y
of Tl(N) over C"(N) satisfying the relations

[Yj, Yk]= C jkii (10)
2=1

Proof. We shall find a basis w,, ..., O of Z,(N) over C-(N) satisfying
the relations

dw i - A C AjojA k. (11)
.k=l

Then the Y1, ..., Y can be chosen as the basis dual to ,co..., wt
(Lemma 2.3, Chapter I), and (10) follows from (II).

e start by defining -forms

Oi= Oi(t,a1, ..., an) = If,j(t, a, ..., an)daj
j=l

as solutions to the differential equations

dai - iJkajOk, 0i(0, a, ... , a) = 0. (13)
I,k

This amounts to a linear inhomogeneous constant coefficient system
of differential equations for the- functions fij, so these functions are
uniquely determined for (t, a,, ..., an) e Rn+'. Using (13) we get

d6)i = df2 dt Aakdai + S dak A daj
Ot #, k a,

= (-dai+ cijkajOk) A dt + Z ada, A da,.
).k jk a.

We write this formula

dOi = , A dt + Pi, (14)

R/t



where the at and i are 1-forms and 2-forms, respectively, which do not
contain dt. Next we put

e = i + i X cj.1 A 6,
j.k

and since we would by Chapter I expect the forms O(t, a, ..., an)t.1
to satisfy (11) we now try to prove that ai = 0. Using (8), and writing ...
for terms which do not contain dt, we have

de = dfi + I ciskdOj A Ok
j.k

= -dt A dai - di A cnJk A Ok +

Using the expression for a and (14), this becomes

-dt A I c+k(da+A Ok+ aik + oj A Ok)+...
i.k

=-d A Y Cijk(Y, cj aO A k+ a )+ *-
J,k pq

But since 60 A Ok = -Ok A , we have

,c'jkc'1 O A Ok = , (C c',C-.c ,'C'k)O.A Ok,
~~jk,9 IJck.q,

which by (8) and (9) equals

-& ~ c¢CJq.kO.A k

This proves

dai= -dt A ( C'jkajk - apci,c , k O, A Bk)+...
jk j.k.p.q

= -dA C' (-akg, - Z akc.,OQA 0,) ...
L~k qr

jk

This amounts to

at= I JCkakca
jk

which, since the ai all vanish for t = 0, implies that each oa vanishes

identically. Thus we see from (14) that the forms wi = 8i (1, a, ..., a,)
will satisfy (11). Finally, (13) implies that

O8(t, O....,0) = t dai,

so the forms owt are linearly independent at (a1, ..., a)= (0, ... , 0),
hence also in a suitable neighborhood of the origin. This concludes the
proof.
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10 Integration of Forms

A manifold M is said to be orientable if there exists a collection (U', 4'a),(EA
of local charts such that {Us}scEAis a covering of M and such that for any
a, 3 E A, the mapping Va o ,1 has strictly positive Jacobian on its domain
of definition b (Us n Uf). The manifold M is said to be oriented if such a
collection (Us, V)o)aeAhas been chosen.

For the definition of integration on M the following weak form of parti-
tion of unity is useful.

Lemma 0.1. Let K C M be compact and VI,....V,, open sets such that
K C Un Vj. Then there exist functions pj E e'(Vj) such that Tj 0 and
Elcpj < 1 with equality sign holding in a neighborhood of K.

Proof:
For each j there exists a compact set Cj C Vj. Using Lemma 1.2 in Ch. I

we can pick a function 'j E eC(Vj) such that 0 < j < 1 and bj = 1 in a
neighborhood of -C. Weca alsomrmnge tat KC (iCj. Then

(pi='p1, , j =%j(1- 1) (1-I-0

has the desired property.

Let S be a locally compact Hausdorff space. The set of real-valued
continuous functions on S will be denoted by C(S), and C,(S) shall
denote the set of functions in C(S) of compact support. A measure on S
is by definition a linear mapping t: Cc(S) -- R with the property that
for each compact subset K c S there exists a constant MK such that

IL(f)l < MK sup( f(x)l
xeS

for all f E C,(S) whose support is contained in K. We recall that a linear
mapping : C,(S) -, R which satisfies /z(f) > 0 for f > 0, f C(S), is a
measure on S. Such a measure is called a positive measure. For a
manifold M we put (M) = C*(M), (M) = (M) n C,(M). Suppose
M is an orientable m-dimensional manifold and let (U., q,),A be a col-
lection of local charts on M by which M is oriented,

Let o be an m-form on M. We shall define the integral IMfJo
for each feC,(M). First we assume that f has compact support con-
tained in a coordinate neighborhood U and let



0.(q) = (x(q), .. ., x.(q)), q U.

On U,, w has an "expression" (cf., [DS], Chapter I, §2, No. 4)

(1) coy. = F,(xl,.. .. x,) dxl A ... A dx,,

and we set

If = (fo1)(x..,,J)F(xl,. .., xm)dx .dx

On using the transformation formula for multiple integrals we see that
if f has compact support inside the intersection U rn Up of two coor-

dinate neighborhoods, then the right-hand side in the formula above is

(f°o-iXyl ..., y.)Fp(yl,..y** m)dy ... dy,,
ovum}

if Fpdyt A ^ Â dy,. is the expression for w on Up. Thus SMfw is well-
defined. Next, let f be an arbitrary function in Cc(M). Then f'vanishes

outside a compact subset of M so by Lemma 10.1, f can be expressed as a

finitesumf = Ei fi

each J has compact support inside some neighborhood U, from our
covering. We put

Here it has to be verified that the right-hand
side is independent of the chosen decomposition f-- if, of f. Let f =
L gj be another such decomposition and select 4 EC,(M) such that
~ = I on the union of the supports of all f/ and gj. Then q0= GC,
(finite sum), where each 0, has support inside a coordinate neighborhood
from our covering. We have

C Pi = Egj4~a,
i j

and since each summand has support inside a fixed coordinate neigh-
borhood,

Pihn;e) = Ee (g ou.

For the same reason the formulas

f = .rf(, gj= giab



imply that

fi = E fJ 1(kIf fgiO)= Er(#j I)(W,

from which we derive the desired relation

E = El .
The integral- fo is now well-defined and the mapping

,-f , fEEC(M),

is a measure on M. We have obviously

Lemma 10,2Z.if JM .fi)= O /br all f/' C(M), then ¢o= 0.

Definition. The m-form a) is said to be positive if for ceach a E A,
the function F, in (1) is >0 on O,(U,).

If o is a positive m-form on M, then it follows readily from Theorem
LemalO10.1 provedabove that Mfio > 0 for each nonnegative function

fe CC(M). Thus, a positive m-form gives rise to a positive measure.
Suppose M and N are two oriented manifolds and let ·1 be a diffeo-

morphism of M onto N. We assume that Dis orientationpreserving,that
is, if the collection of local charts (U,, 4 ,),A defines the orientation on
M, then the collection ((U,), °o'-I),,A of local charts on N defines
the orientation on N. Let m denote the dimension of M and N.

Let co be an m-form on N and Q*o its transform or pullback by
I, (lastsection), Then the formula

(2) f,M* =I( -')o
holds for all f e C,(M). In fact, it suffices to verify (2) in the case when
f has compact support inside a coordinate neighborhood U,. If we
evaluate the left-hand side of (2) by means of the coordinate system ,
and the right-hand side of (2) by means of the coordinate system
0, - ', both sides of (2) reduce to the same integral.



§ 7. Invariant Differential Forms

Let G be a Lie group with Lie algebra . A differential form w on G

is called left invariant if L(x)* w w=for all x E G, L(x) denoting the

left translation g -- xg on G. Similarly we define right invariant differen-

tial forms on G. A form is called hi-invariant if it is both left and right

invariant.

Let w be a left invariant p-form on G. Then if XI, ..., X,,, E g are

arbitrary, Xi the corresponding left invariant vector fields on G, we

have by (9), Chapter I, §2,

(p + i) dat(X, ..., X+,)

=X (-l )i+j ([, XI],X, ..., X, ..., si, ..., X.+,). ( )
i<j

Lemma 7.1. Let cobe a left invariant form on G. If w is right invariant

then t is closed, that is, dw = 0.

Proof: Let w be a p-form, J the mapping z -- xz- 1. Then the pull-back

J*w is still bi-invariant and J*w = (-1)Pw. Now dw is also bi-invariant and

= dJ*w J* dw = (-1)P+ l dw. Since the left hand side equals (-1)P dw we

have dw = 0.

Proposition 7.2. Let X1, ..., X,, be a basis of g and w1,, ., , the

I-forms on G determined by oj(X1 ) Sj. Then

di= -i e cwj A,k (3)

if cit. are the structural constants given by

[Xj, Xk] = X C X.
i-l

Equations (3) are known as the Maurer-Cartan equations. They

follow immediately from (I). Note that the Jacobi identity for g is reflected

in the relation d2 = 0.

Example. Consider as in §1 the general linear group GL(n, R) with

the usual coordinates a -* (xij(a)). Writing X = (xj), dX = (dxj), the
matrix

-2 = X-' dX,

whose entries are 1-forms on G, is invariant under left translations

X -- aX on G. Writing
dX = XQ2,

we can derive

0 = (dX) A'2 + X A dQ,

where A denote the obvious wedge product of matrices. Multiplying

by X - ', we obtain



dQ+ A f = 0,

which is an equivalent form of (3).
More generally, consider for each x in the Lie group G the mapping

dL(xvl) : G-* g

and let fQ denote the family of these maps. In other words,

D.(v) = dL(x- 1)(v) if v e G.

Then Q2is a I-form on G with values in . Moreover, if x, y E G, then

D,, o dL(x). = 1,,

so Q is left invariant. Thus f = 1n (j)z Xi in terms of the basis
X, ..., X, in Prop. 7.2, 80, ..., 0, being left invariant 1-forms on G. But
applying Q. to the vectors ()_ it is clear that 0j = w, (1 j < n).
Hence we write

f= A WXi, dQ = dwjX,.

If 0 is any g-valued -form on a manifold X, we can define [, 0] as
the 2-form with values in g given by

[0e,0] (VI, V2) = [(vI), 0(V2)], X e X, Vl, V, E X,.

Then Prop. 7.2 can be reformulated as follows.

Proposition7.3. Let 2Qdenote the uniqueleft invariant g-valued I-form
on G such that D. is the identity mapping of G, into g. Then

dQ + [s[Q,D] = 0.

In fact, since cijk is skew in (j, k)

(Q2,. (v,V) = [a W,(V)X,,X Wk(02)Xk]
$ ck

X j(V 1 ) k(V2) C'jk = CCjk(Wj A Wk)(V1, V2) Xi
~i ~~~j~k iJ,k

-2(dD), (vt, V2).

We shall now determine the Maurer-Cartan forms w explicitly in
terms of the structural constants Cjk. Since exp is a C- map from g into
G, the forms exp* w can be expressed in terms of the Cartesian coordi-
nates (xl, ..., x.)-of g with respect to the basis X1, ..., X,.

(exp*(wt))x (Xj) = AjI(x x, ..., x,), (5)

/C

(4)



where X = Y xXi and Ai E CD(Rn). Now let No be an open star-
shaped neighborhood of 0 in g which exp maps diffeomorphically onto
an open neighborhood N of e in G. Then (xI, ..., x,) are canonical
coordinates of x = exp X (X E No) with respect to the basis X, ..., X,.
Then, iffE C-(G),

d expx(X)f = (X,)x (f o exp)= ( dt f(exp(X + tX,))) ,

whence

dexpx(Xj)=

Consequently,

(i) ()= uj(d expX(Xj))= exp*(w)x(X1),

so

(i) = Ai,(xl, ...., x) dxj. (6)

Thus by Theorem 1.7 and the left invariance of cvi,

A,, .... x.) - (w,) (dexpx(Xj))= (,). ( dX (X)).

Summarizing, we have proved the following result.

Theorem 7.4. Let. X,..., , be a basis of g and the left-invariant
1-forms wt determined by woJ(X) = 8i. Then thefunctions Ai in (5) and (6)
are given by the structural constants as follows. For X = YI xiX l in g
let A(X) be defined by

A(X)(Xj) = A,1(x,, ....., ) Xi ( < j < n).

Then
1 - e- ad X

A(X) ad X (7)

and

ad X(Xj) = c( xictj) XI.

q9



§ 1. Invariant Measureson Coset SpacesQ

Let M be a manifold and cDa diffeomorphism of M onto itself. We re-
call that a differential form o on M is called invariant under ( if

*c = .

Let G be a Lie group with Lie algebra g. A differential form o on G is
called left-invariantif L'o = o for all x e G, L, [or L(x)] denoting the
left translation g - xg on G. Also, Rx [or R(x)] denotes the right trans-
lation g -+ gx on G and right-invariant differential forms on G can be de-
fined. If X E g, let X denote the corresponding left-invariant vector field
on G. Let X,,..., X, be a basis of g. The equations woi(j) = 6 deter-
mine uniquely n -forms i' on G. These are clearly left-invariant and the
exterior product = o A -.. A Wo"is a left-invariant n-form on G. Each
1- form on G can be written Ei"= feco', where f Ef (G); it follows that
each n-form can be written fo, where f e (G). Thus, except for a
constant factor, co is the only left-invariant n-form on G. Let

4: - (XI(X).. .,X(X))

Note that 1.1, 1.2, 1.3,1.11, 1.12,and 1.13 donotappearinthissection.
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be a system of canonical coordinates with respect to the basis XI,..., X,
of ., valid on a connected open neighborhood U of e (cf. [DS], Chapter
II, §1). On U, w has an expression

tO = F(xl,...,xn)dxi A ' A dx,

and F > 0. Now, if g E G, the pair (Lg U, 0 o Lg- ) is a local chart on a
connected neighborhood of g. We put ( o L- )(x) = (yI(x),.. ,y(x))
(x e Lg U). Since yi(gx) = xi(x) (x E U n Lg U), the mapping

L,: U L U

has coordinate expression given by

(Ys .yn) = (x, x.,xn)

On L, U, o has an expression

WL. = G(y,...,y.)dyl ^ A-dy.,

so that the invariance condition o, = L*w,, (x e U n LgU) can be
written

G(y,(x) .... y.(x))(dyI A ... A dy,),
= G(x (x),..., x(x))(dx, A ... A dx),.

HenceF(xl(x),..., x,(x))= G(x(x),.. ., x(x)) and

DUyI(x),..., y(x))
F(x,(x),. . ., x(x)) = F(yj(x),..., y.(x)) (x . , x(x))

for x E U rn Lg U, which shows that the Jacobian of ( o Lg- ) - is
>O0.Consequently, the collection (LgU, o Lg-,)geG of local charts turns
G into an oriented manifold and each left translation is orientation pre-
serving. The orientation of G depends on the choice of basis of g. If
X;, ... , X' is another basis, then the resulting orientation of G is the same
as that before if and only if the linear transformation

Xi - X (I < i < n)

has positive determinant.
The form co is a positive left-invariant n-form on G and except for a

constant positive factor, to is uniquely determined by these properties.
We shall denote it by dg. The linear mapping of C,(G) into R given by
f - | f dig is a measure on G, which we denote by . This measure is
positive; moreover, it is left-invariant in the sense that jl(f o L,) = ,(f)
for x E G, fE C,(G).

Similarly, G can be turned into an oriented manifold such that each
R, (g E G) is orientation preserving. There exists a right-invariant posi-
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tive n-form dg on G and this is unique except for a constant positive
factor. We define the right-invariant positive measure M,on G by

r(f)= Ifdr g, fE Cc(G).

The group G has been oriented in two ways. The left-invariant orienta-
tion is invariant under all right translations R, (x EG) if and only if it is
invariant under all I(x) = L x oRx-, (x E G). Since the differential dl(x)g
satisfies

dl(x)g = dLxgx- o Ad(x) o dLg- ,

the necessary and sufficient condition is det Ad(x) > 0 for all x e G. This
condition is always fulfilled if G is connected.

Lemma 1.4. With the notation above we have

drg = c det Ad(g) dig,

where c is a constant.

Proof. Let 0 = det Ad(g) dig and let x E G. Then

(Rx- )* = det Ad(gx- )(R,- ,)*dig = det Ad(gx- l)I(x)* dig.

At the point g = e we have

(I(x)*(dtg))e = det Ad(x)(dg)e.

Consequently,

(R-,l*0)e = det Ad(e)(d,g) = 0e.

Thus, 0 is right-invariant and therefore proportional to d,g.

Remark. If G is connected it can be oriented in such a way that all
left and right translations are orientation preserving. If drg and dg are
defined by means of this orientation, Lemma 1.4 holds with c > 0.

Corollary 1.5. Let x, y EG and put d,(ygx) = (LyRe)*dig, d(xgy) =
(LxRy)* d,g. Moreover, if J denotes the mapping g - gl, put d(g - t ) =
J*(dlg). Then

dl(gx) = det Ad(x- ') d(g), d,(xg) = det Ad(x) drg,

d(g- l) = (_ )dimCdet Ad(g)dg.

In fact, the lemma implies that

c det Ad(g) djg = drg = dr(gx) = c det Ad(gx) dl(gx),

d,(xg) = c det Ad(xg) dl(xg) = c det Ad(xg) dig.



Finally, since JR, = Lx-I J, we have

(R,)*dl(g ') = (R,)*J*dlg = (JR,)* dig = (L,-. J)* dig = J* dig,

so that d(g-') is right-invariant, hence proportional to d,g. But obviously 

(d,(a-')L = ( r-i )d (d,a)., I

so that the corollary is verified.
r

Definition. A Lie group G is called unimodular if the left invariant
measure ul is also right-invariant.

In view of Corollary 1.5 we have by (2)

(6) p(.f o R.) = Idet Ad(x) ,(f').

It follows that G is unimodular if and only if Idet Ad(x)l = 1 for all
x e G. If this condition is satisfied, the measures p, and u, coincide except
for a constant factor.

Proposition 1.6. The following Lie groups are unimodular:
(i) Lie groups G for which Ad(G) is compact;
(ii) semisimpie Lie groups;
(iii) connected nilpotent Lie groups. 

Proof. In the case (i), the group { det Ad(x): x e G} is a compact 
subgroup of the multiplicative group of positive real numbers. This sub-
group necessarily consists of one element, so that G is unimodular. In
the case (ii). each Ad(x) leaves invariant a nonderenerate bilinear form 
(namely, the Killing form). It follows that (det Ad(x)) 2 = . Finally, let
N be a connected nilpotent Lie group with Lie algebra n. If X e n, then
ad X is nilpotent, so that Tr(ad X) = 0. Since

det eA = rTrA

for an arbitrary linear transformation A, we obtain

det Ad(exp X) = eT(Adx = 1.

This proves (iii).

Notation. In the sequel we shall mostly use the left invariant measure
. The measure dg is usually called Haar measure on G. For simplicity

we shall write # instead of pi and dg instead of dig.
Let G be a Lie group with Lie algebra g; let H be a closed subgroup

with Lie algebra b . Each x G gives rise to an analytic diffeomor-
phism T(x):gH - xgH of GH onto itself. Let 7e denote the natural
mapping of G onto GH and put o = n(e). If h H, (dr(h))° is an endo-
morphism of the tangent space (G/H)o. For simplicity, we shall write
d,(h) instead of (dT(h))o and d instead of (d7t),.

qS-



Lemma 1.7.

det(dr(h)) = dt AdG() (h e H).
det Ad, (h)

Proof. It was shown in DS], Chapter II, §4, that the differential di
is a linear mapping of g onto (G/H)o and has kernel t). Let m be any sub-
space of g such that g = D + m (direct sum). Then d induces an
isomorphism of m onto (GIH)o. Let X e m. Then

AdG(h) X = dRh-l o dLh(X).

Since ir o Rh = i,. (h E H) and 7r o L = (g) o n. (g E G), we obtain

(7) dr oAdG(h) X = d'r(h)o dr(X), h E H, X m.

The vector AdG(h)X decomposes according to g = ) + m,

AdG(h)X = X(h), + X(h),.

The endomorphism Ah: X X(h)m of m satisfies

d7ro A(X) = dt(h) od7r(X), X e m,

so that det Ah = det(dr(h)). On the other hand,

exp AdG(h)tT = h exp tT h- ' = exp Adn(h) tT

for t E R, T E I. Hence AdG(h)T = AdH(h) T so that

det AdG(h) = det Ah det AdH(h),

and the lemma is proved.

Proposition 1.8. Let m = dim G/H. The following conditions are
equivalent:.

(i) G/H has a nonzero G-invariant m-Jbrm cv;
(ii) det AdG(h)= det Adf(h) for h e H.

If these conditionsare satisfied, then G/H has a G-invariantorientation
and the G-invariant m-form cvois unique up to a constant factor.

Proof. Let cvobe a G-invariant m-form on G/H, co ¢ 0. Then the re-
lation (h)*co= co at the point o implies det(dr(h)) = 1, so (ii) holds.
On the other hand, let XI,..., X, be a basis of (GiH) o and let
cv', ... , cO" be the linear functions on (GiH)o determined by ow'(X)=6ij.
Consider the element cl' A ... A oa" in the Grassmann algebra of the
tangent space (G/H)o. Condition (ii) implies that det(dr(h))= 1 and the
element co' A ... A o' is invariant under the linear transformation
dr(h). It follows that there exists a unique G-invariant m-form co on G/H
such that coO= o ' A A cO'. If o)* is another G-invariant m-form on
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[

GIH, then co*= fJo, where f $(G/H). Owing to the G-invariance, f =
constant.

· · s1-x t , I I I I I, 11 i , t. _
Assuming (1), let p: p --* xlp),... ,xm,,p)) e a system o cooramates

on an open connected neighborhood U of o e G/H on which co has an
expression

cOu= F(x 1,...,xm) dxl A ... A dxm,

with F > 0. The pair (r(g)U, 4 o T(g-')) is a local chart on a connected
neighborhood of g o e G/H. We put ( o r(g- ))(p) = (yJ(p), .. , Ym(P))
for p e z(g)U. Then the mapping (g): U -* z(g)U has expression ([DS],
Chapter I, §3.1) (yl,... ,Y) = (x, ... ,xm). On (g)U, co has an expres-
sion

()o,(gU = G(y 1 ,...,y,) dyl A ... A dym

and since oq = r(g)*o&(g)qwe have for q e U n r(g)U

q = G(y (q),..., ym(q))(dy A . A dym)q
= G(x (q),.. ., x(q))(dxI A .' dm)q.

Henc;e.F(x1(q),...,xm(q)) G(x1(q), ... , x,(q)) and

(yI(q),. ,Ym(q))
F(x (q),. . , xm(q))= F(y (q), . . ,(q))

which shows that the Jacobian of the mapping ( o r(g- )) o -l is >0.
Consequently, the collection (T(g)U, 4)oT(g-'))gCof local charts turns
G/H into an oriented manifold and each T(g) is orientation preserving.

Tne G-invariant form o now gives rise to an integral ffw which is in-
variant in the sense that

fa = ( o r(g))w, g E G.

However, just as the Riemannian measure did not require orientability,
an invariant measure can be constructed on G/H under a condition

· · · * · lo . A ! .I __ --; T*-! A _ _ ir; Ir D2DX;l"

which is sligntly more general tnan (n). Ine projective space ~(tK)will,
for example, satisfy this condition but it does not satisfy (ii). We recall
that a measure ,u on GH is said to be invariant (or more precisely G-
invariant) if /i(f o r(g)) = /L(f) for all g E G.

Theorem 1.9. Let G be a Lie group and H a closed subgroup. The
relation

(8) Idet AdG(h)l = Idet AdH(h)I, h E H,
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is a necessary and sufficient condition for the existence of a G-invariant
measure >0 on G/H. This measure dg, is unique (up to a constant factor)
and

(9) {f(g)dg GlH({ff(gh) dh)dgH, f C(G),

if the left-invariant measures dg and dh are suitably normalized.

Formula (9) is illustrated in Fig. 6, where : G - G/H is the natural
mapping.

We begin by proving a simple lemma.

Lemma 1.10. Let G be a Lie group and H a closed subgroup. Let dh
be a left-invariant measure >0 on H and put

f (gH) = f (gh) dh, f E CC(G).

Then the mappingf - f is a linear mappingof CC(G)onto Cc(G/H).

Proof. Let F e C,(G/H); we have to prove that there exists a function
fe CC(G) such that F = f Let C be a compact subset of G/H outside
which F vanishes and let C' be a compact subset of G whose image is C
under the natural mapping r: G -, G/H. Let CH be a compact subset of
H of positive measure and put C = C' CH. Then r(C) = C. Select
f e C(G) such that f2 0 on G and f > O on C. Then f > 0 on
C (since C. has positive measure) and the functionIf(g)F(7(g)) if)(g) e C

f(g) = g) ft((g))
0 if r(g) C

belongs to CC(G)and f =,F.

G

G/H
FIG. 6

91

H
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Now in order to prove Theorem 1.9 suppose first that the relation

Idet AdG(h) = Idet AdH(h)l, h e H,

holds. Let E Co(G). Since we are dealing with measures rather than dif-
ferential forms, we have by Cor. 1.5

()( f (gh)dh) g = fJdhj (g)f(gh)dg

= f dh J (gh 1)f(g)det AdG(h)ldg

= f(g)dg f{(gh - ') det AdG(h)dh.

But the relation (8) and the last part of Corollary 1.5 shows that

f (gh I')idet AdG(h)dh =A (gh) dh,

so that

I(q dgff(gh) dh = ff(g)dg f(gh)dh.
G H G f h

Taking 4 such that f 4(gh) dh = I on the support of f, we conclude that

f(g) dg = O iff - 0.

In view of the lemma we can therefore define a linear mapping
j: Cc(G/H) - R by

(F)= f(g) dg if F = 

Since y(F) 2 0 if F > 0, u is a positive measure on G/H; moreover,

p((J)T(x))= fLx)(g)dg = J'(g)dg = p(f).
so that ,u is invariant.

For the converse we shall first prove the uniqueness of the left Haar measures
on G and H.
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The uniqueness can be proved as follows. If p and
A are two left invariant Haar measures, define v by v(f) = '(f) where
f(g) = f(g-'), f E C(G). For g E Cc(G) considerthe function s -
f(s) f g(ts) dv(t) and integrate it with respect to . Since the v-integral is
constant in s the result is

A(f)(g) = f (s) (t dv(t) d(s) = /dv(t) Jf(s)g(ts)dj(s)

= Jdv(t)if (tl'os)g(a)d(a) =J g() dp(a) f (tela)dv(t).

Put h(ot) = f (t-'a)dv(t)lI(f). Then the formulashowsv = hp (h
independent of f). Taking a = e we deduce

h(e)(f) =v(j)=I(f)
so A and A' are proportional.

If ju is a positive invariant measure on G/H, the mapping f--,/ (f) is a
positive left invariant measure on G. Owing to the uniqueness mentioned,

ff() dg=

In view of the lemma this proves the uniqueness of p as well as (9). In
order to derive (8), replace f(g) by f(ghl) in (9). Owing to Corollary 1.5
the left-hand side is multiplied by det AdG(hl)l and the right-hand side
is multiplied by Idet Ad0 (h,)j. This finishes the proof of Theorem 1.9.

Remark. If H is compact, condition (8) is satisfied; hence in this
case G/H has a G-invariant measure.

3. Haar Measure in Canonical Coordinates

Let G be a Lie group with Lie algebra q. Select neighborhoods N o of
O in f and N, of e in G such that the exponential mapping exp: g -- G
gives a diffeomorphism of No onto Ne. Fix a Euclidean measure dX on
·g and let dg denote the left-invariant form on G such that (dg), = dX.

Theorem 1.14. With dg and dX as above we have for the pullback
by exp

(12) (exp)*(dg)= det d-e dX.

If feC(G) has compact support contained in the canonical coordinate
neighborhood Ne, then

(13) f(g)dg = f (exp X) det l e-) d

Proof. Since dg is left-invariant, formula (12) is an immediate conse-
quence of Theorem 1.7, Chapter II, Then (13) follows from (2)
in §1 used on the function fo exp.
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§ 7 Continued
Now let G be a compact connected Lie group. Let dg denote the

Haar measure on G normalized by JGdg = 1, let Q be a fixed positive
definite quadratic form on g invariant under Ad(G), and fix a basis
X1, ..., X, of g orthonormal with respect to Q. Let w1, ..., uw,be the left
invariant. I-forms on G given by woJ(.j)= -s and put 0 = w1 A .. A o,.
Then is left invariant and also right invariant because det Ad(g) _ 1
by the compactness of G. Also each n-form on G can be written
c = f8 wheref C-(G) is unique, so we can define

= f (g) dg. (16)

Lemma 7.6. Let w be an (n - 1)-form on G. Then

f dw-O.

This is a special case of Stokes's theorem and can be proved quickly
as follows. We have dw = h where h E C-(G). By (16) and the bi-
invariance of dg and , we have, since d commutes with mappings and
integration with respect to another variable,

= GJfGR(x)*L(y)* (d) dx dy

= d (fGGR(x)*L(y)*w dxdy) = 0,

the last equality following from Lemma 7.1.
Next we recall the * operator which maps 91(G)onto itself, 91(G) onto

1,_vp(G)(O < p < n). Let al, ..., a, be the basis of the dual space g*,
dual to (Xi),(e) the Grassmann algebra of g = G,, and *: 9(e) - 91(e)
the mapping determined by linearity and the condition

*(ae A ... A ai,) = ±oa A ... A j_ , (17)

where {i,, ..., i, j, *..., j,_,} is a permutation of {1, ..., n}, the sign being

+ or - depending on whether the permutation is even or odd. We shall
use the following simple fact from linear algebra (for proofs, see e.g.

Flanders [1], Chapter 2):

(i) If (Xi) is replaced by another orthonormal basis (X') where
X; = Einl gi1Xs with det (g#1 ) = 1, then the definition of * does not
change.

(ii) If i < . < i,, then

or, A ... A A *(%il A ... A %) = a A ... A .

(iii) **a = (-1 ).P,-Pa if o E lp(e).

From (i) we have since det Ad(g) = 1, Ad(g)* = *Ad(g) (g E G).

Thus we can define *: 9I(g)--* 1(g) as the map L(g-l)* * L(g)* or as
the map R(g-')* * R(g)*. Finally, the mapping *: 91(G) % (G) is
defined by the condition

(*) = *(W.), o e 21(G), g G.

Then * commutes with L(x)* and R(y)* for all x, y E G.



Next we define the linear operator 8: 1(G) -- (G) which maps
p-forms into (p - I)-forms according to the formula

Sw= (-I)"+"+l *d * ,, c E ,(G).

We then introduce an inner product < , > on I(G) by

<(, > = 0 if w E1,(G), 7 e 1,(G) (p q),

~<ohOW = |G w A * if w, e 21,(G)

and the requirement of bilinearity. This inner product is strictly positive
definite; in fact we can write

Cw= al...ip,wil A ... A wip
il< ...ip

and then

c/ A *wo= ( a up) 
g1<...ta"

so the statement follows. Moreover d and 8 are adjoint operators, that is,

(dw, )> = <, n)>, w, ,; e %(G). (18)

It suffices to verify this when w E p-_,(G), E Up,(G).But then

d(w A *) = dw A *1 + (-1)P-1w A d * n7= dw A * - woA *T;,

since ** = (-I)P(;-P) on Ip(G). Integrating this over G and using
Lemma 7.6, we derive (18). We consider now the operator =
-dS - Sd on I(G) which maps each %p(G) into itself. A form w satis-
fying Aw = 0 is called a harmonic form.

Lemma 7.7. A form w on G is harmonic if and only if d = 0 and
ow= 0.
In fact,

-<(dw, w> = <8(, Sw> + (dw, dw>

so the result follows.

Theorem 7.8. (Hodge) The harmonic forms on a compact connected
Lie group G are preciselythe bi-invariantforms.

A bi-invariant form w satisfies dw = 0 (Lemma 7.1); and since *
commutes with left and right translations, Sow= 0. Conversely, suppose
As = 0, so by Lemma 7.7, dw = w = 0. Let X E g and let X denote
the left invariant vector field on G such that Xe = X. By Exercise B.6,
ChapterI wehave (A') = i(X) dw + di(,)w = di(;)w. Then

<0(()w, (X)ow>= <80()w, i(.))w> = 0,

since (ff)w is harmonic. Hence 0(X)w = O, so w is right invariant
(Exercise B.3, Chapter I). Left invariance follows in the same way.

Q.E.D.



§ 6. Real Forms

Let V be a vector space over R of finite dimension. A complex structure
on V is an R-linear endomorphism J of V such that J2 = - I, where I
is the identity mapping of V. A vector space V over R with a complex
structure J can be turned into a vector space over C by putting

(a +ib)X = aX+ bJX,

X E V, a, b R.

In fact, J2 = I implies a(fX) = () X for , E C and X E V.
We have clearly dimc V = dimR V and consequently V must be
even-dimensional. We call V the complex vector space associated to V.
Note that V and agree set theoretically.

On the other hand, if E is a vector space over C we can consider E
as a vector space ER over R. The multiplication by i on E then becomes
a complex structure J on ER and it is clear that E = (ER) - .
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A Lie algebra over R is said to have a complex structure J if J is
a complex structure on the vector space D and in addition

[X, JY] = J[X, Y, for X, Y E . (1)

Condition (1) means (ad X) o J = J o ad X for all X E v, or equi-
valently, ad (JX) = J o ad X for all X E D. It follows from (1) that

[x, JY] = - [X, Y].

The complex vector space becomes a Lie algebra over C with the
bracket operation inherited from D. In fact

[(a+ ib)X, (c + id) Y] = [aX + bJX, cY + dJY]

= ac[X, Y] + bcJ[X, Y] + adJ[X, Y] - bd[X, Y]
so

[(a + ib) X, (c + id) Y] = (a + ib) (c + id) [X, Y].

On the other hand, suppose e is a Lie algebra over C. The vector space
eRhas a complex structure J given by multiplication by i on e. With the
bracket operation inherited from e, eR becomes a Lie algebra over R
with the complex structure J.

Now suppose W is an arbitrary finite-dimensional vector space over R.
The product W x W is again a vector space over R and the endo-
morphism J: (X, Y) -- (- Y, X) is a complex structure on W x W.
The complex vector space (W x W)~ is called the complexification of
W and will be denoted WC. We have of course dimc W c = dim, W.
The elements of Wc are the pairs (X, Y) where X, Y E W and since
(X, Y) = (X, 0) + i(Y, 0) we write X + iY instead of (X, Y). Then
since

(a + bJ)(X, Y) = a(X, Y) + b(- Y, X) = (aX - bY, aY + bX)

we have
(a + ib)(X + iY) = aX - bY i(aY ± bX).

On the other hand, each finite-dimensional vector space E over C
is isomorphic to WC for a suitable vector space W over R; in fact,
if (Z,) is any basis of E, one can take W as the set of all vectors of the
form Ti ajZi, a E R.

Let o1 be a Lie algebra over R; owing to the conventions above, the
complex vector space I = (I)c consists of all symbols X + iY, where
X, Y e 10.We define the bracket operation in I by

[X + iY, Z+ iT'] = [X, Z] - [Y, '] + i([Y, Z] + [X, T]),
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and this bracket operation is bilinear over C. It is clear that I = () C

is a Lie algebra over C; it is called the complexificationof the Lie algebra Io.
The Lie algebra R is a Lie algebra over R with a complex structure J
derived from multiplication by i on .

Lemma 6.1. Let Ko, K, and KR denote the Killing forms of the Lie
algebras 10,1,and 1R. Then

Ko(X, Y) = K(X, Y) for X, Y E o,

KR(X, Y) = 2 Re (K(X, Y)) for X, Y E IR (Re = real part).

The first relation is obvious. For the second, suppose Xi (1 i < n)
is any basis of ; let B + iC denote the matrix of ad X ad Y with respect
to this basis, B and C being real. Then Xl, ..., X,, JX 1, ..., JXn is a
basis of IRand since the linear transformation ad X ad Y of IRcommutes
with J, it has the matrix expression

and the second relation above follows.
As a consequence of Lemma 6.1 we note that the algebras I, I, and

IR are all semisimple if and only if one of them is.

Definition. Let g be a Lie algebra over C. A realform of g is a sub-
algebra go of the real Lie algebra gR such that

gR = go + Jgo (direct sum of vector spaces).

In this case, each Z g can be uniquely written

Z = X + iY, X, Y E go.

Thus g is isomorphic to the complexification of go. The mapping a of
g onto itself given by a: X + iY -* X - iY (X, Y e go)is called the
conjugation of g with respect to go. The mapping a has the properties

-(o(X)) = X, a(X + Y) = a(X) + a(Y),

o(aX) = ar(X), a[X, Y] = [aX, aY],

for X, Y E g, a E C. Thus a is not an automorphism of g, but it is an
automorphism of the real algebra gR. On the other hand, let a be a
mapping of g onto itself with the properties above. Then the set go of
fixed points of a is a real form of g and a is the conjugation of g with
respect to go. In fact, Jg0 is the eigenspace of a for the eigenvalue - I
and consequently gR = go+ Jgo. If B is the Killing form on g x g, it
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is easy to see from Lemma 6.1 that B(CrX,o(Y) is the complex conjugate
of B(X, Y). Another useful remark in this connection is the following:
Let g, and 2 be two real forms of g and a, and 2 the corresponding
conjugations. Then a leaves g2 invariant if and only if a1 and a com-
mute; in this case we have the direct decompositions

g = g, t 
9 + 1 (ig2),

92 = 91n 92 + 2 r (9igl).

Lemma 6.2. Suppose g is a semisimple Lie algebra over C, go a real
form of g, and a the conjugation of g with respect to go.Let ad denote the
adjoint representation of R and Int (R) the adjoint group of gR. If Go
denotes the analytic subgroupof Int (gR) whose Lie algebra is ad (go), then
Go is a closedsubgroup of Int (gR) and analytically isomorphic to Int (go).

Proof. Every automorphism s of g gives rise to an automorphism
S of Int (gR) satisfying (eadx) = ead(s" x) (X gR). In particular there
exists an automorphism of Int (gR)such that (d&), (ad X) = ad (a X) for
X e gS. Since ad is an isomorphism, this proves that ad (go)is the set
of fixed points of (d&),; thus Go is the identity component of the set
of fixed points of . Now, let ado denote the adjoint representation of go
and for each endomorphism A of gR leaving go invariant, let Ao denote
its restriction to go. Then if X E 9o, we have (ad X)0 = ado X and the
mapping A - A o maps Go onto Int (go).This mapping is an isomorphism
of Go onto Int (go). In fact, suppose A e Go such that A0 is the identity.
Since A commutes with the complex structure J, it follows that A is
the identity. Finally since the isomorphism is regular at the identity
it is an analytic isomorphism.

The following theorem is of fundamental importance in the theory
of semisimple Lie algebras and symmetric spaces.

Theorem 6.3. Every semisimpleLie algebra g over C has a real form
which is compact.

The existence of a compact real form was already established by Cartan in
1914 as a biproduct of his classification of real simple Lie algebras. Later
when global Lie groups had comneto the fore Cartan suggested (without
success) the following method for proving the existence of a compact real
form. Let be the set of all bases (el,... ,e,,) of g such that B(Z, Z) =

- ' zi2if Z = 1 ziei and let ckj be the corresp)onding structure constants.
Let f denote the function on defined by

.f( .. ,e) = Z Icj 12.
i,j, k

Then it is not hard to prove that u = Re is a compact real form of g

if and only if f has a minimunmwhich is reached for c real. A proof of the
existence of u along these lines was accomplishe(l by Richardson (Compact
real forms of a complex semisimple Lie algebra, .J. Differential Geomletry 2
(1968) 411-420). In one of the exercises we shall see an important applica-
tion of Theorem 6i.3in representation theory.
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The Classical Groups and Their Cartan Involutions

1. Some Matrix Groups and Their Lie Algebras

In order to describe the real and complex classical groups, we adopt
the following (mostly standard) notation. Let (x1, ..., x) and (zl, ..., z)
be variable points in Rn and Cn, respectively. A matrix A = (aij)1<ijin
operates on Cn by the rule()(a ann)(-:)
As before, Eij denotes the matrix (ai6bj)1ab,b<n. The transpose and
conjugate of a matrix A are denoted by 'A and A, respectively; A is
called skew symmetric if A + A = 0, Hermitian if 'A = A, skew
Hermitian if 'A A+= 0.

If I, denotes the unit matrix of order n, we put

I. _= (,oP I)X A =(_ I")

-I, ° O O

K {,a I, j )
0 -I, '

The multiplicative group of complex numbers of modulus 1 will be
denoted by T.

GL(n, C), (GL(n, R)): The group of complex (real) n x n matrices of
determinant 0.

SL(n, C), (SL(n, R)): The group of complex (real) n x n matrices of
determinant 1.

U(p, q): The group of matrices g in GL(p + q, C) which leave invariant
the Hermitian form

-zl; 1 - ... - Zp + ZP+1Z +- ... + Z+aZP+qZ i.e., tgI~qg= Ip..
We put U(n) = U(O,n) = U(n, 0) and SU(p, q)= U(p, q) SL(p + q, C),
SU(n) = U(n) ri SL(n, C). Moreover, let S(U x bU) denote the set
of matrices

wheregU2Uqanddetgdet2=1
where g1 e U(p), g2 E U(q) and det g1 det g: = i.
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SU*(2n): The group of matrices in SL(2n, C) which commute with the
transformation b of C2' given by

(Z1,yes..Zn%+i,- Z2n) (n+l,...,-,2n - >...- n)*

SO(n, C): The group of matrices g in SL(n, C) which leave invariant the
quadratic form

z2 + ... + z2, i.e., tgg = I,.

SO(p, q): The group of matrices g in SL(p + q, R) which leave invariant
the quadratic form

-X1 + ... + X+ i.e., gI.g I.
I .. XV+q i,,

We put SO(n) = SO(O, n) = SO(n, 0).
SO*(2n): The group of matrices in SO(2n, C) which leave invariant the

skew Hermitian form

1-Zln+ + Zn+11- Z22in+2+ Zn+2 2 - ... - Zn,2n+ Z2n,7,.

Thus g e SO*(2n)o 'gJg = J, tgg = I2,.
Sp(n, C): The group of matricesg in GL(2n, C) which leave invariant the

exterior form

z A zn+ + z2 A n+ 2 + ... + Z, A z 2n, i.e., tgJg = .

Sp(n, R): The group of matricesg in GL(2n, R) which leave invariant the
exterior form

xl A x,+ 1 + x 2 A Xn+2 + --- + xn A x2 , i.e., tgJg ,,.

Sp(p, q)' The group of matrices g in Sp(p + q, C) which leave invariant
the Hermitian form

IZK.QZ, i.e., gK,.g = Kq.

We put Sp(n) = Sp(O, n) = Sp(n, 0). It is clear that Sp(n)
Sp(n, C) r U(2n).

The groups listed above are all topological Lie subgroups of a general
linear group. The Lie algebra of the general linear group GL(n, C) can
(as in Chapter II, §1) be identified with the Lie algebra gl(n, C) of all
complex n x n matrices, the bracket operation being [A, B] AB-BA.
The Lie algebra for each of the groups- above is then canonically
identified with a subalgebra of gl(n, C), considered as a real Lie algebra.
These Lie algebras will be denoted by the corresponding small German
letters, sl(n, R), su(p, q), etc.
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Now, if G is a Lie group with Lie algebra g, then the Lie algebra b
of a topological Lie subgroup H of G is given by

I = {Xeg: exp tXEH for tER}. (1)

Using this fact (Chapter II, §2) we can describe the Lie algebras of the
groups above more explicitly. Since the computation is fairly similar
for all the groups we shall give the details only in the cases SU*(2n)
and Sp(n, C). Case SO(p, q) was done in Chapter V, §2.

Ig(n, C), (gl(n, R)): {all n x n complex (real) matrices),

sl(n, C), (sl(n, R)): {all n x n complex (real) matrices of trace 0},

Z Z Z skew Hermitian of order p and q,
Z3 respectively, Z 2 arbitrary 'I

Z2) Z, Z3 skew Hermitian, of orderp and q,
Z, respectively,Tr Z1 + Tr Z3 = 0, Z2 arbitraryl'

Z2 Z1 Z2 n n complex matrices
Z,) I Tr Z + T r Z = 0

so(n, C): {all n x n skew symmetric complex matrices},

All Xi real, X1 , X3 skew symmetric of order
p and q, respectively, YX2 arbitrary 1 '

Z 12)IZ,Z n X n complex matrices,~
Z Z, skew, Z2 Hermitian

sp(n,C): S(Zl Z2 ) Zi complex n x n matrices,
kZ3 _ tZJ Z2 and Z3 symmetric

sP(n,R) : x -tX l X2 , Xa symmetric

Sp(p,q) : t Zl

tZ4

Z1 2 Z1 3

Z2 2 'Z14

214 Z11

-Z 2 4 -tZ 1 2

Z 14 \. Zij complex matrix; Z,, and Z1 3 of

Z2 4 order p, Z12 and Z1 4 p X q matrices,
-- 2 Z,, and Z22 are skew Hermitian, 

Z2/ Z13 and Z2 4 are symmetric

Proof for SU*(2n). By the definition of this group, we haveg E SU*(2n)
if and only if go = 'kgand det g = 1. This shows that A E su*(2n) if
and only if AI = A and Tr A = 0. Writing A in the form

= (A :A,)

0f

u(p, q):(tZ

su(p, q): I(,Z

su*(2n) (-Z

so(p,q.: I)(,

so*(2n): R( 



where Ai are n x n complex matrices we see that if U and V are n X 1
matrices, then

"A(Uy (A 1U±AA2V) (A2-A 41 2 )
VAU = ¢ U +, A3 U + 2

It follows that A3 = -A 2, A1 = A 4 as desired.

Proof for Sp(n, C). Writing symbolically

2(21 A Zn+l + ... + Zn A z 2n) = ( 1, ..., Z2n) A Jt(Z 1 , ... , Zn)

it is clear that g E Sp(n, C) if and only if

tgJng = .

Using this for g = exp tZ (t E R), we find since A exp ZA - 1

exp(AZA-1), (exp Z) = exp tZ,

exp t(jn1 ZJn) = exp(-tZ) (t e R),

so Z c sp(n, C) if an only if

tZJ, + JZ = 0. (2)
Writing Z in the form

z=(i 5:),

where Zi is a complex n x n matrix, condition (2) is equivalent to
Z1 + Z4 = 0, Z2 = Z2, Z = Za.

2. Connectivity Properties

Having described the Lie algebras, we shall now discuss the con-
nectivity of the groups defined.

Lemma 2.1. Let ~ denote topologicalisomorphism, and - a homeo-
morphism. We then have

(a) SO(2n) n Sp(n) ~ U(n).

(b) Sp(p, q) r U(2p + 2q) Sp(p) x Sp(q).

(c) Sp(n, R) U(2n) U(n).
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(d) SO*(2n) r, U(2n) s, U(n).
(e) SU(p, q) n U(p + q) = S(UP X U) - SU(p) X T X SU(q).
(f) SU*(2n) U(2n) -- Sp(n).

Proof. (a) Each g e Sp(n) has determinant I so g e SO(2n) n Sp(n)
is equivalent to gg = I2,,, 'gJg = J, 'gg = I,,. Writing

g=(A B

these last relationsamount tog real,A = D, B = -C, AB - BtA = 0,
A'A + BB = In. But the last twoformulasexpress simply A + iB e U(n).
For part (b), let

V = {ge GL(2p+ 2q,C): 'gK,.,g = K,.}.
Then

g U(2p+ 2q)n V gg I=I ,,+, tgK,.gq= K,,.
But the last two relations are equivalent to

X11 X13 0 (XII X 13 ) e U(2p)

9 where X3ag =0 X2 2 24 where 31 33 (3)X42,0 X4 \X4 2,4) e U(2q).

By definition

Sp(p, q) = Sp(p q, C) r V
so

Sp(p, q) n U(2p + 2q) = Sp(p + q, C) n U(2p + 2q) 0 V.

Thus, g in (3) belongs to Sp(p, q) n U(2p + 2q) if and only if gJp+qg =
Jp+q or equivalently

(.l XI13)e U(2p)nrSp(p, C) = Sp(p)

and

(X, X24) e U(2q)n Sp(q,C) = Sp(q).

This proves (b). For (c) we only have to note that

Sp(n, R) n U(2n)= Sp(n) tr SO(2n),
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which by (a) is isomorphic to U(n). Part (d) is also easy; in fact, g ESO*(2n)
by definition if and only if gg = I2,,and tgJng= J.

Thus

SO*(2n) n U(2n) = SO(2n) n Sp(n, C) = SO(2n) n Sp(n) U(n).

Part (e). We have

gE SU(p, q) U(p + q) g= 0g'

where g, e U(p), g2 E U(q) and det g, det g2 = 1. Such a matrix can be
written

det g O 0 O0

0 1

(0°, g) =( Y2)'

O0 det g 2

where Yi E SU(p), Y2 E SU(q). We have therefore a mapping

g - (l, det gl, Y2)

of SU(p, q) n U(p + q) into SU(p) x T x SU(q). This mapping is
not in general a homomorphism but it is continuous, one-to-one and
onto; hence SU(p, q)n U(p + q) is homeomorphic to SU( p) x T x SU(q).
Finally, g SU*(2n) if and only if gJ = Jg and det g = . Hence
g E SU*(2n) n U(2n) if and only if gj -= Jng, gg = I2, det g = 1.
However, these conditions are equivalent to gJng = Jn, g = I2n
or g e Sp(n). This finishes the proof of the lemma.

The following lemma is well known, see, e.g., ChevalleyLie GroupsI,'

Lemma 2.2.

(a) The groups GL(n, C), SL(n, C), SL(n, R), SO(n, C), SO(n), SU(n),
U(n), Sp(n, C), Sp(n) are all connected.

(b) The group GL(n, R) has two connected components.

In order to determine the connectivity of the remaining groups we
need another lemma.

Definition. Let G be a subgroup of the general linear group GL(n, C).
Let zij(a) (1 < i, j n) denote the matrix elements of an arbitrary
a E GL(n, C), and let xoj(a) and yij() be the real and imaginary part of
io(a). The group G is called a pseudoalgebraic subgroup of GL(n, C)
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if there exists a set of polynomials Pg in 2n2 arguments such that a C G
if and only if P,(... xiij(a),yij(a), ...) = 0 for all P,.

A pseudoalgebraic subgroup of GL(n, C) is a closed subgroup, hence
a topological Lie subgroup.

Lemma 2.3. Let G be a pseudoalgebraic subgroup of GL(n, C) such
that the' condition g E G implies tg E G. Then there exists an integer d > 0
such that G is homeomorphicto the topologicalproduct of G n U(n) and Rd.

Proof. We first remark that if an exponential polynomial Q(t)=
£_1, cjebi (bj R, CjE C) vanishes whenever t is an integer then
Q(t) = 0 for all t R. Let g(n)denote the vector space of all Hermitian
n x n matrices. Then exp maps (n) homeomorphically onto the
space P(n) of all positive definite Hermitian n x n matrices (see
Chevalley lheoryofLieGroups:Chapter I). Let H E b(n). We -shall prove

If exp H E G n P(n), then exp tH E G n P(n) for t E R. (4)

There exists a matrix u E U(n) such that uHu - 1 is a diagonal matrix.
Since the group uGu -1 is pseudoalgebraic as well as G, we may assume
that H in (4) is a diagonal matrix. Let h, ..., h, be the (real) diagonal
elements of H. The condition exp H e G n P(n) meansthat the numbers
ehl, ... , eh satisfy a certain set of algebraic equations. Since exp kH e
G n P(n) for each integer k, the numbers ekhl, ... , ekh" also satisfy these
algebraic equations and by the remark above the same is the case if k
is any real number. This proves (4).

Each g e GL(n, C) can be decomposed uniquely g = up where
u e U(n), p EP(n). Here u and p depend continuously on g. If g e G,
then gg =p 2 E G nP(n)_so by (4) peGr P(n) and u Gn U(n).
The mapping g -* (u, p) is a one-to-one mapping of G onto the product
(G n U(n)) x (G n P(n)) and since G carries the relative topology of
GL(n, C), this mapping is a homeomorphism.

The Lie algebra g[(n, C) is a direct sum

gl(n, C) = u(n) + (n).

Since the. Lie algebra g of G is invariant under the involutive auto-
morphism X -- -tX of gl(n,C) we have

g = gn.u(n) + g n (n).

It is obvious that exp(g rn b(n)) C G n P(n). On the other hand, each
p E G n P(n) can be written uniquely p = exp H where H I)(n); by
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(4), H e (n)n g, so exp induces a homeomorphism of g r b(n) onto
G n P(n). This proves the lemma.

Lemma 2.4.

(a) The groups SU(p, q), SU*(2n), SO*(2n), Sp(n, R), and Sp(p, q) are
all connected.

(b) The group SO(p, q) (0 < p < p + q) has two connected components.

Proof. All these groups are pseudoalgebraic subgroups of the
corresponding general linear group and have the property that
g E G =>tg E G. Part (a) is therefore an immediate consequence of
Lemma 2.3 and Lemma 2.1. For (b) we consider the intersection
SO(p, q) rn U(p + q) = SO(p, q) tn SO(p + q). This consists of all
matrices of the form

(A 0),

where A and B are orthogonal matrices of order p ad q respectively
satisfying det A det B = 1. It follows again from Lemma 2.3 that SO(p, q)
has two components.

3. The Involutive Automorphisms of the Classical Compact Lie Algebras

Let u be a compact simple Lie algebra, 0 an involutive automorphism
of u; let u = to + p, be the decomposition of u into eigenspaces of 0
and let go = 0 + p (where p = ip.). Then go is a real form of the
complexification g = uC . We list below the "classical" u, that is, su(n),
so(n), and sp(n) and for each give various 0; later these will be shown to
exhaust all possibilities for 0 up to conjugacy. Then go runs through all
noncompact real forms of g up to isomorphism. The simply connected
Riemannian globally symmetric spaces corresponding to (, 0) and 
are also listed (for u classical). As earlier, b.p and %° denote maximal
abelian subspaces of p, and p, respectively.

Type A I u = su(n); (X) = X.
Here t = so(n) and p, consists of all symmetric purely imaginary

n X n matrices of trace 0. Thus 90 = to + pO = sl(n, R). The corre-
sponding simply connected symmetric spaces are

SL(n, R)/SO(n), SU(n)ISO(n) (n > 1).

The diagonal matrices in p form a maximal abelian subspace. Hence
the rank is n - 1. Since g = a,,, the algebra go is a normal real form
of g.
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TypeA II u = su(2n); (X) = JnJ 1.
Here to = sp(n) and

P. (I -) Z su(n),Z2 =so(n,C).

Hence go = to + po = su*(2n). The corresponding simply connected
symmetric spaces are

SU*(2n)lSp(n), SU(2n)Sp(n) (n > 1).

The diagonal matrices in p* form a maximal abelian subspace of p,.
Hence the rank is n - 1.

TypeA III u = su(p + q); (X) = I,iXI,.
Here

O _IA0 AE U(p), B E u(q)
t° 0 B) I Tr(A + B) = '

=P* (-t2 ) z P x q complex matrix}.

The decomposition

(0 B_

A -(TrA)I p 0 ( (TrA)B)II rB)O 

° °/ (I° - B)I +0 B (Tr B)I

shows that to is.isomorphic to the product "

su(p) x co x su(q),

where c is the center of to. Also go =- -r- pO= su(p, q). The corre-
sponding simply connected symmetrii spaces are

SU(, )S(U, U), SU(p q)/S(U, x U.) (p > 1,q 1, > q)

A maximal abelian subspace of p, is given by

;. = R(Ei i - E,,i i). (5)
i=l

Consequently, the rank is q. The spaces are Hermitian symmetric. For
-q = 1, these spaces are the so-called Hermitian hyperbolic space and the
complex projective space.
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Type BD I u so(p + q); o(X) = zp.~Ipp, (p > q).
Here

to= (A0 | AEso(p), Beso(q),

* = 1(e )| X realp x qmatrix

As shown in Chapter V, §2, the mapping

is an isomorphism of go = to + po onto so(p, q). The simply connected
symmetric spaces associated with so(p, q) and (u, ) are

SOO(p,q)/SO(p)x SO(q), SO(p + q)/SO(p)x SO(q) (p > ).

Here SOO(p, q) denotes the identity component of SO(p, q). The compact
space is the manifold of oriented p-planes of (p + q)-space, which is
known (see, e.g., Steenrod [1], p. 134)to be simply connected. A maximal
abelian subspace of p, is again given by (5), so the rank is q. If p + q
is even then gois a normal real form of g if and only if p = q. If p + q is
odd then gois a normal real form of g if and only if p = q + 1.

For q = 1, the spaces are the real hyperbolic space and the sphere.
These are the simply connected Riemannian manifolds of constant
sectional curvature 0 and dimension 3. Those -of dimension 3
are SL(2, C) SU(2) and SU(2), i.e., a, for n = 1.

If q = 2, then to has nonzero center and the spaces are Hermitian
symmetric.

Type D III u = so(2n); (X) = JXJ'.
Here to = so(2n) n sp(n) which by Lemma 2.1 is isomorphic to

u(n). Moreover,

Hence 90 = t0 + p0 = so*(2n). The symmetric spaces are

SO*(2n)/U(n), SO(2n): U(n) (n > 2).

Here the imbedding of U(n) into SO(2n), (and SO*(2n)), is given by
the mapping

A + iB . _ B At' -(6)
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where A + iB E U(n), A, B real. The spaces are Hermitian symmetric
since 10 has nonzero center. In view of Theorem 4.6, Chapter VIII,
they are simply connected. A maximal abelian subspace of p, is spanned
by the matrices

(E12 - E21) - (E+ 1 n+2 - E+ 2 n+1), (E23 - E32) - (En+2 n+3- En+3 n+2)..

Consequently, the rank is [n/2].

TypeC I u = sp(n); (X) = X (=JnXJ;).
Here ,o= sp(n) n so(2n) which is isomorphic to u(n).

_ llZI Z21 I Z1 E u(n), purely imaginary
Z 2 - Z11 I Z 2 symmetric, purely imaginary'

Hence go = t, + Po = sp(n, R). The corresponding simply connected
symmetric spaces are

Sp(n, R)IU(n), Sp(n)/U(n) (n > 1).

Here the imbedding of U(n) into Sp(n) (and Sp(n, R)) is given by (6).
The diagonal matrices in p form a maximal abelian subspace. Thus the
spaces have rank n and g is a normal real form of g. The spaces are
Hermitian symmetric.

Type C11 u = sp(p + q); (X) = K,qXKp.q.
Here

to = X22 0X 4O X13p x p symmetricX 3 0 X ii 0

-x, 2 4 o 22 / A' 4 q x q symmetric

(a O-- 4 Y0Y1c4 

-_12 0 'YY14 0 Y.2 and Y 4 arbitrary

-Y 4 0 y

It is clear that to is isomorphic to the direct product sp(p) x sp(q).
Moreover, g = to + p = sp(p, q). The corresponding simply con-
nected symmetric spaces are

Sp(p, q)/Sp(p) x Sp(q), Sp(p + q)/Sp(p) x Sp(q) (p > q > 1).
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Here the imbedding of Sp(p) x Sp(q) into Sp(p + q) (and Sp(p, q)) is
given by the mapping

A, 0 B1 0

lAl B,l A2 B2 0 A2 0 B2
4\1 D C2 D2)) C o 0 02/

0 DC20 2

A maximal abelian subspace of p* is obtained by taking Y14 = 0 and
letting Y12run through the space RE,, + RE22 +- + RE,,. Conse-
quently, the rank is q. For q = 1, the spaces are the so-called quaternian
hyperbolic spacesand the quaternian projective spaces.

This will be shown to exhaust all involutive automorphisms of the
compact classical simple Lie algebras. The restriction on the indices is
made in order that the algebras should be simple, the spaces of dimension
>0, and the condition p > q is required in order to avoid repetition
within the same class.
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